油页岩灰渣制备纳米SiO_2和气凝胶的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吉林省桦甸油页岩灰渣为原料,研究了水玻璃的提取工艺技术,进而以水玻璃为原料,成功地制备出性能优良的白炭黑、纳米Si02和疏水Si02气凝胶,为油页岩灰渣的综合利用提供了新的途径,具有重要的理论意义和潜在的经济效益。
     实验采用Box-Behnken实验设计对SiO2的提取过程中的物化条件进行优化,并确定了最佳的SiO2提取条件。实验结果表明,SiO2的提取率随着反应时间、反应温度和氢氧化钠浓度的增加而增加,当反应时间为5h、反应温度100℃、氢氧化钠的浓度为40wt.%时,SiO2的提取率达到最大73±0.50%。
     采用传统沉淀法并结合热风干燥(模拟流化床干燥技术)制备了技术指标符合国家标准的白炭黑。探究了反应条件对白炭黑比表面积和DBP吸油值的影响,确定了制备白炭黑的最佳工艺。
     本文首次联用了表面活性剂、超声振荡和共沸蒸馏相结合的纳米粉体分散技术,有效地控制了纳米粒子的团聚,制备出粒径小而均一的纳米SiO2粒子。实验发现聚乙二醇的加入能够有效的降低纳米SiO2粒子的表面能,减少粒子的团聚;超声波空化作用释放出的巨大冲击波和微射流,能够有效的击散纳米SiO2团聚体,获得粒径小、分散性好的纳米SiO2;共沸蒸馏技术能够地脱出颗粒之间的水分子和自由非桥接羟基,从而有效的控制SiO2粒子团聚。
     采用改进的溶剂交换-表面改性工艺,在常压下制备了多孔疏水SiO2气凝胶,探索了硅烷偶联剂的种类、水玻璃中SiO2含量、溶胶pH值和热处理温度对气凝胶性质的影响,确定了气凝胶的最佳制备工艺。实验首次采用微波干燥制备了SiO2气凝胶。采用微波干燥制备气凝胶,弥补了传统的烘箱干燥使凝胶受热不均而产生温度梯度的缺点,缩短了干燥时间,减少了粉体团聚,使气凝胶尽可能的保持原有的孔结构。
     综上所述,论文首次以油页岩灰渣为原料成功的制备了性能较好的白炭黑、纳米SiO2和气凝胶等硅系列化工产品,为油页岩灰渣的利用提供了一条新的途径,具有重要的社会意义和经济意义。
With the increasing demand on the energy all over the world, the development of the global economy has been constrained by the shortage of oil resources. Oil shale is an important supplementary energy resource for oil and gas. At present, one of the main technologies available for utilizing oil shale resources is retorting oil shale to produce shale oil and gas, and the other is burning oil shale to generate electricity. Both of them produce a huge amount of residue. It can not only cause serious environmental pollution, but also lead to enormous waste of the other available elements. These problems limit the development of oil shale industry. So, to effectively utilize oil shale ash (OSA) becomes an important issue. In this paper, the sodium silicate solution was produced using Huadian OSA as silica source, and then the silica white, spherical silica nanoparticles and hydrophobic aerogels using the prepared sodium silicate solution. This method developed a new way for the comprehensive utilization of OSA. The samples were characterized by SEM、TEM、BET、FT-IR、XRD和TG-DTA. At present, there is little available information about silica series chemical products such as silica white, silica nanoparticles and aerogels from OSA.
     The water glass was produced through alkali extraction with OSA calcined and leached by acid. Box-Behnken statistical design was firstly used to optimize the factors affecting the extraction efficiency of the silica such as the sodium hydroxide concentration, the reaction time and the reaction temperature, to explore the interaction of the factors and to determine the optimum conditions for the extraction process. Multiple regression analyses showed that the extraction efficiency was in an agreement with the generated model and the experimental results. It was observed that the extraction efficiency of silica was increased by increasing the concentration of sodium hydroxide, the reaction time and the reaction temperature. At the optimum condition of reaction time 5 h, reaction temperature 100℃, and the concentration of sodium hydroxide 40 wt.%, the extraction efficiency reached 73±0.50%.
     The silica white was successfully synthesized using water glass prepared, and hot air drying simulating fluidized bed drying was employed for drying precipitation at an ambient pressure. The effects of the silica concentration, sulfuric acid concentration, temperature, pH value and aging time on the value of DBP adsorption and the BET specific surface of silica had been investigated. The optimum conditions were determined, such as the silica concentration 8.0 wt.%, sulfuric acid concentration 1.5mol/L, temperature 70-80℃, pH value 8 and aging time 8h. The microstructure analysis showed that the shape of silica white is sphere with an average size of about 50nm.
     The spherical silica nanoparticles were firstly synthesized using water glass as silica source and polyethylene glycol (PEG) as the surfactant via ultrasonic technique followed by azeotropic distillation. The results showed that the addition of PEG could effectively prevent the aggregation of silica nanoparticles and change the particle size, and the particle size and distribution depend on the PEG concentration. When the PEG concentration and molecular weight was 3wt.% and 10000, respectively, the silica particles with average diameter of 10 nm were uniformly distributed. The results indicated that ultrasonic is a key factor to the formation of small, uniform nanoparticles and an optimum hydrolysis-condensation period and powder of the ultrasonic cavitation is 0.5 h and is 70 W, respectively. The azeotropic distillation evidently restrains agglomerating. Possible mechanism of azeotropic distillation can be explained by the following facts. Firstly, the excess n-butanol molecules can not draw particles together through the formation of hydrogen bonds. Secondly, during the following solvent removal process, no hydrogen bond can be formed among neighboring particles because the hydroxyl groups on the particle surface are replaced by butoxy ones. Thirdly, the butoxy group has steric hindrance that can prevent the approach of particles. As a result, the azeotropic distillation dramatically reduces the possibility of the formation of chemical bonds and prevents the formation of hard agglomerates. The FT-IR spectra showed C-H peaks 3132 and 1402 cm-1, clearly indicating the organic modification of the nanoparticles surface.
     The hydrophobic silica aerogels were prepared using sodium silicate solution based on OSA via ambient pressure drying by improved method of solvent exchange-surface modification for the hydrogel. The influences of the kind of surface modification agents, SiO2 concentration, the pH value of sol and heat-treated temperature on properties of the aerogel were investigated. The results indicated that all the silica aerogels prepared under different conditions were nanoporous material with the meshwork structure, the BET surface area of 800-980 cm2/g, tapping density of 0.084-0.11 g/cm3, pore diameter of 9.38-10.10 nm. In the process of heat-treatment between 180 and 300℃, it was very hard for the gas to escape because of the heat expansion and low-permeability of the gas inside the aerogel. The gas compressed the framework of aerogel so as to enlarge the surface aera and pore size of silica aerogel. With the increasing of the temperature,-CH3 which was on the surface of the silica aerogel burned to decompose and became hydrophilic gradually.
     The aerogel with large specific surface area of 1360 cm2/g and big pore diameter of 12.4 nm was firstly synthesized by microwave heating technique. This method compensated for the shortcomings of oven drying of the temperature gradient, shortened drying time and reduced the agglomeration of the powders, so the aerogels maintained the original pore structure as much as possible.
     In summary, the silica series chemical products such as silica white, nanoparticles and aerogels, had been firstly synthesized using OSA as a new silica source. This method developed a new way for the comprehensive utilization of OSA and had important social and economic significance.
引文
[1]刘招君,董清水,叶松青,等.中国油页岩资源现状[J].吉林大学学报(地球科学版),2006,36(6):869-876.
    [2]NETZEL D A, MIKNIS F P. Study of US Eastern and Western shale oils produced by pyrolysis and hydropyrolysis [J]. Fuel,1982,61:1101-1109.
    [3]BALDWIN R M, CHEN K W. Pyrolysis and hydropyrolysis of two carbonaceous Australian oil shales in supercritical toluene and tetralin [J]. Fuel,1987, 66:353-357.
    [4]AUNELA-TAPOLA L A, FRANDSEN F J, HASANEN E K. Trace metal emissions from the Estonian oil shale fired power plant [J].Fuel Processing Technology,1998,57:1-24.
    [5]JABER J 0, PROBERT S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions [J].Fuel Processing Technology,2000,63:57-70.
    [6]PAKDEL H, ROY C, KALKREUTH W. Oil production by vacuum pyrolysis of Canadian oil shales and fate of the biological markers[J].Fuel,1999,78:365-375.
    [7]孟庆涛.油页岩资源评价方法研究[D].吉林:吉林大学地球科学学院,2007.
    [8]刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油工业出版社,2009.
    [9]陈洁渝,严春杰,‘李子冲,等.油页岩灰渣的综合利用[J].矿产保护与利用,2006,(6):42-45.
    [10]BRENDOW D K. Global oil shale issues and perspectives [J]. Oil Shale,2003, 20:81-92.
    [11]VEIDERMA M. Estonian oil shale-resources and usage [J].Oil Shale,2003, 22:295-303.
    [12]PAIST A. New epoch in Estonian oil shale combustion technology [J].Oil Shale,2004,21:181-182.
    [13]OTS A. Oil shale as a powder fuel [J]. Oil shale,2005,22:367-368.
    [14]HOHMANN J P, MARTIGNONI W P, NOVICKI R E, et al. Petrosix-A successful oil shale operational complex [C]. Eastern Oil Shale Symposium Proceedings, Kentucky, USA,1992,4-11.
    [15]MARTIGNONI M P, BACHMANN D L, STOPPA E F, et al. Petrosix oil shale technology learning curve [C]. Symposium on Oil Shale, Abstract, Tallinn, Estonia,2002,30.
    [16]MCFARLAND J D. Australia:Southern pacific petroleum [C]. Quarterly Report, 2003.
    [17]STEPHEN J S. New direction for shale oil-path to a secure new oil supply well into this century [J].Oil Shale,2003,20:333-346.
    [18]张秋民,何德民.几种典型的油页岩干馏技术[J].吉林大学学报(地球科学版),2006,36(6):1019-1026.
    [19]JIANG X M, HAN X X, CUI Z G. Progress and recent utilization trends in combustion of Chinese oil shale [J]. Progress in Energy and Combustion Science,2007, 33:552-579.
    [20]HAN X X, JIANG X M, WANG H, et al. Study on design of Huadian oil shale-fired circulating fluidized bed boiler [J].Fuel Processing Technology,2006,87:289-295.
    [21]HULSEBUS J, POHANI B P, MOORE R E et al. Modified in-situ technology combined with aboveground retorting and circulating fluid bed combustors could off a viable method to unlock oil shale reserves in the next future [J]. China Chemical Industry Press,1988:440-447.
    [22]SINOR J E. The sinor synthetic fuels report [J].2001, 8:2-22.
    [23]郑国宽.桦甸油页岩飞灰吸附特性研究[D].吉林省:东北电力大学能源与机械学院,2009.
    [24]连玉环.油页岩残渣制备白炭黑及改性研究[D].辽宁省:大连理工大学,2007.
    [25]CONSTANTIN F, WOLFGANG M H. Cementless building units based on oil shale and coal fly ash Binder [J]. Construction and Building Materials,1999,13:363-369.
    [26]FREIDIN C. Hydration and strength development of binder based on high-calcium oil shale fly ash Part Ⅱ. Influence of curing conditions on long-term stability [J]. Cement and Concrete Research,1999,29:1713-1719.
    [27]MOHAMMAD M S, RAMI H H. The use of oil shale ash in Portland cement concrete [J]. Cement and Concrete Composites,2003,25:43-50.
    [28]鲍长利,张建会,刘招君,等.利用油页岩研制多孔建筑陶瓷[J].吉林大学学报,2008,38(4):105-306.
    [29]郭立,严春杰,王焰新.专利公开号CN 1872782A,2006.
    [30]甘树才,徐吉静,刘招君,等.专利号ZL 101200358A,2007.
    [31]GOROKHOVSKY V A, MESCHERYAKOV D V, MENDEZ N J, et al. Inorganic wastes in manufacturing of glass-ceramics:slurry of phosphorous fertilizer production and oil shale ash [J].Materials Letters,2001,51:281-284.
    [32]李勇,冯宗玉,杨合,等.利用油页岩渣制备微晶玻璃[J].东北大学学报,2008,29(10):1541-4541.
    [33]KAASIK A, VOHLA C, MOTLEP R, et al. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands [J]. Water research,2008,421:1315-1323.
    [34]SHAWABKEH R, AL-HARAHSHEH A, AL-OTOOM A. Copper and zinc sorption by treated oil shale ash [J]. Separation and purification technology,2004,40,251-258.
    [35]AL-QODAHA Z, SHAWAQFEHB A T, LAFIA W K, Adsorption of pesticides from aqueous solutions using oil shale ash [J]. Desalination,2007,208,294-301.
    [36]REINIK J, HEINMAA I, MIKKOLA J P, KIRSO U. Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites [J]. Fuel,2007,86,669-676.
    [37]REINIK J, HEINMAA I, MIKKOLA J P, KIRSO U. Synthesis and characterization of calcium-alumino-silicate hydrates from oil shale ash-Towards industrial applications [J]. Fuel,2008,87,1998-2003.
    [38]SHAWABKEH R, AL-HARAHSHEH Adnan, HAMI M. Abdelaziz Khlaifat. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater [J]. Fuel, 2004,83:981-985.
    [39]蒋鹏,胡珊,陈洁瑜,等.油页岩碴超细粉碎及其在天然橡胶中的应用[J].非金属矿,2006,29(6):16-18.
    [40]谭欣,王福良,王荣生,等.油页岩脱油残渣制备白炭黑的试验研究[J].矿冶,2004,13(1):32-36.
    [41]Baichao An, Wenying Wang, Shucai Gan. Preparation of nano-sized α-Al2O3 from oil shale ash [J].Energy,2010,35:45-49.
    [42]王福良.油页岩生产优质高岭土研究[J].有色金属,2000,52(4):149-150.
    [43]孔国辉,刘世忠,陈志东,等.油页岩废渣场植物修复的生态效应[J].热带亚热带植物学报,2006,14:61-68.
    [44]荆红卫,刘虹,张平,等.页岩油工业固体废弃物农业利用试验研究[J].北京师范大学学报,2001,37:260-265.
    [45]王宝君.大洋粘土制备超微细白炭黑及性能影响因素表征[D].吉林省:吉林大学材料科学与工程学院,2006.
    [46]任素霞.稻壳资源的综合利用研究[D].吉林省:吉林大学化学学院,2009.
    [47]HUANG S, JING S, WANG J F, WANG Z W and JIN Y. Silica white obtained from rice husk in a fluidized bed [J]. Powder Technology,2001,117:232-238
    [48]王志成,平琳,张慧勤.沉淀法纳米白炭黑的研制[J].现代塑料加工应用,2005,17(2):44-48
    [49]周良玉.白炭黑的制备、表面改性及应用研究进展[J].材料导报,2003,17(11)56-59.
    [50]TANG S W. Study on diaphaneity white carbon [J]. Chemical Word,1996,1:17-19.
    [51]杨波,何慧,周扬波等.气相法白炭黑研究进展[J].无机硅化合物,2006,1:3-9.
    [52]MANGOLD H K. Progenic silica process for production thereof and use. US 5976480,1999.
    [53]吴雪文,张海波,韩团辉等.传统沉淀法制白炭黑的研究进展[J].无机盐工业,2006,38(4):9-10.
    [54]黄飞,李军,尚书勇.磷酸沉淀法制各白炭黑绿色工艺研究[J].无机盐工业,2008,40(11):37-39.
    [55]陈荣,陈奇.沉淀法白炭黑合成工艺研究[J].硅铝化合物,2005,3:16-18.
    [56]孙育成.膨润土制备白炭黑[J].硅铝化合物,2005,4:12-13.
    [57]冯臻.以煤矸石为原料制备铝盐和白炭黑[J].煤炭加工与综合利用,2005,5:32-33.
    [58]LIEFTINK D J, GEUS J W. The preparation of silica from the olivine process and its possible use as a catalyst support. Journal of Geochemical Exploration, 1998,62,347-350.
    [59]李珍,陈克勤.大箕铺硅灰石酸法制各白炭黑工艺研究[J].矿产保护与利用,1999,1:18-20.
    [60]刘志芳等.利用硅灰石制备超细白炭黑工艺实践[J].中国非金属矿工业导刊,2004,6:25-26.
    [61]赵华文等.酸浸硅藻土制取白炭黑的研究[J].化学世界,1997,7:348-351.
    [62]侯太鹏,刘英魁.用膨润土制备白炭黑的研究[J].非金属矿,2000,23(1):26-28.
    [63]张其春,叶巧明.高岭土缎烧制白炭黑[J].应用化学,1999,16(5):91-93.
    [64]于洪浩,薛向新,黄大威.铁尾矿制各白炭黑实验研究[J].过程工程学报,2008,8(2):300-304.
    [65]AHMED Y, EWAIS E M, ZAKI Z I. Production of porous silica by the combustion of rice husk ash for tundish lining [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2008,15:307-313.
    [66]WITOON T, CHAREONPANICH M, LIMTRAKUL J. Synthesis of bimodalporous silica from rice husk ash via sol-gel process using chitosan as template [J]. Materials Letters,2008,62:1476-1479.
    [67]AHMED A E, ADAM F. Indium incorporated silica from rice husk and its catalytic activity [J].Microporous and Mesoporous Materials,2007,103:284-295.
    [68]CHIARAKORN S, AREEROB T, GRISDANURAK N. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk [J]. Science and Technology of Advanced Materials,2007,8:110-115.
    [69]JEE M C, NASKAR M K. Sol-gel synthesis of lithium aluminum silicate powders: The effect of silica source [J]. Ceramics International,2006,32:623-632.
    [70]DELLA V P, KUHN I, HOTZA D. Rice husk ash as an alternate source for active silica production [J]. Materials Letters,2002,57:818-821.
    [71]HUANG S, JING S, WANG J F, et al. Silica white obtained from rice husk in a fluidized bed [J]. Powder Technology,2001,117:232-238.
    [72]KALAPATHY U. A simple method for production of pure silica from rice hull ash[J]. Bioresource Technology,2000,7:257-262.
    [73]刘小梅.稻壳制备纳米二氧化硅的新工艺研究[D].江西省:南昌大学环境与化学工程学院,2008.
    [74]郑丽丽.单分散纳米二氧化硅及掺饵二氧化硅的制备[D].吉林省:吉林大学化学学院,2005.
    [75]CHEN J H, RONG M Z, RUAN W H, et al. Interfacial enhancement of nano-SiO2/polypropylene composites [J]. Composites Science and Technology,2009,69: 252-259.
    [76]PEFFERKORN A, AALOUM M, PEFFERKORN E, et al. Polymer induced crystal organization of composite resins [J]. Dental Materials,2008,24:1647-1654.
    [77]BOUTALEB S, ZAIRI F, MESBAH A, et al. Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites [J]. International Journal of Solids and Structures,2009,6:1716-1726.
    [78]PIETRASIK J, GACA M, ZABORSKI M, et al. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles [J]. European Polymer Journal,2009,45:3317-3325.
    [79]TAKAMURA M, YAMAUCHI T, TSUBOKAWA N. Grafting and crosslinking reaction of carboxyl-terminated liquid rubber with silica nanoparticles and carbon black in the presence of Sc(OTf)3 [J]. Reactive and Functional Polymers,2008,68:1113-1118.
    [80]GUO H Q, TAO S Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing [J]. Sensors and Actuators B:Chemical,2007,123: 578-582.
    [81]FURLAN R, SIMOES E. W, SILVA M. L. P, et al. Modeling of composite fiber production with silica nanoparticles dispersed in polyethyleneoxide [J]. Polymer, 2007,48:5107-5115.
    [82]YANG G C C, LI C J. Electrofiltration of silica nanoparticle-containing wastewater using tubular ceramic membranes [J]. Separation and Purification Technology,2007,58:159-165.
    [83]OH S D, LEE S, CHOI S H, et al. Synthesis of Ag and Ag-SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,275:228-233.
    [84]SLOWING I I, VIVERO-ESCOTO J L, WU C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews,2008,60:1278-1288.
    [85]CHANG H K, PARK J H, JANG H D. Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313-314:140-144.
    [86]JANG H D. Experimental study of synthesis of silica nanoparticles by a bench-scalediffusion flame reactor [J]. Powder Technology,2001,119:102-108.
    [87]ZAKY R R, HESSIEN M M, EL-MIDANY A A. Preparation of silica nanoparticles from semi-burned rice straw ash [J]. Powder Technology,2008,10:31-35.
    [88]HESSIEN M M, RASHAD M M, ZAKY R R. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw [J]. Materials Science and Engineering: B,2009,162:14-21.
    [89]PARK S K, KIM K D, KIM H T. Preparation of silica nanoparticles:determination of the optimal synthesis conditions for small and uniform particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,197:7-17.
    [90]CORRADI A B, BONDIOLI F, FERRARI A M. Synthesis of silica nanoparticles in a continuous-flow microwave reactor [J]. Powder Technology,2006,167:45-48.
    [91]FU X A, QUTUBUDDIN S. Synthesis of silica nanoparticles using a nonionic water-in-oil microemulsion [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,179:65-70.
    [92]GAN L M, ZHANG K, CHEW C H. Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,110:199-206
    [93]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社.
    [94]SADOQI M, LAU-CAM C. A. WU, S.H. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry [J]. Journal of colloid and interface science,2009,333: 585-589.
    [95]HELGASON T, AWAD T. S, KRISTBERGSSON K. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN) [J]. Journal of colloid and interface science,2009,334:75-81.
    [96]ZHANG S Y, SUN D J, Dong X Q. Aqueous foams stabilized with particles and nonionic surfactants [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,324:1-8.
    [97]PODCZECK F, ALESSI P, NEWTON J M. The preparation of pellets containing non-ionic surfactants by extrusion/spheronization [J]. International Journal of Pharmaceutics,2008,361:33-40.
    [98]DUERR-AUSTER N, GUNDE R, MADER R. Binary coalescence of gas bubbles in the presence of a non-ionic surfactant [J]. Journal of colloid and interface science,2009, 33:579-584.
    [99]WANG Z W, LI G Z, ZHANG X Y. A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic Surfactants [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,197:37-45.
    [100]IIJIMA M, TSUKADA M, KAMIYA H. Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone [J]. Journal of Colloid and Interface Science,2007,307:418-424.
    [101]ORPHANOU M, LEONTIDIS E, KYPRIANIDOU-LEODIDOU T. Formation mechanism of nanotubes comprising layers of PbS nanoparticles in polymer-surfactant solutions [J]. Journal of Colloid and Interface Science,2006,302:170-177.
    [102]HAMOUDA S B, NGUYEN Q T, LANGEVIN D. Polyamide.12-polytetramethyleneoxide block copolymer membranes with silver nanoparticles-Synthesis and water permeation properties [J]. Reactive and Functional Polymers,2007,67:893-904.
    [103]MA X K, LEE N H, OH H J. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,358:172-176.
    [104]WANG W, GU B H, LIANG L Y. Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles [J]. Journal of Colloid and Interface Science,2007,313:169-173,
    [105]BINKS B P, RODRIGUES J A. Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,345:195-201.
    [106]PAN J J, ZHANG H N, PAN M. Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process [J]. Journal of colloid and interface science,2008,326:55-60.
    [107]IIJIMA M, TSUKADA M, KAMIYA H. Effect of surface interaction of silica nanoparticles modified by silane coupling agents on viscosity of methylethylketone suspension [J]. Journal of Colloid and Interface Science,2007,305:315-323.
    [108]LI Z, XIONG Y, XIE Y. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route [J]. Inorganic chemistry,2003,42:8105-8109.
    [109]LEI S J, TANG K B, FANG Z. Preparation of α-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology [J]. Materials Letters,2006,60:53-56 Crystal Growth&Design 2006,6:1757-1762.
    [110]DAS N, BHATTACHARYA D, Sen A. Sonochemical synthesis of LaMnO3 nano-powder [J]. Ceramics International,2009,35:21-24.
    [111]XU M, LU Y N, LIU Y F. Sonochemical synthesis of monosized spherical BaTiO3 particles [J]. Powder Technology,2006,161:185-189.
    [112]CHAREONPANICH M, NANTA-NGERN A, LIMTRAKUL J. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique [J].Materials Letters, 2007,61:5153-5156.
    [113]陈兴明.纳米二氧化硅粉体材料的研制[D].四川省:四川大学材料学院,2005.
    [114]CHEN M, ZHENG H, SHI C M. Synthesis of nanoparticle Ce-Mg-O mixed oxide as efficient support for methane oxidation [J]. Journal of Molecular Catalysis A:Chemical,2005,237:132-136.
    [115]CAI W Q, LI H Q, ZHANG Y. Azeotropic distillation-assisted preparation of macro-mesostructured Al2O3 nanof ibres of crumpled sheet-like morphology [J]. Materials Chemistry and Physics,2006,96:136-139.
    [116]AN B C, JI G J, GAN S C. Azeotropic distillation-assisted preparation of nanoscale gamma-alumina powder from waste oil shale ash [J]. Chemical Engineering Journal,2010,157:67-72
    [117]ZHA S W, FU Q X, LANG Y. Novel azeotropic distillation process for synthesizing nanoscale powders of yttria doped ceria electrolyte [J].Materials Letters,2001,47:351-355
    [118]REVERCHON E, CAPUTO G, CORRERA S. Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale [J].The Journal of Supercritical Fluids,2003,26:253-261.
    [119]REVERCHON E, MARCO I D, TORINO E. Nanoparticles production by supercritical antisolvent precipitation:A general interpretation [J]. The Journal of Supercritical Fluids,2007,43:126-138.
    [120]WU C I, HUNAG J W, WEN Y L. Preparation of TiO2 nanoparticles by supercritical carbon dioxide [J]. Materials Letters,2008,62:1923-1926.
    [121]ZHANG Y, ERKEY C. Preparation of supported metallic nanoparticles using supercritical fluids [J].The Journal of Supercritical Fluids,2006,38:252-267.
    [122]ADBELWAHED W, DEGOBERT G, STAINMESSE S. Freeze-drying of nanoparticles: Formulation, process and storage considerations [J]. Advanced Drug Delivery Reviews,2006,58:1688-1713.
    [123]HINRICHS W L J, MANCENIDO F A, SANDERS N N. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying [J]. International Journal of Pharmaceutics,2006,311: 237-244.
    [124]BINDSTEIN L, HILLAIREAU H, DESMAELE D. Freeze-drying of squalenoylated nucleoside analogue nanoparticles [J]. International Journal of Pharmaceutics,2009, 381:140-145.
    [125]SAMETI M, BOHR G, KUMAR M N V R. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery [J]. International Journal of Pharmaceutics,2003,266:51-60.
    [126]FARHADI S, MOMENI Z, TAHERIMEHR M. Rapid synthesis of perovskite-type LaFe03 nanoparticles by microwave-assisted decomposition of bimetallic La[Fe(CN)6]· 5H2O compound [J]. Journal of Alloys and Compounds,2009,471:L5-L8.
    [127]ZAWADZKI M. Pd and ZnAl2O4 nanoparticles prepared by microwave-solvothermal method as catalyst precursors [J]. Journal of Alloys and Compounds,2007,439:312-320.
    [128]GU J L, FAN W, JIMA A S. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica [J]. Journal of Solid State Chemistry,2008,181:957-963.
    [129]BOUSQUET-BERTHELIN C, CHAUMONT D, STUERGA D. Flash microwave synthesis of trevorite nanoparticles [J]. Journal of Solid State Chemistry,2008,181:616-622.
    [130]KRISHNAKUMAR T, JAYAPRAKASH R, PARTHIBAVARMAN M. Microwave-assisted synthesis and investigation of SnO2 nanoparticles [J]. Materials Letters,2009,30: 896-898.
    [131]KISTLER S S. Coherent Expanded Aerogels and Jellies [J]. Nature,1931,127: 741-742.
    [132]NICOLAON G A,TEICHNER S J. Preparation Des Aerogels de SiliceaPartir D'orthosilicate de Methyle en Milieu Alcoolique et Leurs Proprietes [J]. Bulletin de la Societe Chimique de France,1968,5:1906-1910.
    [133]TEWARI P H, HUNT A J, LOFFTUS K D. Ambient-Temperature Supercritical Drying of Transparent Silica Aerogels [J]. Materials Letters,1985,3:363-367.
    [134]史飞.常压干燥制备SiO2气凝胶及其结构、性能研究[D].辽宁:大连理工大学材料科学与工程学院,2005.
    [135]刘明龙.SiO2气凝胶常压制备过程研究[D].天津:天津大学材料科学与工程学院,2007.
    [136]RAO A V, PAJONK G M. Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels [J]. Journal of Non-Crystalline Solids,2001, 285:202-209.
    [137]KUHN J, BRANDT R, MEHLING H. In situ infrared observation of the pyrolysis process of carbon aerogels [J]. Journal of Non-Crystalline Solids,1998,225:58-63.
    [138]GEIS S, FRICKE J, LOBMANN P. Electrical properties of PZT aerogels [J]. Journal of the European Ceramic Society,2002,22:1155-1161.
    [139]FRICKE J. Aerogels highly tenuous solids with fascinating properties [J]. Journal of Non-Crystalline Solids,1987,100:169-173.
    [140]CAPS R, FRICKE J. Infrared radiative heat transfer in highly transparent silica aerogel [J]. Solar Energy,1986,36:361-364.
    [141]JENSEN K I, SCHULTZ J M, KRISTIANSEN F H. Development of windows based on highly insulating aerogel glazings [J]. Journal of Non-Crystalline Solids,2004, 350:351-357.
    [142]SCHULTZ J M, JENSEN K I, KRISTIANSEN F H. Super insulating aerogel glazing [J]. Solar Energy Materials and Solar Cells,2005,89:275-285.
    [143]邓蔚.纳米孔硅质绝热材料[J].航天材料工艺,2002,1:1-7.
    [144]FRICKE J, EMMERLING A. Aerogels-Recent Progress in Production Techniques and Novel Applications [J]. Journal of Sol-Gel Science and Technology,1998, 13:299-303.
    [145]倪星元,程银兵,马建华等.SiO2气凝胶柔性保温隔热薄膜[J].功能材料,2003,34(6):725-727.
    [146]KAMIUTO K, MIYAMOTO T, SAITOH S. Thermal characteristics of a solar tank with aerogel surface insulation [J]. Applied Energy,1999,62:113-123.
    [147]刘朝辉,苏勋家,侯根良.超级绝热材料SiO2气凝胶的制备及应用,化工新型材料,2005,33(12):21-23
    [148]ABDELMALEK F, CHOVELON J M, LACROIX M. Optical fibre sensors sensitized by phenyl-modified porous silica prepared by sol-gel [J]. Sensors and Actuators B: Chemical,1999,56:234-242.
    [149]TONG L, MAZUR E. Silica Nanofibers and Subwavelength-Diameter Fibers [C]. pecialty Optical Fibers Handbook,2007:361-400.
    [150]HEINEMANN U, CAPS R, FRICKE J. Radiation-conduction interaction:an investigation on silica aerogels [J]. International Journal of Heat and Mass Transfer, 1996,39:2115-2130.
    [151]EIGEN G. Performance of silica aerogel threshold cerenkov counters [J]. Nuclear Physics B-Proceedings Supplements,1995,44:51-56.
    [152]GROSS J, FRICKE J. Ultrasonic velocity measurements in silica, carbon and organic aerogels [J]. Journal of Non-Crystalline Solids,1992,145:217-222.
    [153]ZIMRNERMANN A, GROSS J, FRICKE J. Constant-Q acoustic attenuation in silica aerogels [J]. Journal of Non-Crystalline Solids,1995,186:238-243.
    [154]HRUBESH L W. Aerogel applications [J]. Journal of Non-Crystalline Solids,1998,225:335-342.
    [155]YANG Y M, WANG J W, TAN R X. Immobilization of glucose oxidase on chitosan-SiO2 gel [J]. Enzyme and Microbial Technology,2004,34:126-131.
    [156]SCHWERTFEGER F, ZIMMERMANN A, KREMPEL H. Use of inorganic aerogels in pharmacy [P].US Patent,6280744,2001.
    [157]HUNT A J, AYERS M R, CAO W Q. Aerogel composites using chemical vapor infiltration [J]. Journal of Non-Crystalline Solids,1995,185:227-232.
    [158]SMIRNOVA I, MAMIC J, ARLT W. Adsorption of Drugs on Silica Aerogels [J]. Langmuir,2003,19:8521-8525.
    [159]NOVAK Z, KOTNIK P, KNEZ Z. Preparation of WO3 aerogel catalysts using supercritical CO2 drying [J]. Journal of Non-Crystalline Solids,2004,350:308-313.
    [160]DAGAN G, TOMKIEWICZ M. Preparation and characterization of TiO2 aerogels for use as photocatalysts [J]. Journal of Non-Crystalline Solids,1994,175:294-302.
    [161]RASSY H E, MAURY S, BUISSON P. Hydrophobic silica aerogel-lipase biocatalysts: Possible interactions between the enzyme and the gel [J]. Journal of Non-Crystalline Solids,2004,350:23-30.
    [162]WANG C T, RO S H. Surface nature of nanoparticle gold/iron oxide aerogel catalysts [J]. Journal of Non-Crystalline Solids,2006,352:35-43.
    [163]A V RAO, N D HEGDE, H HIRASHIMA. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels [J]. Journal of Colloid and Interface Science,2007,305:124-132.
    [164]GAO S L, WANG Y J, WANG T. Immobilization of lipase on methyl-modified silica aerogels by physical adsorption [J]. Bioresource Technology,2009,100:996-999.
    [165]WAGH P B, RAO A V, HARANATH D. Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels [J]. Materials Chemistry and Physics,1998,53:41-47.
    [166]BHAGAT S D, RAO A V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process [J]. Applied Surface Science,2006,252:4289-4297.
    [167]NADARGI D Y, RAO A V. Methyltriethoxysilane:New precursor for synthesizing silica aerogels [J]. Journal of Alloys and Compounds,2009,467:397-404.
    [168]RAO A V, BHAGAT S D, HIRASHIMA H. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor [J]. Journal of Colloid and Interface Science,2006,300:279-285.
    [169]RAO A V, NILSEN E, EINARSRUD M A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method [J]. Journal of Non-Crystalline Solids,2001, 296:165-171.
    [170]TANG Q, WANG T. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying [J]. Journal of Supercritical Fluids,2005, 35:91-94.
    [171]SMITHA S, SHAIESH P, ARAVIND P R. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels [J].Microporous and Mesoporous Materials,2006,91:286-292.
    [172]EINARSRUD M A, NILSEN E. Strengthening of water glass and colloidal sol based silica gels by aging in TEOS [J]. Journal of Non-Crystalline Solids,1998,226:122-128.
    [173]ESTELLA J, ECHEVERRIA J C, LAGUNA M. Effects of aging and drying conditions on the structural and textural properties of silica gels [J].Microporous and Mesoporous Materials,2007,102:274-282.
    [174]PAIONG G M, RAO A V, SAWANT B M. Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions [J]. Journal of Non-Crystalline Solids,1997,209:40-50.
    [175]HE F, ZHAO H L, QU X H. Modified aging process for silica aerogel [J]. Journal of Materials Processing Technology,2009,209:1621-1626.
    [176]RAO A V, SAKHARE H M, TAMHANKAR A K. Influence of N, N-dimethylformamide additive on the physical properties of citric acid catalyzed TEOS silica aerogels [J]. Materials Chemistry and Physics,1999,60:268-273.
    [177]RAO A V, KULKARNI M M. Effect of glycerol additive on physical properties of hydrophobic silica aerogels [J]. Materials Chemistry and Physics,2003,77:819-825.
    [178]YODA S, OHSHIMA S, IKAZAKI F. Supercritical drying with zeolite for the preparation of silica aerogels [J]. Journal of Non-Crystalline Solids,1998,231:41-48.
    [179]SCHWERTFEGER F, FRANK D, SCHMIDR M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying [J]. Journal of Non-Crystalline Solids,1998,225:24-29.
    [180]TEWARI P H, HUNT A J, LOFFTUS K D. Ambient-temperature supercritical drying of transparent silica aerogels [J]. Materials Letters,1985,3:363-367.
    [181]XIONG, S B, YE Z M, LIU Z G. Supercritical drying preparation and fractal structure of blue luminescent silica aerogel [J]. Materials Letters,1997,32:165-169.
    [182]ROIG A, MATA I, MOLINS E. Silica aerogels by supercritical extraction [J]. Journal of the European Ceramic Society,1998,18:1141-1143.
    [183]SARAWADE P B, KIM J K, KIM H K, et al. High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure [J]. Applied Surface Science,2007,254:574-579.
    [184]RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents [J]. Applied Surface Science,2007,253:6032-6040.
    [185]RAO A P, RAO A V. Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures [J]. Journal of Non-Crystalline Solids,2008,354:10-18.
    [186]SCHWERTFEGER F, FRANK D, SCHMIDT M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying [J].Journal of Non-Crystalline Solids,1998,225:24-29.
    [187]LEE C J,KIM G S,HYUN S H. Synthesis of silica aerogels from waterglass via new modified ambient drying [J]. Journal of Material Science,2002,37:2237-2241
    [188]SHI F, WANG L J, Liu JX. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process [J]. Materials Letters,2006,60: 3718-3722.
    [189]BHAGAT S D, KIM Y H, AHN Y S, et al. Rapid synthesis of water-glass based aerogels by in situ surface modification of the hydrogels [J]. Applied Surface Science, 2007,253:3231-3236.
    [1]田宝成.红旱莲抗抑郁作用有效部位及颗粒剂制备工艺研究[D].黑龙江:黑龙江中医药大学,2009.
    [2]郭洁,洪子雯,方晓玲.Box-Behnken实验设计法优化表阿霉素脂质体的处方工艺[J].复旦学报(医学版),2007,34(6):816-820.
    [3]FERREIRA S, BRUNS R, FERREIRA H, et al. Box-Behnken design:An alternative for the optimization of analytical methods [J]. Analytica Chimica Acta,2007, 597:179-183.
    [4]NGUYEN N K, BORKOWSKI J J. New 3-level response surface designs const ructed from incomplete block designs [J]. Journal of statistical planning and inference,2007, 138,5:294-298.
    [5]BOX G, BEHNKEN D W. Some new three level designs for the study of quantitative variables [J].Technometrics,1960,2:455-475.
    [6]JO J H, LEE D S, PARK D. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods [J]. Bioresource Technology 2008,99:2061-2067.
    [7]LAI Y L, ANNADURAI G, HUANG F C. Biosorption of Zn(Ⅱ) on the different Ca-alginate beads from aqueous solution [J]. Bioresource Technology,2008,99: 6480-6486.
    [8]王文颖.油页岩灰渣提取铝与纳米氧化铝粉体的制备研究[D].吉林省:吉林大学化学学院,2008.
    [9]陈文芳.Ce-HX分子筛催化合成N,N-二甲基环己胺[D].天津:天津大学化工学院,2008.
    [10]GANGADHARAN D, SIVARAMAKRISHNAN S, NAMPOOTHIRI KM, et al. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology 2008,99:4597-4602.
    [11]PAN C M, FAN Y T, XING Y, et al. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2 [J]. Bioresource Technology 2008,99:3146-3150.
    [12]ZAKY R R, HESSIEN M M, El-MIDANY A et al. Preparation of silica nanoparticles from semi-burned rice staw ash [J]. Powder Technology,2007,32:354-359.
    [13]WALID A L. The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum:Optimization of process parameters through statistical experimental designs [J]. Bioresource Technology 2007,98:3491-3495.
    [14]WALID A L, KHALED M G, EHAB R E. Citric acid production by a novel Aspergillus niger isolate:Ⅱ. Optimization of process parameters through statistical experimental designs [J]. Bioresource Technology,2007,98:3470-3475.
    [1]SYAHRUL S, DINCER I, HAMDULLAHPUR F. Thermodynamic modeling of fluidized bed drying of moist particles [J]. International Journal of Thermal Sciences,2003, 42:691-693.
    [2]PORTOGHESE F, BERRUTI F, BRIENS C. Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes [J]. Powder Technology 2008,181:169-172.
    [3]BHAGAT S D, PARK K T, KIM Y H. A continuous production process for silics aerogel powders based on sodium silica by fluidized bed drying of wet-gel slurry [J]. Solid State Sciences,2007,9:1-4.
    [4]WEBER S, BRIENS C, BERRUTI F. Gglomerate stability in fluidized beds of glass beads and silica sand [J]. Powder Technology,2006165:115-127.
    [5]TOPUZ A, GUR M, GUL M Z. An experimental and numerical study of fluidized bed drying of hazelnuts [J]. Applied Thermal Engineering,2004,24:1535-1547.
    [6]任素霞.稻壳资源的综合利用研究[D].吉林省:吉林大学化学学院,2009.
    [7]KALAPATHY U, PROCTOR A, SHULTZ J. Production and properties of flexible sodium silica films from rice hull ash silica [J]. Bioresource Technology,2000,72:99-106.
    [8]ARUNIMA S, BIJAY P T, SHAHI V K. Sulfonated Poly(styrene-co-maleicanhydride)-Poly(ethyleneglycol) Silica Nanocomposite Polyelectrolyte Membranes for Fuel Cell Applications [J].The Journal of Physical Chemistry B,2007,111:12454-12461.
    [9]NAGARAJA D H, VENKATESWARA R A, Organic modification of TEOS based silica aerogels using hexadecyl-ltrimethoxysilane as a hydrophobic reagent [J]. Applied Surface Science 2006,253:1566-1572.
    [1]PEFFERKORN A, AALOUM M, PEFFERKORN E, et al. Polymer induced crystal organization of composite resins [J]. Dental Materials,2008,24:1647-1654.
    [2]TAKAMURA M, YAMAUCHI T, TSUBOKAWA N. Grafting and crosslinking reaction of carboxyl-terminated liquid rubber with silica nanoparticles and carbon black in the presence of Sc(OTf)3 [J]. Reactive and Functional Polymers,2008,68:1113-1118.
    [3]GUO H Q, TAO S Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing [J]. Sensors and Actuators B:Chemical,2007,123: 578-582.
    [4]FURLAN R, SIMOES E.W, SILVA M. L.P, et al. Modeling of composite fiber production with silica nanoparticles dispersed in polyethyleneoxide [J]. Polymer,2007,48: 5107-5115.
    [5]SLOWING I I, VIVERO-ESCOTO J L, WU C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews,2008,60:1278-1288.
    [6]JANG H D. Experimental study of synthesis of silica nanoparticles by a bench-scalediffusion flame reactor [J]. Powder Technology,2001,119:102-108.
    [7]ZAKY R R, HESSIEN M M, EL-MIDANY A A. Preparation of silica nanoparticles from semi-burned rice straw ash [J]. Powder Technology,2008,10:31-35.
    [8]HESSIEN M M, RASHAD M M, ZAKY R R. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw [J]. Materials Science and Engineering: B,2009,162:14-21.
    [9]PARK S K, KIM K D, KIM H T. Preparation of silica nanoparticles:determination of the optimal synthesis conditions for small and uniform particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,197:7-17.
    [10]FU X A, QUTUBUDDIN S. Synthesis of silica nanoparticles using a nonionic water-in-oil microemulsion [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,179:65-70.
    [11]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社.
    [12]KALAPATHY U, PROCTOR A, SHULTZ J. Production and properties of flexible sodium silica films from rice hull ash silica [J].Bioresource Technology,2000,72:99-106.
    [13]NAGARAJA D H, VENKATESWARA R A. Organic modification of TEOS based silica aerogels using hexadecyl-ltrimethoxysilane as a hydrophobic reagent [J]. Applied Surface Science,2006,253:1566-1572.
    [14]PAN J J, ZHANG H N, PAN M. Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process [J]. Journal of colloid and interface science,2008,326:55-60.
    [15]张翠轩,陈汝芬,夏青等.聚乙二醇2000作用下TiO2薄膜的溶胶-凝胶法制备[J].人工晶体学报,2008,37(5):1290-1294.
    [16]吴壮志,王德志,徐兵.以聚乙二醇为模板剂制备MoS2空心微球[J].物理化学学报,2008,24(10):1927-1931.
    [17]童诂崇.颗粒粒度与比表面积测量原理[M].上海科学技术文献出版社,1982,9(7)52-57.[18]刘小梅.稻壳制备纳米SiO2的新工艺研究[D].江西省:南昌大学环境与化学工程学院化工系,2008.
    [19]JIN Y, WANG P J, YIN D H. Gold Nanoparticles Prepared by Sonochemical Method in Thiol functionalized Ionic Liquid [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302:366-370.
    [20]LI Z, XIONG Y, XIE Y. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route [J]. Inorganic chemistry,2003,42:8105-8109.
    [21]CHAREONPANICH M, NANTA-NGERN A, LIMTRAKUL J. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique [J].Materials Letters, 2007,61:5153-5156.
    [22]LEI S J, TANG K B, FANG Z. Preparation of α-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology [J].Materials Letters,2006, 60:53-56.
    [23]周衡志.纳米CeO2p/Zn-4.5%A1-RE-Mg-Ti复合材料的高能超声制备及耐蚀性研究[D].南京:南京航空航天大学材料科学与技术学院,2007.
    [24]SMITHA S, SHAIESH P, ARAVIND P R. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels [J].Microporous and Mesoporous Materials,2006,91:286-292.
    [25]ARUNIMA S, BIJAY P T, SHAHI V K. Sulfonated Poly(styrene-co-maleicanhydride) Poly(ethyleneglycol) Silica Nanocomposite Polyelectrolyte Membranes for Fuel Cell Applications [J].The Journal of Physical Chemistry B,2007,111:12454-12461.
    [26]云利娜,王宝和.共沸蒸馏脱水技术在纳米材料制备中的应用[J].河南化工,2007,24:12-17.
    [27]申小清,李中军,要红昌.纳米SiO2粉末的共沸蒸馏法制备及机理[J].郑州大学学报(理学版),2002,34(2):88-91.
    [1]HUNT A J, AYERS M R, CAO W Q. Aerogel composites using chemical vapor infiltration [J]. Journal of Non-Crystalline Solids,1995,185:227-232.
    [2]SMIRNOVA I, MAMIC J, ARLT W. Adsorption of Drugs on Silica Aerogels [J]. Langmuir 2003,19:8521-8525.
    [3]NADARGI D Y, RAO A V. Methyltriethoxysilane:New precursor for synthesizing silica aerogels [J].Journal of Alloys and Compounds,2009,467:397-404.
    [4]TANG Q, WANG T. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying [J]. Journal of Supercritical Fluids,2005, 35:91-94.
    [4]DAGAN G, TOMKIEWICZ M. Preparation and characterization of TiO2 aerogels for use as photocatalysts [J]. Journal of Non-Crystalline Solids,1994,175:294-302.
    [5]RAO A V, BHAGAT S D, HIRASHIMA H. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor [J]. Journal of Colloid and Interface Science,2006,300:279-285.
    [6]LEE C J, KIM G S, HYUN S H. Synthesis of Silica Aerogels from Waterglass via New Modified Ambient Drying [J]. Journal of Material Science,2002,37:2237-2241
    [7]RAO A P, RAO A V. Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures [J]. Journal of Non-Crystalline Solids,2008,354:10-18.
    [8]SHI F, WANG L J, Liu JX. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process[J]. Materials Letters,2006,60:3718-3722.
    [9]BHAGAT S D, KIM Y H, AHN Y S, et al. Rapid Synthesis of Water-glass Based Aerogels by in Situ Surface Modification of the Hydrogels [J]. Applied Surface Science, 2007,253:3231-3236.
    [10]SARAWADE P B, KIM J K, KIM H K, et al. High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure [J]. Applied Surface Science,2007,254:574-579.
    [11]LEOFANTI G, PADOVAN M, TOZZOL G. Surface area and pore texture of catalysts [J]. Catalysis Today,1998,41:207-219.
    [12]KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chemistry of Materials,2001,13: 3169-3183.
    [13]史飞.常压干燥制备SiO2气凝胶及其结构、性能研究[D].辽宁:大连理工大学材料科学与工程学院,2005.
    [14]BHAGAT S D, KIM Y H, MOON M J. A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route [J].Solid State Sciences,2007,9:628-635.
    [15]RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents [J]. Applied Surface Science,2007,253:6032-6040.
    [16]RAO A V,KULKARNI M M, AMALNERKAR DP, et al. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes [J]. Applied Surface Science,2003,206:262-270.
    [17]KANG S K, CHOI S Y. Synthesis of Low-Density Silica Gel at Ambient Pressure:Effect of Heat Treatment [J]. Journal of Materials Science,2000,35: 4971-4976.
    [18]刘明龙.SiO2气凝胶常压制备过程研究[D].天津:天津大学材料科学与工程学院,2007.
    [19]SCHWERTFEGER F, FRANK D, SCHMIDT M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying [J].Journal of Non-Crystalline Solids,1998,225:24-29
    [1]COMBEMALE L, CABOCHE G, STUERGA D, et al. Microwave synthesis of yttri stabilized zirconia [J]. Materials Research Bulletin,2005,40:529-536.
    [2]TONANON N, WAEENIN Y, SIYASUKH A, et al. Dreparation of resorcinol formaldehyde (RF) carbon gels:Use of ultrasonic irradiation followed by microwave drying [J]. Journal of Non-Crystalline Solids,2006,352:5683-5686.
    [3]ZUBIZARRETA L, ARENILLAS A, DOMINGUEZ A, et al. Development of microporous carbon xerogels by controlling synthesis conditions [J]. Journal of Non-Crystalline Solids,2008,354:817-825.
    [4]SYAHRUL S, DINCER I, HAMDULLAHPUR F. Thermodynamic modeling of fluidized bed drying of moist particles [J]. International Journal of Thermal Sciences 2003, 42:691-697.
    [5]PORTOGHESE F, BERRUTI F, BRIENS C. Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes [J]. Powder Technology,2008,181:169-172.
    [6]BHAGAT SD, PARK KT, KIM YH, et al. A continuous production process for silics aerogel powders based on sodium silica by fluidized bed drying of wet-gel slurry [J]. Solid State Sciences,2007,9:1-4.
    [7]郭瑞松,蔡舒,季惠明,等.工程结构陶瓷,天津:天津大学出版社,2002
    [8]齐亮.Al2O3掺杂3Y-TZP纳米粉体的制备及其材料强韧化机理的研究[D].天津:天津大学材料科学与工程学院,2007.
    [9]KALAPATHY U, PROCTOR A, SHULTZ J. Production and properties of flexible sodium silica films from rice hull ash silica [J]. Bioresource Technology,2000,72:99-106.
    [10]LEOFANTI G, PADOVAN M, TOZZOL G. Surface area and pore texture of catalysts [J]. Catalysis Today,1998,41:207-219.
    [11]KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chemistry of Materials,2001,13: 3169-3183.
    [12]RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents [J]. Applied Surface Science,2007,253:6032-6040.
    [13]ARUNIMA S, BIJAY P T, SHAHI V K. Sulfonated Poly(styrene-co-maleicanhydride) Poly(ethyleneglycol) Silica Nanocomposite Polyelectrolyte Membranes for Fuel Cell Applications [J].The Journal of Physical Chemistry B,2007,111:12454-12461.
    [14]NAGARAJA D H, VENKATESWARA R A, Organic modification of TEOS based silica aerogels using hexadecyl-ltrimethoxysilane as a hydrophobic reagent [J]. Applied Surface Science,2006,253:1566-1572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700