硅胶整体柱的制备及其色谱性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体柱是二十世纪九十年代迅速发展起来的一个新的技术领域,从它产生便倍受关注。硅胶整体柱是近几年才出现的新型色谱柱,由于硅胶整体柱具有高速、低压、高效、适于极性和流速梯度洗脱、机械强度高,柱性能稳定,等诸多优势,这使其很适合高通量分析和快速分离,在分离领域中发挥着越来越重要的作用。
     本文结合本研究室的工作,对常规硅胶整体柱的制备方法、制备机理与结构特性以及应用作一概述。
     本文采用改进的溶胶-凝胶技术,以四甲氧基硅烷和聚乙二醇为原料,通过研究水域温度、反应溶液pH值对凝胶化过程的影响,探讨了不同的四甲氧基硅烷/聚乙二醇比例、不同制孔剂浓度对柱结构的影响,以及不同焙烧温度和酸活化处理方法对柱体Si-OH含量和线性收缩率的影响,并建立了消除柱体开裂和变形弯曲的方法及中孔的构建方法,由此确定最佳制备条件。由此得到的硅胶整体柱床,经包覆后,考察了流速对柱压降的影响,并在正相色谱模式下应用制备的硅胶整体柱对苯取代化合物进行了分离。效果令人满意。此外,制备了β-CD键合硅胶整体柱,成功分离了硝酚异构体。
Monolithic column is a new separation material which has attracted much attention of scientists since 1990s. Monolithic silica column is the new type column of chromatography which possessed high permeability, low column back pressure, high mechanical strength and column efficiency. It is well suited for high speed and high efficiency separations and it will play more and more important role in analysis and separation.
    This paper consists of the following parts: monolithic silica column's preparation, principle, characterization and application.
    First, a new approach of preparing monolithic silica column was developed by adopting an improved sol-gel technology with tetramethoxysiane and polyethylene glycol as the matrix materials in this paper. The effects of the misture pH value and temperature of water-bath in the process of gelation were investigated. The influences of different TMOS/PEG ratio and concentration of porogenic diluent on monolithic silica column, the change of Si-OH content of monolithic column with roasting temperature and the mesopore size on the skeleton with reaction conditions were also discussed. The problems of crack and deformation in preparing the column were solved by using N,N-dimethylformamide and a new heat treatment procedure.
    Second, column back-pressure as a function of the flow-rate on the monolithic silica column was investigated. The optimal of preparation monolithic column were determined. The monolithic silica column was then applied to the separation of benzene substituted compounds and they were baseline-separated in normal-phase chromatography. Nitropheol isomers were also successfully separated on a 3 -CD bonded monolithic silica column.
引文
[1] 刘国诠,于兆娄著.色谱柱技术[M].北京:化学工业出版社,2001,317
    [2] Afeyan N B, Gordon N F, Mazsaroff I, et al. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: Perfusion chromatograph. J. Chromatogr., 1990,519:1-29
    [3] Kirkland J J. Superficially porous silica microspheres for the fast high-performance liquid chromatography of liquid samples. Anal. Chem., 1992,64:1239-1245
    [4] Rabel F, Cabrera K and Lubda D. Advancing separation science with monolithic silica HPLC columns. Am. Lab. (Shelton, Conn), 2000,32(24): 20-22
    [5] Cabrera K, Lubda D, Sinz K, Sch(?)fer C. HPLC column: The next great leap forward—Part 1. Am. Lab. (Shelton, Conn), 2001,33(4): 40-41
    [6] Ghose S and Cramer S M. Characterization and modeling of monolithic stationary phases: application to preparative chromatography. J. Chromatogr. A, 2001,928(1): 13-23
    [7] Gustavsson P E, Larsson P O. Continuous superporous agarose beds in radial flow columns [J]. J. Chromatogr. A. 2001,925(1-2): 69-78
    [8] 周杰,王善伟,郭洪声,何锡文.原位分子印迹法制备的连续棒型模板聚合物的手性识别.分析化学,2000,28(3):296-299
    [9] 张敏莲,白妹,孙彦.聚(GMA-DVB-TAIC)型连续床的制备及其对蛋白质的色谱分离性能.离子交换与吸附,2000,16(3):199-206
    [10] 卫引茂,黄晓东,陈强,耿信笃.新型连续棒状疏水色谱柱的制备及其色谱性能研究.离子交换与吸附,2001,17(5):310-315
    [11] 罗权舟,邹汉法,汪海林,毛希琴,孔亮,倪坚毅.固载蛋白A交联聚甲基丙烯酸缩水甘油酯连续床亲合色谱柱的制备及性能考察.分析化学,2001,29(5):497-501
    [12] 卫引茂,黄晓东,耿信笃.一种金属螯合连续棒色谱柱的制备及色谱性能.高等学校化学学报,2001,22(10):1664-1666
    [13] Mihelic I, Koloini T, Podgornik A, Strancar A. Dynamic capacity studies of CIM
    
    (convective interaction media) monolithic columns. J. High Resol. Chromatogr.,2000,23(1): 39-43
    [14] Ericson C, Liao J L, Nakazato k, Hjerten S. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds. J. Chromatogr.A, 1997,767:33-41
    [15] Peters E C, Petro M, Svec F, Frechet J M J. Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 2. Effect of Chromatographic Conditions on the Separation. Anal. Chem., 1998,70:2296-2302
    [16] Matsui J, Kato t, Takeuchi T, Suzuki M, Yokoyama K, Tamika E, Karube I. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem., 1993,65:2223-2224
    [17] Svec F, Frechet J M J. New porous polymer monoliths with enhanced properties: supports for rapid and efficient separations. Polym. Mater. Sci. Eng., 1999,81:544-545
    [18] Tang Q L, Lee M L. Continuous-bed columns containing sol-gel bonded packing material for capillary electrochromatography. J. High Resol. Chromatogr. 2000,23(1): 73-80
    [19] Buchmeiser M R. New synthetic ways for the preparation of high-performance liquid chromatography supports. J. Chromatogr. A, 2001,918:233-266
    [20] Tanaka N, Kobayashi H, Nakanishi, Minakuchi K, Ishizuka N. A new type of chromatographic support could lead to higher separation efficiencies. Anal. Chem., 2001,73(15): 421A-429A
    [21] 平贵臣,袁湘林,张维冰,张玉奎.整体柱的制备方法及其应用.分析化学,2001,29(12):1464-1469
    [22] Zou H, Huang X, Ye M, Luo Q. Monolithic stationary phase for liquid chromatography and capillary chromatography. J. Chromatogr. A, 2002,954:5-32
    [23] Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A, 2002,965:35-49
    
    
    [24] Siouffi A M. Silica gel-based monoliths prepared by the sol-gel method: facts and figures. J. Chromatogr. A, 2003,1000:801-818
    [25] 杨更亮,高文惠,杨静.硅胶整体柱的研究进展.色谱,2003,21(4):332-335
    [26] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tranaka N. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Anal. Chem., 1996,68:3498-3501
    [27] Cabrera K, Wleland G, Lubda D. SilicaROD—A new challenge in fast high-performance liquid chromatography separations. Trends in Anal. Chem., 1998,17(1): 50-53
    [28] Bidlingmaier B, Unger K K, Doehren N V. Comparative study on the performance of microparticulate 5μm-C18-bonded and monolithic reversed-phase columns in high performance liquid chromatography. J. Chromatogr. A, 1999,832:11-16
    [29] Spoof L, Meriluoto J. Rapid separation of microcystins and nodularin using a monolithic silica C18 column. J. Chromatogr. A, 2002,947:237-245
    [30] Freiser H, Szczap K, Loop C. Increased sample throughput for ketoconazole analysis by automated 96-well sample preparation and multiplexed liquid chromatography. Curr. Sep., 2002,19(4): 131-134
    [31] Nakanishi k, Soga N. Phase separation in gelling silica-organic polymer solution: systems containing poly (sodium styrenesulfonate). J. Am. Ceram. Soc., 1991,74(10): 2518-2530
    [32] Nakanishi k, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid I.Gel formation behavior and effect of solvent composition. J. Non-Crystalline Solids, 1992,139:1-13
    [33] Nakanishi k, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid Ⅱ. Effect of molecular weight and temperature. J. Non-Crystalline Solids, 1992,139:14-24
    [34] Takahashi R, Nakanishi k, Soga N. Aggregation behavior of alkoxide-derived silica in sol-gel process in presence of poly (ethylene oxide). J. Sol-Gel Sci. Technol., 2000,17:7-18
    
    
    [35] Takahashi R, Sato S, Sodesawa T, Kawakita M. Pore size control of high surface-area silica by use of citric acid. Chem. Lett., 1990,10:1107-1108
    [36] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J.Chromatogr. J. Chromatogr. A, 1997,762:135-146
    [37] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J.Chromatogr. J. Chromatogr. A, 1998,797:121-131
    [38] Ishizuka N, Minakuchi H, Nakanishi K, Soga N, Tanaka N. Designing monolithic double-pore silica for high-speed liquid chromatography. J. Chromatogr. A, 1998,797:133-137
    [39] Minakuchi H, Ishizuka N, Nakanishi K, Soga N, Tanaka N. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations. J.Chromatogr. J. Chromatogr. A, 1998,828:83-90
    [40] Tanaka N, Kinoshita H, Araki. On-column preparation of chemically bonded stationary phase with maximum surface coverage and high reproducibility and its application to packed microcapillary columns. J. Chromatogr. A, 1985,322:57-69
    [41] Gilpin R K, Korpi J A, Janichi C A. On-column preparation of bonded phases for high-pressure liquid chromatography. Anal. Chem., 1974,46(9): 1314-1316
    [42] Nakanishi K, Shikata H, Ishizuka N, Koheiya N, Soga N. Tailoring mesopores in monolithic macroporous silica for HPLC. J. High Resol. Chromatogr., 2000,23(1): 106-110
    [43] Ishizuka N, Minakuchi H, Nakanishi K, Hirao K, Tanaka N. Chromatographic characterization of macroporous monolithic silica prepared via sol-gel process. Colloid Surface A, 2001,187-188:273-279
    [44] Tanaka N, Nogayama H, Kobayashi H, Ikgami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Cabrera K, Lubda D. Monolithic silica columns for
    
    HPLC, micro-HPLC, and CEC. J. High Resol. Chromatogr., 2000,23(1): 111-116
    [45] Fujimoto C J. Preparation of fritless packed silica columns for capillary electrochromatography. J. High Resol. Chromatogr., 2000,23(1): 89-92
    [46] Liapis A I, Meyers J J, Crosser O K. Modeling and simulation of the dynamic behavior of monoliths. J. Chromatogr. A, 1999,865:13-25
    [47] Cavazzini A, Bardin G, Kaczmarski K. Adorption equilibria of butyl-and amylbenzene on monolithic silica-based columns. J. Chromatogr. A, 2002,957:111-126
    [48] Gritti F, Piatkowshi W, Guiochon G. Comparison of the adsorption equilibrium of a few low-molecular mass compounds on a monolithic and a packed column in reversed-phase liquid chromatography. J. Chromatogr. A, 2002,978:81-107
    [49] Nederkassel A M, Aerts A, Dierick A, Massart D L, Vander Y. Fast separations on monolithic silica columns: method transfer, robustness and column ageing for case studies. Journal of Pharmaceutical and Biomedical Analysis, 2003,32:233-249
    [50] Chu Y, Poole C F. System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column. J. Chromatogr. A, 2003,1003:113-121
    [51] McCalley D V. Comparison of convebtional microparticulate and a monolithic reversed-phase column for high-efficiency fast liquid chromatography of basic compounds. J. Chromatogr. A, 2002,965:51-64
    [52] Garrido J L, Rodriguez F, Campana E, Zapata M. Rapid separation of chlorophylls a and b and their demetallated and dephytylated derivatives using a monolithic silica C18 column and a pyridine-containing mobile phase. J. Chromatogr. A, 2003,994:85-92
    [53] Al-Bokari M, Cherrak D, Guiochon G. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. J. Chromatogr. A, 2002,975:275-284
    [54] Hennessy T P, Boysen R I, Huber M I, Unger K K, Hearn M T W. Peptide mapping by reversed-phase high-performance liquid chromatography employing silica rod
    
    monoliths. J. Chromatogr. A, 2003,1009:15-28
    [55] Vallano P T, Mazenko R S, Woolf E J, Mataszewski B K. Monolithic silica liquid chromatography columns for the determination of cyclooxygenase Ⅱ inhibitors in human plasma. J. Chromatogr. B, 2002,779:249-257
    [56] Wu J T, Zeng H, Deng Y, Unger S E. High-speed liquid chromatography/tandem mass spectrometry using a monolithic column for high-throughput bioanalysis. Rapid Commun. Mass Spectrom., 2001,15:113-119
    [57] Lutz E S M, Markling M E, Masimirembwa C M. Monolithic silica rod liquid chromatography with ultraviolet or fluorescence detection for metabolite analysis of cytochrome P 450 marker reactions. J. Chromatogr. B, 2002,780:205-215
    [58] Rocheleau M J, Jean C, Bolduc J, Carazzato D. Evaluation of a silica-based monolithic column in the HPLC analysis of taxanes. Journal of Pharmaceutical and Biomedical Analysis, 2003,31:191-196
    [59] Xu Q, Tanaka K, Mori M, Helaleh M I H, Hu W, Hasebe K, Toada H. Monolithic octadecylsilyl-silica gel column for the high-speed ion chromatographic determination of acidity. J. Chromatogr. A, 2003,997:183-190
    [60] Khurarna A L, Ho C T. Determination of surface silanols gels and HPLC bonded phases. J. Liq. Chromatogr., 1988,11:3205
    [61] 杜洪光,苗风琴,崔惠淑,于世林.环氧基硅烷化硅胶的制备及评价方法比较.北京化工大学学报(自然科学版),1995,22(2):66-70
    [62] Fujimura K, Kitagawa M, Takayanag H, Ando T. Optical resolution of some mandelic derivatives on a chemically bonded cyclodextrin stationary phase. J. Liq. Chromatogr., 1986,9(2-3):607-620
    [63] 陈慧,王琴孙.环糊精类高效液相色谱固定相的研究进展.色谱,1999,17(6):534-538
    [64] 龚银汉,董亚琼,冯钰,达世禄,王忠华.β-环糊精键合固定相合成方法和色谱性能研究.分析测试学报,1998,17(5):5-8
    [65] 王来来,吕士杰,高平,傅宏祥,李树本.萘普生和萘普生乙酯在环糊精手性柱上的HPLC分析.分析测试学报,1997,16(2):6-9
    
    
    [66] 于兆文,周志强,蒋生祥,刘快之,陈立仁.苯甲酰化环糊精键合固定相的制备及手性拆分.化学试剂,2000,22(2):72-74
    [67] 冯钰锜,谢敏杰,达世禄.8-羟基喹啉衍生化β-环糊精键合硅胶液相色谱固定相的合成与评价.高等学校化学学报,1999,20(11):1708-1713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700