核素标记多肽K237在肺癌分子显像和靶向治疗中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分99Tcm_K237的制备及其小鼠体内分布
     目的:探索99Tcm标记多肽K237的方法,研究标记物的稳定性及其小鼠体内的代谢分布情况。
     方法:采用99Tcm直接标记多肽K237。探索不同标记条件下产物的标记率、放化纯、体外稳定性及其生物学活性改变。正常小鼠尾静脉注射99Tcm-K237(2.96 MBq,O.1 m1)后30 min和1、2、4、8及24 h后处死,取血液及主要脏器,称重并测量放射性,测定其每克组织百分注射剂量率(%ID/g)。将99Tcm-K237(5.55 MBq,0.1 m1)经荷人肺癌A549裸鼠尾静脉注射,于注射后1、2、3、5及8 h显像。
     结果:本实验条件下得到99Tcm-K237的标记率和放化纯均>95%,其与人脐静脉内皮细胞(HUVEC)的最高特异性结合率为40.36%。99Tcm_K237在生理盐水和正常人血清中放置24 h后,其放化纯分别为(89.1±1.4)%和(88.3±1.1)%,二者差异无统计学意义(t=1.56,P>0.05)。静脉注射99Tcm_K237后24 h内,小鼠血液放射性清除迅速,放射性主要聚集在肾脏并经其清除,其它组织器官的放射性随时间逐渐降低。99Tcm-K237荷人肺癌A549裸鼠显像示肿瘤组织摄取高,不同时间的肿瘤/对侧正常组织放射性计数比值(T/NT)最高可达3.97±0.31。
     结论:99Tcm-K237易于制备,标记率高,体内外稳定性好,具有较理想且符合实际的动物体内动力学表现,可望成为一种新的靶向性肿瘤血管生成显像剂。
     第二部分131I-K237的制备及其在荷人肺癌裸鼠中的生物分布
     目的:探索131I标记多肽K237的方法,研究标记物131I-K237的稳定性及其荷人肺癌A549裸鼠体内的生物学分布。
     方法:采用Iodogen法131I标记多肽K237,人奇静脉内皮细胞(HUVEC)增值抑制试验和竞争抑制试验检测131I-K237的生物活性。将131I-K237经荷人肺癌A549裸鼠尾静脉注射后于不同时间处死,取肿瘤及主要脏器,测定各组织中每克组织的放射性百分注射剂量率(%ID/g)。
     结果:本实验条件下得制备的131I-K237标记率为(60.16±1.21)%,经分离纯化后其放化纯为(96.87±0.82)%。分别在生理盐水和正常人血清中放置24 h后,131I-K237的放化纯仍>90%。HUVEC增值抑制试验显示不同浓度下131I-K237与未标记K237的抑制率均无明显差别(P>0.05)。131I-K237经荷瘤裸鼠尾静脉注射后,血液中放射性清除迅速,肾脏相对高摄取。给药后肿瘤/对侧相应部位肌肉组织的放射性比值(T/N)随时间延长而逐渐升高,12 h达到最高为4.3 1,24 h仍有4.19。
     结论:131I-K237易于制备,具有较理想的动物体内动力学和对肿瘤的高亲和性,是一具有潜在的新型靶向性肿瘤血管生成显像和治疗药物。
     第三部分131I标记K237靶向治疗荷人肺癌裸鼠的实验研究
     目的:观察多肽K237及131I标记K237(131I-K237)对荷人肺癌A549裸鼠肿瘤靶向和放射性核素双重治疗的疗效。
     方法:25只实验鼠建立荷人肺癌A549瘤裸鼠模型后,随机分成5组,分别为对照组(生理盐水)、131I组(11.1 MBq131I)、K237组(40μg)、131I-K237静脉组(含K237 40μg,1 1.1 MBq131I),以上各组均经裸鼠尾静脉给药,及131I-K237瘤体内注射组(含K237 40μg,11.1 MBq13’I)。各实验鼠均于15天后再次给药,剂量与第一次相同,定期测量肿瘤体积。实验至第31天处死小鼠,比较肿瘤的体积,计算抑瘤率,并通过生物化学、免疫组织化学及病理组织学等方法检测131I-K237对肿瘤生长的抑制作用及其对正常组织器官的放射毒副作用,检测CD34在各组肿瘤组织中的表达。两样本均数比较行成组设计t检验,多组均数比较用单因素方差分析。
     结果:治疗结束时,13I-K237静脉和瘤体内注射组、K237组及131I组的抑瘤率分别为75.01%、78.99%、31.15%、12.61%。131I-K237静脉和瘤体内注射组肿瘤平均体积较小,与生理盐水对照组、K237组和131I组比较,差异均有统计学意义(P<0.01)。病理检查显示131I-K237治疗组和K237组肿瘤细胞发生明显坏死;未发现肝、肾和血液的辐射损伤效应。
     结论:131I-K237对荷人肺癌裸鼠移植瘤的生长具有明显的抑制作用,未发现明显的毒副作用。
Part 1 Study on preparation of 99Tcm-K237 and it's biodistribution in mice
     Objective A novel peptide K237, which was isolated from a phage-displayed peptide library, can inhibit tumor growth and metastasis by blocking the binding of vascular endothelial growth factor(VEGF) to it's KDR receptor.The aim of this study was to explore the method of the radiolabeling of peptides K237 with 99Tcm and investigate the stability of 99Tcm-K237 and its distribution in mice.
     Methods Peptide K237 was labeled directly with 99Tcm. The labeling rate, the radiochemic purity, the in vitro stability and the biologic activity of Tcm-K237 were studied under various conditions.99Tcm-K237 was injected through tail vein of normal mice with 2.96 MBq in a volume of 0.1 ml. Those mice were killed at different stages after injection and their blood and other major organs were taken out, then the radioactivity count of these organs were measured to investigate the biodistribution. 99Tcm-K237 of 0.1 ml 5.55 MBq was injected into the tail vein of tumor bearing nude mice, then imaged at 1、2、3、5 and 8 h.
     Results Under the conditions of SnCl2·2H2O 100μg, K237 100μg, pH value 6.0, reaction time 10~30 min and reaction temperature 4~37℃, the labeling rate and the radiochemic purity of 99Tcm-K237 were more than 95%. The specific binding efficiency of 99Tcm-K237 with human umbilical vein endothelial cell (HUVEC) was 40.36%. After 99Tcm-K237 was placed in physiologic saline and in blood serum, the radiochemic purity was respectively (89.1±1.4)% and (88.3±1.1)% at 24 h, while there was no significant difference between the two groups(t=1.56, P>0.05). In the first 24 h postinjection, the biodistribution in mice showed rapid blood and renal clearance with gradually excreted in other organs or tissues including heart, liver, lungs, stomach and muscle, most of the radioactivity was observed in renal. In imaging, the uptake ratios of tumor to background (T/B) at 1、2、3、5 and 8 h were 1.25±0.11、3.13±0.26、3.97±0.31、1.34±0.29 and 1.18±0.25, respectively.
     Conclusion 99Tcm-K237, which is an easily prepared and labeled compound with high labeling rate and stability, will be a potential tumor imaging agent.
     Part 2 Study on preparation of 131I-K237 and it's biodistribution in nude mice bearing human lung cancer
     Objective To explore the method of the radiolabeling of peptide K237 with 131I and investigate the stability of 131I-K237 and its distribution in nude mice bearing human lung cancer.
     Methods Iodogen method was used for 131I labeling K237. The bioactivity of 131I-K237 was tested by HUVEC proliferation inhibitory assay and the affinity of 131I-K237 was examined by competition binding studies.131I-K237 was injected through tail vein of nude mice with 2.96 MBq in a volume of 0.1 ml to investigate the biodistribution. Those mice were killed at different stages after injection and their blood and other major organs were taken out, then the radioactivity counts of these organs were measured to investigate the biodistribution.
     Results The labeling rate of 131I-K237 was 60.16%, radiochemical purity was above 95%. The inhibition rate of HUVEC proliferation had no significant difference between radiolabeled K237 and unlabeled K237(P>0.05). After 131I-K237 was placed in physiologic saline and in blood serum, the radiochemic purity was>95%,respectively. The ratios of tumor to muscle(T/N) were 2.12、2.32、2.51、2.70、3.03、4.31and 4.19 at 30min、1 h、2 h、4 h、8 h、12 h and 24 h, respectively.
     Conclusion 131I-K237, which is an easily prepared and labeled compound with high labeling rate and stability, will be a potential targeting tumor imaging and treating agent.
     Part 3 Experimental study on targeting therapy in nude mice bearing human lung cancer with 131I-K237
     Objective To investigate the targeted therapeutic efficiency of 131I radiolabeled peptide K237 (131I-K237) on nude mice bearing human lung cance.
     Methods Human lung cancer xenografts with positive KDR expression were established in nude mice. All 25 mice models were divided into five groups randomly, including physiologic saline group, 131I-K237 group intravenously,131I-K237 group intratumorally, K237 group and 131I group. Thirty-one days after infusion, the tumor growth inhibition rate was calculated.The inhibited effect and the radiation breakdown of 131I-K.237 on nude mice were determined by biochemical, immunohistochemical and pathohistology methods.
     Results Tthe inhibition rate of HUVEC proliferation had no significant difference between radiolabeled K237 and unlabeled K237(t=1.67, P> 0.05). The growth of transplanted lung cancer was inhibited by 75.01%, 78.99%,31.15% and 12.61% at groups treated with 131I-K237 intravenously, 131I-K237 intratumorally, K237 and 131I, respectively. The average tumor volume of the 131I-K237 trial groups less than that of the control, K237 and 131I group (P<0.01). Irreversible destruction of tumor cells in 131I-K237 trial groups and K237 group was found under light and electron microscope. There was no effect of radiation breakdown on liver, kidney, spleen and blood-cell in nude mice.
     Conclusion 131I-K237 can effectively inhibit the growth of tumor in nude mice bearing human lung cancer, with little obvious side effects.
引文
[1]Gerber HP, Ferrrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med,2003,81:20-31.
    [2]Lei HT, An P, Song SM, et al. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem, 2002,227:43137-43142.
    [3]Dijkgraaf I, Boerman OC, Oyen WJ, et al. Development and application of peptide-based radiopharmaceuticals. Anticancer Agents Med Chem,2007,7: 543-551.
    [4]Kothari K, Prasad S, Korde A, et al.99mTc(CO)3-VIP analogues:preparation and evaluation as tumor imaging agent. Appl Radiat Isot,2007,65:382-386.
    [5]Chen X, Sievers E, Hou Y, et al. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia,2005,7:271-279.
    [6]Lee KH, Jung KH, Song SH, et al. Radiolabeled RGD Uptake and αv Integrin Expression Is Enhanced in Ischemic Murine Hindlimbs. JNM 2005, 46:472-478
    [7]Melendez-Alafort L, Ramirez Fde M, Ferro-Flores G, et al. Lys and Arg in UBI: a specific site for a stable Tc-99m complex? Nucl Med Biol,2003,30:605-615.
    [8]Zamora PO, Rhodes BA. Imidazoles as well as thiolates in proteins bind technetium-99m. Bioconjug Chem,1992,3:493-498.
    [9]Pimentel GJ,Vazquez JE,Quesada W,et al. Hexa-histidine tag as a novel alternative for one-step direct labelling of a single-chain Fv antibody fragment with 99mTc. Nucl Med Commun,2001,22:1089-1094.
    [10]Danen EH. Integrins: regulators oftissuefunctionand cancer progression. CurrPharmDes,2005,11(7):881-891
    [12]Kumar CC. Integrin ανβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets,2003,4(2):123-131.
    [13]TetiA, Migliaccio S, Braon R. The role of alphavbeta3 integrin in the development of osteolytic bone metastases:a pharmacological target for alternative therapy?. Caleif Tissue Int,2002,71(4):293-299.
    [14]Raguse JD, Gath HJ, Bier J, et al. Cilengitide (EMD121974) arrests the growth of a heavily pretreated highly vasculafised head and neck tumour. Oral Oncol, 2004,40(2):228-230.
    [15]Plersehbacher MD, Ruoslahti E. The cell attachment activity of fiibronectin call be duplicated by small fragments of the molecule. Nature,1984,309:30-33
    [16]Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of the activatedανβ3 integrin in cnacer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med,2005,2(3):e70
    [17]Beer AJ, Haubner R, Goebe lM, etal. Biodistribution and pharmacokinetics of theανβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med, 2005,46(8):1333-1341.
    [18]Chen X, Prak R, Hou Y, et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mollmaging,2004, 31(8):1081-1089.
    [19]王火强,夏俊勇,赵龙,等99mTc-K237的制备及其在小鼠体内分布和显像。中国医学影像技术,2009,25(9):1545-1548
    [20]Dayton PA,Pearson D, Clrak J, et al. Ultrasonic analysis of peptide-and antibody-targeted microbubble contrast agents for molecular imaging ofανβ3-expressing cells. Mol Imaging,2004,3(2):125-134.
    [21]Anderson SA, Rader RK, Westlin WF, etal. Magnetic resonance contrast enhancement of neovasculature withανβ3-targed nanoparticles. Magn Reosn Med,2000,44(3):433-439.
    [22]Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des,2004,10(13): 1439-1455.
    [23]Bangard M,Behe M, Guhlke S,et al. Detection of somatostatin receptor-positive tumours using the new 99m-Tctricine-HYN-IC-d-Phel-Tyr3-octreotide:first results in patients and comparison with 111 In-DTPA-d-Phel-octreotide. EurJNuclMed,2000,27(6):628-637.
    [24]Rusckowski M, Qu T, Gupta S, et al. A comparison in monkeys of (99m)Tc labeled to apeptide by methods. J Nucl Med.2001,42(12):1870-1877.
    [25]Line BR, Mitra A, Nan, A, Ghandehari H. Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. J Nucl Med.2005;46: 1552-1560.
    [26]Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal anti bodies. J Nucl Med.2005;46(suppl):115S-27S.
    [27]Huhalov A, Chester KA. Engineered single chain antibody fragments for radioimmunotherapy. Q J Nucl Med Mol Imaging.2004;48:279-288.
    [28]Wester HJ, Schottelius M, Poethko T, et al. Radiolabeled carbohydrated somatostatin analogs:a review of the current status. Cancer Biother Radiopharm.2004; 19:231-244.
    [29]Krenning EP, Kwekkeboom DJ, Valkema R, et al. Peptide receptor radionuclide therapy. Ann N Y Acad Sci.2004; 1014:234-245.
    [30]Stefanidakis M, Koivunen E. Peptide-mediated de livery of therapeutic and imaging agents into mam malian cells. Curr Pharm Des.2004; 10:3033-3044.
    [31]Breeman WA, de Jong M, Kwekkeboom DJ, et al. Somatostatin receptor-mediated imaging and therapy:basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med.2001;28:1421-1429.
    [32]Haubner R, Weber WA, Beer AJ, et al. Noninva sive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med.2005; 2:244-254.
    [33]de Jong M, Kwekkeboom D, Valkema R,et al. Radiolabelled peptides for tumor therapy:current status and future directions-plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging.2003;30:463-469.
    [34]Maeda H, Fang J, Inutsuka T,et al. Vascular permeability enhancement in solid tumor:various factors, mechanisms involved and its implications. Int Immunopharmacol.2003;3:319-328.
    [35]Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol.1995;146:1029-1039
    [36]Noguchi Y, Wu J, Duncan R, et al. Early phase tumor accumulation of macromolecules:a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res.1998;89:307-314.
    [37]Handl HL, Vagner J, Han H, et al. Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets.2004;8:565-586
    [38]Haubner R, Wester HJ, Weber, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptides and positron emission tomography. Cancer Res.2001; 61:1781-1785.
    [39]Poethko T, Schottelius M, Thumshirn G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides:18F-labeled RGD and octreotide analogs. J Nucl Med.2004;45:892-902.
    [40]Haubner R, Kuhnast B, Mang C, et al. [18F]Ga-lacto-RGD:synthesis, radiolabeling, metabolic stability,and radiation dose estimates.Bioconjug Chem. 2004;15:61-69.
    [41]Mitra A, Nan A, Ghandehari H,et al. Technetium-99m-labeled N-(2-hydroxypropyl) methacrylamide copolymers:synthesis, characterization, and in vivo biodistribution. Pharm Res.2004;21:1153-1159.
    [42]Haubner R, Wester HJ, Burkhart F, et al. Glycosy lated RGD-containing peptides:tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med.2001;42:326-336.
    [1]Gerber HP, Ferrrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med,2003,81:20-31.
    [2]Hetian L, Ping A, Shumei S, et al. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem, 2002,227:43137-43142.
    [3]孙晋,刘璐,朱小莉,等.131I-17-AAG对荷H460人非小细胞肺癌裸鼠的抗癌效应.中华核医学杂志,2008,28:299-303
    [4]Khan IU, Beck-Sickinger AG. Targeted tumor diagnosis and therapy with peptide hormones as radiopharmaceuticals. Anticancer Agents Med Chem, 2008,8:186-199
    [5]Antonescu CR, Yoshida A, Guo T,et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res, 2009,69:7175-7179.
    [6]Seto T, Higashiyama M, Funai H, et al. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer,2006,53:91-96
    [7]Koppe J, Bleichrodt P, Soede C, et al. Biodistribution and therapeutic efficacy of 125/123 I、186Re、88/90Y、177Lu-labeled monoclonal antibody MN-14 tocarcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med,1999,40:685-692.
    [8]Lee KH, Song SH, Paik JY, et al. Specific endothelial binding and tumor uptake of radiolabeled angiostain. Eur J Nucl Med Mol Imaging.2003, 30:1032-1037.
    [9]王火强,夏俊勇,张志勇,等.99mTc-K237的制备及其在小鼠体内分布和显像.中国医学影像技术,2009,25:1545-1548.
    [10]Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med,2008,49 Suppl 2:113S-128S.
    [11]王火强,夏俊勇,张志勇,等.131I-K237的制备及对荷人肺癌裸鼠靶向治疗实验.中华核医学杂志,2010,30(6):390-394
    [12]Blasberg RG, Gelovani J. Molecular-genetic imaging:A nuclear medicine-based perspective. Mol Imaging,2002;1:160-168
    [13]Gambhir SS, Barrio JR, Wu I, et al. Imaging of adenoviral-directed herpes simplex virus type I thymidine kinase reporter gene expression in mice with radiolabeledGanciclovir. J Nucl Med 2003; 11:2003-2015.
    [14]Freeman LM, Krynyckyi BR, Li Y, et al. The role of111In-capromab pendetide (ProstaScint) immunoscintography in the management of prostate cancer. J Nucl Med,2002;46:131-144
    [15]Raj GV, Partin AW, Polascik TJ. Clinical utility of 111 In-capromab pendetide immunoscintigraphy in the detection of early,recurrent prostate carcinoma after radical prostatectomy. Cancer,2002;94:987-995
    [16]Hinkle GH, Burgers JK, Neal CE, et al. Multicentric radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer 1998;83:739-741
    [17]Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed refractory low-grade, follicular or transformed B-cell non-Hodgkins' lymphoma. J Clin Oncol 2002;20:2453-2459
    [18]Juweid M,DeNardo GL, Graham M, et al.Radioimmunotherapy:A novel treatment modality for B-cellnon-Hodgkins'lymphoma. Cancer Biother Radiopharm,2003;18:673-682
    [19]Pan D-Y, Qiao J-G, Chen J-W, et al. Tamoxifen combined with octreotide or regular chemotherapeutic agents in treatment of primary liver cancer:A randomized controlled trial. Hepatobil Pancreat Dis Int, 2003;2:211-219
    [20]Guardia J, Catafau AM, Batlle F,et al.Striatal dopaminergic D2 receptor density measured by 1231-iodobenzamide SPECT in the prediction of treatment outcome of alcohol-dependent patients. Am J Psych, 2000;157:127-137
    [21]Kwekkeboom DJ, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med,2000; 41:1704-1713
    [22]Balon HR, Goldsmith SJ, Siegel BA, et al. Procedure guideline for somatostatin receptor scintigraphy with 111In-pentetreotide. J Nucl Med 2001; 42: 1134-1138
    [23]McAfee JG, Neumann RD. Radiolabeled peptides and other ligands for receptors overexpressed in tumor cells for imaging neoplasms. Nucl Med Biol 1996; 23:673-676
    [24]Fisher BMB, Mortensen J, Hφjgaard L. Positron emission tomography in the diagnosis and staging of lung cancer:a systematic, quantitative review. Lancet Oncol 2001; 2:659-666
    [25]Qu T, Wang Y, Zhu Z, et al. Different chelators and different peptides together influence the in vivo properties of 99Tcm. Nucl Med Commun 2001; 22: 203-215
    [26]Haubner R, Wester H-J, Burkhart F, et al. Glycosylated RGD-containing peptides:tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42:326-336
    [27]Traub T, Petkov V, Ofluoglu S, et al. 111In-DOTA-lanreotide scintigraphy in patients with tumors of the lung. J Nucl Med,2001; 42:1309-1315
    [28]Kwekkeboom DJ, Kho GS, Lamberts SWJ, et al. The value of Octreotide scintigraphy in patients with lung cancer. Eur J Nucl Med,1994; 21: 1106-1113
    [29]Reisinger I,Bohuslavitzki KH, Brenner W, et al. Somatostatin receptor scintigraphy in small-cell lung cancer:results of a multicenter study. J Nucl Med,1998; 39:224-227
    [30]Han YJ,Zhang L,Zhou W,et al. Synthesis and preliminary evaluation of a novel 1251-labeled T140 analog for quantitation of CXXR4 expression. J Radioanal Nucl Chem,2009,52(S1):S342-S349
    [31]van Eijck CHJ, Krenning EP, Bootsma A, et al. Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 1994; 343:640-643
    [32]Forssell-Aronsson EB, Nilsson O, Benjegard SA, et al. In-DTPA-D-Phe-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J Nucl Med,2000; 41:636-642
    [33]Kirsch C-M, von Pawel J, Grau I, et al. Indium-111 pentetreotide in the diagnostic work-up of patients with bronchogenic carcinoma. Eur J Nucl Med 1994;21:1318-1325
    [1]Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med,2003,9:669-676.
    [2]Gerber HP, Ferrrara N. The role of VEGF in normal and neoplastic hematopoiesis.J Mol Med,2003,81:20-31
    [3]Hetian L, Ping A, Shumei S, et al. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem,2002,227: 43137-43142.
    [4]Van den Bossche B, Van deWiele C. Receptor imaging in oncology by means of nuclear medicine:current status. J Clin Oncol,2004,22:3593-3607
    [5]van Essen M, Krenning EP, Kam BL, et al. Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol.2009,5:382-393
    [6]Ferrara N, Kerbgel RS. Angiogenesis as a therapeutic target. Nature,2005, 438:967-974
    [7]Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Letters,2003,195:1-16.
    [8]Yoshida H, Fujita S, Nshida M, et al. Angiogenesis in the human temporomandibular joint studied by immunohistochemistry for CD34 antigen. J Oral Patbol Med,1999,28:289-292
    [9]Rosenblum M, Verchraegen C, Murray J, et al. Phase I study of 90Y-labeled B72.3 intraperitoneal administration in patients with ovarian cancer. Effect of does and EDTA coadministration on pharmacokinetics and toxicity. Clin Cancer Res,1999,5:953-961
    [10]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med,1971, 285:1182-1186.
    [11]Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med,1995,1:27-31.
    [12]CarmefietP. Angiogenesisinlife, disease and medicine. Nature, 2005,438(7070):932-936
    [13]WhittleC, Gillespie K, HarrisonR, et al. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in humna glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin Sci (Lond),1999,97(3):303-312
    [14]Robert Kerbel and Judah Folkman. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer.2002,2(10):727-39.
    [15]Scappaticci F A. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol.2002,20(18):3906-3927.
    [16]Jain RK. Normalization of tumor vasculature:An emerging concept in antiangiogenic therapy. Science,2005,307(5706):58-62.
    [17]Siemann DW,Chaplin DJ,Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer,2004,100(12):2491-2499.
    [18]Ferrara N, Kerbgel RS. Angiogenesis as a therapeutic target. Nature,2005,438 (7070):967-974.
    [19]Gerber HP, Ferrrara N. The role of VEGF in normal and neoplastic hematopoiesis.J Mol Med,2003,81:20-31.
    [20]Lei HT, An P, Song SM, et al. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem, 2002,227:43137-43142.
    [21]Yang DJ, Kim KD, Schechter NR, et al. Assessment of Antiangiogenic Effect Using 99mTc-EC-Endostatin. Cancer Biother Radiopharm.2002,17(2):233-245.
    [22]Lee KH, Song SH, Paik JY, et al. Specific endothelial binding and tumor uptake of radiolabeled angiostain. Eur J Nucl Med Mol Imaging.2003,30(7):1032-7
    [23]Van den Bossche B, Van deWiele C. Receptor imaging in oncology by means of nuclear medicine:current status. J Clin Oncol,2004,22(17):3593-3607.
    [24]Krenning EP, Kwekkeboom DJ, Valkema R, et al. Peptide receptor radionuclide therapy. Ann NYAcad Sci,2004,1014:234-245.
    [25]Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Letters,2003,195(1):1-16.
    [26]of VEGF isoforms and receptors in knee joint menisci under systemic hypoxia. Biochem Biophys Res Commun,2004,324(2):667-672
    [27]Koppe J, Bleichrodt P, Soede C, et al. Biodistribution and therapeutic efficacy of 125/123 I-、186Re-、88/90Y-、177Lu-labeled monoclonal antibody MN-14 tocarcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med,1999,40:685-692.
    [28]Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of the science. J Nucl Med.2003 Dec;44(12):1945-61.
    [29]Van De Wiele C, Oltenfreiter R, De Winter O, Signore A, et al. Tumour angiogenesis pathways:related clinical issues and implications for nuclear medicine imaging. Eur J Nucl Med Mol Imaging.2002,29(5):699-709.
    [30]Thorpe PE, Chaplin DJ, Blakey DC. The first international conference on vascular targeting:meeting overview. Cancer Res.2003,63(5):1144-1147.
    [31]Li SR,Peck-Radosavljevic M,Koller E, et al. Characterization of Ⅰ-123 vascular endothelial growth factor-binding sites expressed on human tumor cells: possible implication for tumor imaging. Int J Cancer 2001;91:789-796.
    [32]Sivolapenko GB,Skarlos D,Pectasides D, et al. Imaging of metastatic melanoma utilizing a technetium-99m labeled RGD-containing synthetc peptide.Eur J Nucl Med.1998,25:1383-1389.
    [33]Chen X, Hou Y, Tohme M, et al. Pegylated Arg-Gly-Asp peptide:64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med. 2004,45(10):1776-1783.
    [34]Marcel L. Janssen, Wim J. Oyen, Ingrid Dijkgraaf, et al. Tumor Targeting with Radiolabeled ανβ3 Integrin Binding Peptides in a Nude Mouse Model. Cancer Res.2002,62:6146-6151.
    [35]Van Hagen PM,Breeman WAP,Bernard HF, et al. Evaluation of a radiolabelled cyclic DTPA-RAG analogue for tumour imaging and radionuclide therapy.Int J Cancer 2000;90:186-198.
    [36]Dijkgraaf I, Boerman OC, Oyen WJ, et al. Development and application of peptide-based radiopharmaceuticals. Anticancer Agents Med Chem,2007,7: 543-551.
    [37]Kothari K, Prasad S, Korde A, et al.99mTc(CO)3-VIP analogues:preparation and evaluation as tumor imaging agent. Appl Radiat Isot,2007,65:382-386.
    [38]Chen X, Sievers E, Hou Y, et al. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia,2005,7:271-279.
    [39]刘广元,李前伟,黄定德,等.99Tcm-RGD-4CK在动物体内的分布及显像.中华核医学杂志,2007,27:34-37.
    [40]Melendez-Alafort L, Ramirez Fde M, Ferro-Flores G, et al. Lys and Arg in UBI: a specific site for a stable Tc-99m complex? Nucl Med Biol,2003,30:605-615.
    [41]Zamora PO, Rhodes BA. Imidazoles as well as thiolates in proteins bind technetium-99m. Bioconjug Chem,1992,3:493-498.
    [42]Pimentel GJ,Vazquez JE,Quesada W,et al. Hexa-histidine tag as a novel alternative for one-step direct labelling of a single-chain Fv antibody fragment with 99mTc. Nucl Med Commun,2001,22:1089-1094.
    [43]. Krenning EP, Kwekkeboom DJ, Valkema R, et al. Peptide receptor radionuclide therapy. Ann NYAcad Sci,2004,1014:234-245.
    [44]Dijkgraaf I, Boerman OC, Oyen WJ, et al. Development and application of peptide-based radiopharmaceuticals. Anticancer Agents Med Chem,2007,7(5): 543-551.
    [45]Zwanziger D, Beck-Sickinger AG. Radiometal targeted tumor diagnosis and therapy with peptide hormones. Curr Pharm Des,2008,14(24):2385-2400.
    [46]SebastianM, SchmittelA, Friccius2Quecke H, et al. Treatment of non-small cell lung cancer (NSCLC) patientswith the trifunctional bispecific antibody catumaxomab. Lung Cancer,2005,49(2):S376.
    [47]Zhou J, Chen J, Zhong R. Targeting gastrin2releasing pep tide receptors on small cell lung cancer cells with a bispecific molecule that activates polyclonal Tlymphocytes. Clin Cancer Res,2006,12 (7 Pt 1):2224-2231.
    [48]Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med,2003,9 (6):669-676.
    [49]Xiang FG, M a GX. Expression of vascular endothelial growth factor receptors in lung cancer tissues and its relation to metastasis of lymph node and prognosis. Zhongguo Linchuang Kangfu,2005,9(6):206-208.
    [50]Yan H, Xu SH, Zhou LQ, et al. A study on the expressions of vascular endothelial growth factor and its receptors in lung carcinoma.Chin J Respir Crit Care Med,2005,4(3):189-192.
    [51]Lee KH, Song SH, Paik JY, et al. Specific endothelial binding and tumor uptake of radiolabeled angiostain. Eur J Nucl Med Mol Imaging.2003, Jul;30(7):1032-7. Epub 2003 Jan.
    [52]Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995, 333:1757-1763.
    [53]Beecken WD, Fernandez A, Joussen AM, et al. Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J Natl Cancer Inst. 2001,93(5):382-7.
    [54]Gianpaolo Perletti, Paola Concari, Roberto Giardini, et al. Antitumor Activity of Endostatin against Carcinogen-induced Rat Primary Mammary Tumors Cancer Res 2000,60:1793-1796.
    [55]Yumi Yokoyama, Mohanraj Dhanabal, Arjan W. Griffioen, et al. Synergy between Angiostatin and Endostatin:Inhibition of Ovarian Cancer Growth. Cancer Res 2000,60:2190-2196.
    [56]Yoshida H, Fujita S, Nshida M, et al. Angiogenesis in the human temporomandibular joint studied by immunohistochemistry for CD34 antigen. J Oral Patbol Med,1999,28 (7):289-292.
    [57]Rosenblum M, Verchraegen C, Murray J, et al. Phase I study of 90Y-labeled B72.3 intraperitoneal administration in patients with ovarian cancer. Effect of does and EDTA coadministration on pharmacokinetics and toxicity. Clin Cancer Res,1999,5:953-961.
    [58]Zeng L, Ge D. Research on radioimmunotherapy of lung cancer in nude mice using lung cancer monoclonal antibody LC-1 combined with 90Y. ASCO Meeting Abstracts,2004,22:9631-9632.
    [59]徐卫云,李云春,何生等.放射性碘标记表皮生长因子核素靶向治疗乳腺癌的实验研宄.中华外科杂志,2005,43(1):14-17.
    [60]陈明勇,李为民,徐丹等.抗hnRNPB1单克隆抗体结合131I对肺癌小鼠靶向治疗的实验研究.国际呼吸杂志,2007,27(16):1201-1204
    [61]王火强,夏俊勇,张志勇,等.131I-K237的制备及对荷人肺癌裸鼠靶向治疗实验.中华核医学杂志,2010,30(6):390-394.
    [1]Pia P. Vihinen, Johanna Hill, Meri-Sisko Vuoristo et al.Serum VEGF-C is associated with metastatic site in patients with malignant melanoma. Acta Oncologica,2007,46:678-684.
    [2]Mitsuyuki Arinaga, Tsuyoshi Noguchi, Shinsuke Takeno et al. Clinical Significance of Vascular Endothelial Growth Factor C and Vascular Endothelial Growth Factor Receptor 3 in Patients with Nonsmall Cell Lung Carcinoma. CANCER, 2003,97:457-464.
    [3]Andriana I Papaioannou, Konstantinos Kostikas, Panagoula akaollia et al. Clinical implications for Vascular Endothelial Growth Factor in the lung:friend or foe?. Respiratory Research,2006,128(7):1-13.
    [4]Nabendu Pore,Anjali K. Gupta, George J Cerniglia et al. Nelfinavir Down-regulates Hypoxia-Inducible Factor 1 a and VEGF Expression and Increases Tumor Oxygenation:Implications for Radiotherapy. Cancer Res,2006,66(18):9252-9260.
    [5]Rachel Midgley, David Kerr. Bevacizumab-current status and future directions. Annals of Oncology,2005,16:999-1004.
    [6]Ling-Zhi Liu,Jing Fang, Qiong Zhou et al. Apigenin Inhibits Expression of Vascular Endothelial Growth Factor and Angiogenesis in Human Lung Cancer Cells; Implication of Chemoprevention of Lung Cancer. Molecular Pharmccology,2005,68(3):635-643.
    [7]沈艳霞、高再荣、张永学.脂质体包裹99Tcm标记Survivin反义寡核苷酸的制备和体外研究.中华核医学杂志,2006,26(3):177-179.
    [8]Amir E,Hughes S.Targeting blood vessels for the treatment of non-small cell lung cancer. Curr Cancer Drug Targets,2008,8(5):392-403.
    [9]Josep Tabernero.The Role of VEGF and EGFR Inhibition:Implications for Combining Anti-VEGF and Anti-EGFR Agents.Mol Cancer Res,2007,5(3):203-220.
    [10]Carmen Timke,Heike Zieher,Alexandra Roth et al.Combination of Vascular Endothelial Growth Factor Receptor/Platelet-Derived Growth Factor Receptor Inhibition Markedly Improves Radiation Tumor Therapy.Clin Cancer Res,2008,14(7):2210-2216.
    [11]Ahmed Idbaih,Francois Ducray,Monica Sierra Del Rio et al.Therapeutic Application of Noncytotoxic Molecular Targeted Therapy in Gliomas:Growth Factor Receptors and Angiogenesis Inhibitors.The Oncologist,2008,13:978-992.
    [12]Roy S.Herbst,Alan B.Sandler.Non-Small Cell Lung Cancer and Antiangiogenic Therapy:What Can Be Expected of Bevacizumab? The Oncologist,2004,9(1):19-26.
    [13]Giuseppe Giaccone.The Potential of Antiangiogenic Therapy in Non-Small Cell Lung Cancer.Clin Cancer Res,2007, 13(7):1961-1971.
    [14]Ando S,Nojima K,Ishihara H,et al.Induction by carbonion irradiation of the expression of vascular endothelial growth factor in lung carcinoma cells.Int J Radiat boil,2000,76(8):1121-1127.
    [15]Sergey V.Kozin,Frank Winkler,Igor Garkavtsev et al.Human Tumor Xenografts Recurring after Radiotherapy Are More Sensitive to Anti-Vascular Endothelial Growth Factor Receptor-2 Treatment than Treatment-Naive Tumors.Cancer Res,2007,67(11):5076-5082.
    [16]Jade Homsi. MD, Adil I. Daud. MD. Spectrum of Activity and Mechanism of Action of VEGF/PDGF Inhibitors. Cancer Control,2006,14(3):285-295.
    [17]Tom Donnem, Samer Al-Saad, Khalid Al-Shibli et al. Inverse Prognostic Impact of Angiogenic Marker Expression in Tumor Cell Versus Stromal Cell in Non-Small Cell Lung Cancer. Clin Cancer Res,2007,13(22):6649-6657.
    [18]Yasuhiko Ohta, Yoshio Endo, Motohiro Tanaka et al.Significance of Vascular Endothelial Growth Factor Messenger RNA Expression in Primary Lung Cancer. Clinical Cancer Research,1996,2:1411-1416.
    [19]Inti Zlobec,Russell Steele,Carolyn C.Compton.VEGF as a Predictive Marker of Rectal Tumor Response to Preoperative Radiotherapy.CANCER,2005,104(11):2517-2521.
    [1]Gerber HP,Ferrrara N.The role of VEGF in normal and neoplastic hematopoiesis [J]. J Mol Med,2003,81(1):20-31.
    [2]McDonnell CO, Hill ADK, McNamara DA, et al. Tumor micrometastases:The influence of angiogenesis[J]. Eur J Surg Oncol, 2000,26(2):105-115.
    [3]O'Byrnek J, Koukourankism I, Giamanolaki A, et al. Vascular endothelial growth factor and platelet derived endothelial growth factor and angiogenesis in non-small cell lung cancer[J]. Br J Cancer, 200O,82(8):1427.
    [4]Song ZJ, Gong P, Wu YE. Relationship between the expression of Inos, VEGF, tumor angiogenesis and gastric cancer[J]. World J Gasroenterol,2002,8 (4):591-595.
    [5]Li S, Peck-Radosavljevic M, Koller E, et al. Characterization of 123I vascular endothelial growth factor-binding sites expressed on human tumor cells:possible implication for tumor scintigraphy [J]. Int J Cancer,2001,91(6):789-796.
    [6]Bouziotis P,Fani M,Archimandritis SC,et al.Samarium-153 and technetium-99m-labeled monoclonal antibodies in angiogenesis for tumor visualization and inhibition[J].Anticancer Res,2003,23(3A):2167-2171
    [7]Liptay MJ,Groundin SC,Fry WA,Pozdol C,Carson D,Knop C,et al. Intraoperative sentinel lymph node mapping in non-small cell lung cancer improves detection of micrometastases[J].Clin Oncol 2002,20(8):1984-1988.
    [8]李生娇,吕春堂,郭伟,等.125I标记的血管内皮细胞生长因子受体3多抗在大鼠体内的分布研究[J].国际放射医学核医学杂志,2007,31(2):65-67.
    [9]Menon C, Fraker DL. Tumor oxygenation status as a prognostic marker[J]. Cancer Letters,2005,221(2):225-235.
    [10]Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans[J]. Cancer Letters,2003,195(1):1-16.
    [11]Folkman J,Shing Y. Angiogenesis[J]. Biol Chem,1992, 267(16):10931-10934.
    [12]李永军,徐兆强,卢凯华等.99Tcm-HL91用于晚期非小细胞肺癌化疗疗效预测[J].中华核医学杂志,2005,25(6):353-354.
    [13]李玲,邢力刚,于金明等.非小细胞肺癌放疗中99Tcm-HL91SPECT乏氧显像研究[J].中华核医学杂志,2005,25(4):222-223.
    [14]Fukumura D, Xavier R, Sugiura T, et a 1.Tumor induction of VEGF promoter activity in stromal cells[J].Cell,1998,94 (6):715-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700