纳米胶囊相变蓄冷乳液的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源价格的不断上涨和环保意识的增强,节能降耗成为了人们的关注焦点。相变储能技术能解决能量供求在时间和空间上不匹配的矛盾,是提高能源利用效率的有效手段之一。将相变材料应用于普通流体中形成的潜热型功能热流体,是一种特殊的固-液两相流体,由于胶囊化的相变材料融化时能释放大量潜热,增大了有效比热容,且相变颗粒间的微对流效应,强化了管路壁面的热传导性能,与普通流体相比,它可明显强化流体的传热能力,是一种集储热与强化传热功能于一身的新颖材料。
     本文以正十四烷(Tet)为芯材,聚苯乙烯(PS)为壁材,采用超声乳化、原位细乳液聚合的方法,制备了蓄冷型纳米胶囊相变乳液。系统考察了超声功率、超声时间,亲水性共聚单体、乳化剂、助乳化剂、引发剂、链转移剂(或交联剂)以及芯壳比等因素对纳米胶囊形态、粒径以及热性能的影响。应用纳米粒度仪、透射电子显微镜(TEM)、傅立叶红外光谱(FTIR)、差示扫描量热(DSC)以及热失重(TG)等分析手段对纳米胶囊的形貌、蓄热性能以及热稳定性进行了表征。
     研究表明:苯乙烯聚合链具有强疏水性,不易相分离而形成包囊,添加亲水性单体,可改善胶囊的稳定性;复合乳化剂有助于形成大小均一、稳定的胶囊乳液;适量链转移剂的加入使相分离更容易,促进胶囊化;油溶性引发剂有助于形成形状规则、大小均匀的胶囊,水溶性引发剂容易形成聚合物实心粒;核壳配比影响胶囊的热性能及壳层强度,进一步影响着胶囊的相变焓值。
     适宜的纳米胶囊相变材料乳液制备条件为:超声功率调整值为50%(额定功率900W);超声乳化时间为10min;反应时间为5h;Tet与St的比例为1:1;亲水型共聚单体丙烯酸乙酯(EA)为2.5%(油相质量百分比,下同);链转移剂正十二硫醇(DDT)为0.1%;复合乳化剂(十二烷基硫酸钠(SDS)和辛烷基酚聚氧乙烯醚-10(OP-10))配比为1:1,总用量为3%;引发剂偶氮二异庚腈(ABVN)0.4%。制备的纳米胶囊平均粒径为132nm,相变焓能达到98.71 kJ/kg,具有较好的储能能力。乳液的性能测试表明,制备的纳米胶囊乳液(胶囊质量含量15%)具有较小粘度(25℃时粘度为8.3cP),导热性能(导热系数为0.8467 W/m·K)和比热容(7℃左右比热容能达到4.8 J/g·℃)均优于水,乳液经过多次冷热循环后热性能基本不变,且具有很高的机械稳定性,可作为蓄冷用功能热流体使用。
Due to the rising cost of fossil fuels and environmental concerns, more and moreattention has been paid to energy conservation lately. Thermal energy storage (TES) usingphase change materials (PCM) can solve the problem in time and spatial mismatch betweenthe energy supply and the consumption of energy, and play an important role in increasingefficiency of energy utilization. Latent functionally thermal fluid (LFTF), which encapsulatedphase change material dispersed in heat transfer fluid, is a solid-liquid two-phase fluid.Because the latent heat released from phase change materials can enlarge heat capacity offluid, and the existence of micro-convection around the PCM capsules can enhance heattransfer efficiency, therefore, the LFTF is novel multifunctional fluid which can combine thethermal storage and the thermal transmission in one.
     In this paper, the nanoencapsulated phase change materials (NEPCMs) with polystyrene(PS) as shell and n-tetradecane (Tet) as core were synthesized by ultrasonic technique andminiemulsion in-situ polymerization. The influence of polymerization factors such asultrasound power and time, hydrophilic co-monomer, emulsifier, co-emulsifier, initiator, chaintransfer agent, and the ratio of n-tetradcane and styrene on the morphology, particle size andthermal property of nanocapsules were systematically investigated. The samples werecharacterized by particle size analyzer, transmission electron microscope (TEM), fouriertransform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC) andthermogravimetric analyzer (TG). The results showed that, due to the strong hydrophobicityof polystyrene chain, it isn’t easy to separate and encapsulate, while adding hydrophilicco-monomer, it is easy to form steady capsules; the composite surfactants contribute to formuniform and steady nano-latex; the proper amount of chain transfer agent might facilitatephase separation and form regular capsules; using 2,2′-azobisisoheptonitrile (ABVN) as initiator, the capsules with good encapsulation can be obtained, while using potassiumpersulfate (KPS), the solid bead is easy to form; the ratio of Tet and St has a great effect onthe themal property and the strength of polmer shell, which change phase change enthalpy.
     The optimized experimental conditions were that 50% (rated power is 900w) poweradjusted value of ultrasonic, 10 min ultrasonic time, 5hr reaction time, 1:1 ratio of Tet and St, 2.5% hydrophilic ethyl acrylate (EA) co-monomer, 0.1% dodecanethiol (DDT) chain transferagent, 3% composite surfactants which composed sodium dodecyl sulfate(SDS) andpoly-(ethylene glycol) monooctylphenyl ether(OP-10) by 1:1 in weight ratio and 0.4%2,2′-azobisisoheptonitrile(ABVN). Under this conditions, the average particle size of prepared nanocapsules was 132 nm and the phase change enthalpy was 98.71 kJ?kg-1.The test result forlatex showed that the nanocapsule emulsion (15% mass fration) has low viscosity (8.3cP at25℃), good thermal conductivity(0.8467 W/m·K at 25℃) and excellent specificheat(4.8J/g·℃at 7℃). After more than forty times freezing-melting circulation, the latexhas well thermal property and mechanical stability which is suitable as cool storage media.
引文
[1]张寅平,胡汉平,孔祥冬,等.相变贮能:理论和应用[M].合肥:中国科学技术大学出版社, 1996
    [2]凌双梅,高学农,尹辉斌.低温相变蓄热材料研究进展[J].广东化工. 2007, 34(3): 48-51
    [3]李兴仁.低温相变蓄冷材料及其蓄冷特性的实验研究[D].重庆:重庆大学, 2004
    [4]刘玉东.纳米复合低温相变蓄冷材料的制备及热物性研究[D].重庆:重庆大学, 2005
    [5]孙学锋,周志华,李勇刚.相变材料在暖通空调的应用[J].煤气与热力. 2006,26(4): 67-69
    [6]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术. 2006, 24(5): 460-463
    [7]方贵银,邢琳,杨帆.蓄冷空调技术的现状及发展趋势[J].制冷与空调.2006(01): 1-5
    [8]陈则韶,戚学贵,程文龙,等.高温水蓄冷空调的原理和理论分析[J].工程热物理学报. 2002, 23(2): 133-138
    [9]方贵银,陈则韶.逆流式过冷—高温水蓄冷空调系统特性实验研究[J].暖通空调.2004, 34(5): 7-13
    [10]李晓燕.常规空调工况用相变材料的研制与应用基础研究[D].哈尔滨:哈尔滨工业大学, 2008
    [11]李莉,朱彩霞,张建一.与冰蓄冷相结合的低温送风系统[J].低温工程. 2004(5): 59-62
    [12] Dincer I. On Thermal Energy Storage Systems and Applications in Buildings[J].Energy&Buildings. 2002, 24(4): 377-388
    [13]张永铨.国内外冰蓄冷技术的发展与应用[J].制冷技术. 1999(2): 21-24
    [14]张永铨.我国蓄冷技术的现状及发展[C].中国杭州: 2007
    [15]马立.空调蓄冷及固体吸附蓄冷技术[J].制冷与空调. 2005(4): 69-71
    [16]李金平,王如竹,郭开华,等.蓄冷空调技术及其发展方向探讨[J].能源技术.2003, 24(3): 119-121
    [17] Ames D A. Eutectic cool storage: current developments[J]. ASHRAE Journal. 1990,32(4): 46-50
    [18]方贵银,邢琳,杨帆.蓄冷空调技术的现状及发展趋势[J].制冷与空调.2006(01): 1-5
    [19] Koba K, Awaya S. Heat Storage System Using Sodium Sulfide DecahydrateEutectic[C]. 1997
    [20] Jian W L, Zaheeruddin M. Sub-optimal on-off switching control strategies for chilledwater cooling systems with storage[J]. 1998, 18(6): 369-386
    [21] He B, Martin V, Setterwall F. Liquid-solid phase equilibrium study of tetradecane andhexadecane binary mixtures as phase change materials (PCMs) for comfort coolingstorage[J]. Fluid Phase Equilibria. 2003, 212(1-2): 97-109
    [22] Li J, Liang D, Guo K, et al. Formation and dissociation of HFC134a gas hydrate innano-copper suspension[J]. 2006, 47(2): 201-210
    [23]邢琳,方贵银,杨帆.微胶囊相变蓄冷材料的制备及其性能研究[J].真空与低温. 2006, 12(03): 153-156
    [24] Royon L, Jacquier D, Mercier P. Flow investigation of phase change material (PCM)slurry as a heat transfer fluid in a closed loop system[J]. International Journal of EnergyResearch. 2009, 33(4): 333-341
    [25]方贵银,陈则韶.逆流式过冷—高温水蓄冷空调系统特性实验研究[J].暖通空调.2004, 34(5): 7-13
    [26]陈则韶,戚学贵,程文龙,等.高温水蓄冷空调的原理和理论分析[J].工程热物理学报. 2002, 23(2): 133-138.
    [27]郑家林,孙晓红.相变蓄冷原理及其应用[J].节能. 1995(6): 12-16
    [28] He B, Martin V, Setterwall F. Liquid-solid phase equilibrium study of tetradecane andhexadecane binary mixtures as phase change materials (PCMs) for comfort coolingstorage[J]. 2003, 212(1-2): 97-109
    [29]张永铨.国内外冰蓄冷技术的发展与应用[J].制冷技术. 1999(2): 21-24
    [30] He B, Setterwall F. Technical grade paraffin waxes as phase change materials for coolthermal storage and cool storage systems capital cost estimation[J]. Energy Conversion andManagement. 2002, 43(13): 1709-1723
    [31]邢琳,方贵银,杨帆.微胶囊相变蓄冷材料的制备及其性能研究[J].真空与低温. 2006(03):153-156
    [32]李莉,朱彩霞,张建一.与冰蓄冷相结合的低温送风系统[J].低温工程. 2004(5):59-62
    [33]章明,周静.冰蓄冷技术的应用[J].供用电. 2000, 17(6): 42-44
    [34]张永铨.我国蓄冷技术的现状及发展[C].中国杭州: 2007
    [35] He B, Gustafsson E M, Setterwall F. Tetradecane and hexadecane binary mixtures asphase change materials (PCMs) for cool storage in district cooling systems[J]. Energy. 1999,24(12): 1015-1028
    [36]舒碧芬,郭开华,蒙宗信,等.新型“暖冰”蓄冷技术及其蓄冷空调应用方式[J].制冷学报. 2000(03): 36-40
    [37] Mccormick R A. Use of Clathrates For Off-Peak Thermal Energy Storage[Z].1990300-305
    [38] Yamamoto N. Actual Filed Test of a Novel Combined System of High EfficiencyHeating and Cooling Heat Pump and Clathrate Cool Storage Unit[C]. Proceedings of the29th IECEC. 1994(4):933-938
    [39]赵永利,郭开华,张奕,等.混合制冷剂气体水合物生成及融解过程实验研究[J].工程热物理学报. 1998, 19(4): 480-483
    [40]郭开华,舒碧芬,张奕,等. HFC134a/HCFC141b混合气体水合物相平衡特性[J].工程热物理学报. 1998, 19(4): 406-409
    [41]舒碧芬,郭开华,蒙宗信,等.新型气体水合物蓄冷装置及其性能[J].工程热物理学报. 1999, 20(5):542-544
    [42]童明伟,林昆,黎家胜.在引射方式下气体水合物的形成与蓄冷特性[J].重庆大学学报(自然科学版). 2000, 23(03): 91-93
    [43]李夔宁,刘玉东,吴治娟,等. R134a气体水合物蓄冷实验[J].重庆大学学报(自然科学版). 2007, 30(01): 58-60
    [44]谢应明,刘道平,刘妮,等.针翅换热管对蓄冷用气体水合物生长过程的强化[J].制冷与空调. 2007, 7(2): 17-19
    [45]谢应明,刘道平,刘妮,等. HCFC141b气体水合物水平换热管外生长特性研究[J].上海理工大学学报. 2006, 28(5): 409-412
    [46]谢应明,郭开华,梁德青,等.气体水合物垂直换热管外融冰快速成核与静态渗透生长[J].中国科学B辑. 2004, 34(5): 375-381
    [47]李晓燕.适用于空调蓄冷的新型相变蓄冷介质的研究[J].应用科技. 2004, 31(7): 66-68
    [48]张寅平,王馨,陈斌娇,等.潜热型功能热流体的制备及其传热和流动特性研究进展[J].高技术通讯. 2006, 16(5): 485-491
    [49] Farid M M, Al-hallaj S. Microchannel heat exchanger with micro-encapsulated phasechange[P]. U.S, 11105716. [2006,10]
    [50] Griffiths P W, Eames P C. Performance of chilled ceiling panels using phase changematerial slurries as the heat transport medium[J]. Applied Thermal Engineering Heattransfer and sustainable energytechnologies. 2007, 27(10): 1756-1760
    [51] Inaba H, Morita S. Flow and cold heat-storage characteristics of phase-change emulsionin a coiled double-tube heat exchanger[J]. Journal of Heat Transfer-Transactions of theASME. 1995, 177: 440-446
    [52] Inaba H, Morita S I. Cold heat-release characteristics of phase-change emulsion by air-emulsion direct-contact heat exchange method[J]. International Journal of Heat and MassTransfer. 1996, 39(9): 1797-1803
    [53]赵镇南,吴挺,时雨荃,等.相变乳状液的流变和传热性能研究[J].工程热物理学报. 2001, 22(05): 589-592
    [54]赵镇南,时雨荃,张毅,等.相变乳状液在蛇形管中的流动和传热特性[J].工程热物理学报. 2002, 23(06): 730-732
    [55] Xu H, Yang R, Zhang Y P, et al. Thermal physical properties and key influence factorsof phase change emulsion[J]. Chinese Sinence Bulletin. 2005, 50(1): 88-93
    [56] Chen B J, Wang X, Zhang Y P, et al. Experimental research on laminar flowperformance of phase change emulsion[J]. Applied Thermal Engineering. 2006, 26(11-12):1238-1245
    [57]刘玉东,李夔宁,何钦波,等.低温纳米复合相变蓄冷材料热物性研究[J].工程热物理学报. 2008, 29(1): 105-107
    [58]李新芳,朱冬生,王先菊,等. Cu-水纳米流体的分散行为及导热性能研究[J].功能材料. 2008, 39(1): 162-165
    [59]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社, 2001
    [60] Charunyakorn P, Sengupta S, Roy S K. Forced convection heat transfer inmicroencapsulated phase change material slurries: flow in circular ducts[J]. InternationalJournal of Heat and Mass Transfer. 1991, 34(3): 819-833
    [61] Goel M, Roy S K, Sengupta S. Laminar forced convection heat transfer inmicrocapsulated phase change material suspensions[J]. International Journal of Heat andMass Transfer. 1994, 37(4): 593-604
    [62] Yamagishi Y, Takeuchi H, Pyatenko A T, et al. Characteristics of microencapsulatedPCM slurryas a heat-transfer fluid[J]. AIChE Journal. 1999, 45(4): 696-707
    [63]胡先旭,张寅平.等热流条件下潜热型功能热流体换热强化机理研究[J].工程热物理学报. 2002, 23(2): 224-226
    [64] Alvarado J L, Marsh C, Sohn C, et al. Thermal performance of microencapsulatedphase change material slurry in turbulent flow under constant heat flux[J]. InternationalJournal of Heat and Mass Transfer. 2007, 50(9-10): 1938-1952
    [65] Inaba H, Dai C, Horibe A. Numerical simulation of Rayleigh–Bénard convection innon-Newtonian phase-change-material slurries[J]. International Journal of ThermalSciences. 2003, 42(5): 471-480
    [66] Inaba H, Kim M J, Horibe A. Melting Heat Transfer Characteristics ofMicroencapsulated Phase Change Material Slurries With Plural Microcapsules HavingDifferent Diameters[J]. Journal of Heat Transfer. 2004, 126(4558): 558-565
    [67] Thaicham P, Gadi M B, Riffat S B. An investigation of microencapsulated phasechange material slurry as a heat-transfer fluid in a closed-loop system[J]. Journal of theEnergy Institute. 2004, 77(513): 108-115
    [68] Chen B, Wang X, Zeng R, et al. An experimental study of convective heat transfer withmicroencapsulated phase change material suspension: Laminar flow in a circular tube underconstant heat flux[J]. Experimental Thermal and Fluid Science. 2008, 32(8): 1638-1646
    [69] Wang X C, Niu J L, Li Y, et al. Heat transfer of microencapsulated PCM slurry flow ina circular tube[J]. AIChE Journal. 2008, 54(4): 1110-1120
    [70]方玉堂,匡胜严.纳米胶囊相变材料的研究进展[J].材料导报. 2006, 20(12): 42-44
    [71]张团红,胡小玲,乔吉超,等.纳米胶囊的制备与应用进展[J].材料科学与工程学报. 2007, 25(1): 143-146
    [72]郭睿威,戚桂村,金启明,等.细乳液聚合研究进展[J].化工进展. 2005, 24(2):159-164
    [73] Landfester K. Miniemulsion Polymerization and the Structure of Polymer and HybridNanoparticles13[J]. Angewandte Chemie International Edition. 2009, 48(25): 4488-4507
    [74]刘硕,张东.纳米胶囊相变材料研究进展[J].化学通报. 2008(12): 906-911
    [75] Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by aminiemulsion polymerization process[J]. Journal of Polymer Science Part A: PolymerChemistry. 2004, 42(9): 2145-2154
    [76] Tiarks F, Landfester K, Antonietti M. Preparation of Polymeric Nanocapsules byMiniemulsion Polymerization[J]. Langmuir. 2001, 17(3): 908-918
    [77]樊耀峰,张兴祥,王学晨,等.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程. 2005, 21(1): 288-292
    [78]王武生,曾俊,阮德礼,等.原位聚合合成纳米胶囊[J].高分子材料科学与工程.2001, 17(04): 34-36
    [79]方玉堂,匡胜严,张正国,等.纳米胶囊相变材料的制备[J].化工学报. 2007, 58(3):771-775
    [80]方玉堂,匡胜严,张正国,等.纳米胶囊相变材料研究[J].太阳能学报. 2008, 29(3):295-298
    [81] Fang Y T, Kuang S Y, Gao X N, et al. Preparation and characterization of novelnanoencapsulated phase change materials[J]. Energy Conversion and Management. 2008,49(12): 3704-3707
    [82] Salaun F, Devaux E, Bourbigot S, et al. Polymer nanoparticles to decrease thermalconductivityof phase change materials[J]. Thermochimica Acta. 2008, 477(1-2): 25-31
    [83]饶宇,林贵平,罗燕,等.应用于强化传热的相变材料微胶囊的制备及特性[J].航空动力学报. 2005, 20(04): 651-655
    [84] Choi J, Lee J, Kim J, et al. Preparation of Microcapsules Containing Phase ChangeMaterials as Heat Transfer Media by In-Situ polymerization[J]. Journal of industrial andengineering chemistry. 2001, 7(6): 358-362
    [85]王立新,苏峻峰,任丽.相变储热微胶囊的研制[J].高分子材料科学与工程.2005, 21(01): 276-279
    [86]王春莹,张兴祥.调温微胶囊的研制[J].印染. 2002(6): 13-17
    [87] Sun G, Zhang Z. Mechanical strength of microcapsules made of different wallmaterials[J]. International Journal of Pharmaceutics. 2002, 242(1-2): 307-311
    [88] Song Q W, Li Y, Xing J W, et al. Thermal stability of composite phase change materialmicrocapsules incorporated with silver nano-particles[J]. Polymer. 2007, 48(11): 3317-3323
    [89]时雨荃,杜春霞,赵镇南.复合壳层的相变蓄能微胶囊及制备方法[P].CN200410019232.8
    [90]王学晨,张兴祥,樊耀峰,等.环己烷对相变材料微胶囊结构与性能的影响[J].天津工业大学学报. 2004, 23(4): 6-10
    [91]庄柯岩.细乳液聚合制备有机—无机杂化纳米微胶囊[D].杭州:浙江大学, 2006
    [92] Torza S, Mason S G. Three-phase interactions in shear and electrical fields[J]. Journalof Colloid and Interface Science. 1970, 33(1): 67-83
    [93] Sundberg D C, Casassa A P, Pantazopoulos J, et al. Morphology development ofpolymeric microparticles in aqueous dispersions. I. Thermodynamic considerations[J].Journal of Applied Polymer Science. 1990, 41(7-8): 1425-1442
    [94] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization. 1. Cluster Dynamics[J]. Macromolecules. 1995, 28(9): 3135-3145
    [95] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization. 2. Cluster Dynamics in Reacting Systems[J]. Macromolecules. 1996, 29(1):383-389
    [96] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization. 3. Cluster Nucleation and Dynamics in Polymerizing Systems[J].Macromolecules. 1996, 29(13): 4520-4527
    [97] Brandrup J, Immergut E H, Grulke E A. Polymer Handbook[M]. New York: AWiley-Interscience Publication, 1999
    [98] Chou H C, Stoffer J O. Ultrasonically initiated free radical-catalyzed emulsionpolymerization of methyl methacrylate (I)[J]. Journal of Applied Polymer Science. 1999,72(6): 797-825
    [99] Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by aminiemulsion polymerization process[J]. Journal of Polymer Science: Part A: PolymerChemistry. 2004, 42(9): 2145-2154
    [100]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社,1997: 170-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700