Ⅰ型干扰素受体以及Th-17在慢性肝病中的变化及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:I型干扰素受体和IL-17及其受体在慢性乙型病毒性肝炎患者中的变化
     研究背景:干扰素-alpha (Interferon-alpha IFN-α)是治疗慢性乙型病毒性肝炎(chronic hepatitis B CHB)患者的一线抗病毒药物,I型干扰素受体(type I interferon-α/βreceptor, IFNAR)在干扰素α的起效作用过程中至关重要,我们已经研究发现辅助性T17细胞(T helper 17 cells Th17)可能参与CHB的发病机制。然而慢性乙型病毒性肝炎患者体内IFNAR的变化以及其在干扰素α2b治疗疗效评价中的作用尚不清楚,而且IFNAR与Th17分泌的白介素17(interleukin-17 IL-17)之间的关系有待于进一步研究。
     研究目的:本研究检测了慢性乙肝患者体内外周血单个核细胞(peripheral blood mononuclear cells PBMCs)以及肝组织内IFNAR以及IL-17及其受体的变化以揭示IFNAR其在应用干扰素α2b治疗疗效预测中的作用,同时探讨慢性乙型病毒性肝炎患者IFNAR与IL-17的关系。
     研究方法:共入选84例慢性乙型病毒性肝炎患者以及10例健康志愿者,其中25例接受了肝穿刺活检术。84例慢性乙肝患者中有25例符合抗病毒治疗的患者接受至少3个月的干扰素α2b治疗。
     分离PBMCs,淋巴细胞以及单核细胞内IFN-α/βR-1和IFN-α/βR-2的表达用流式细胞仪进行测定,提取PBMCs中的RNA, IFNAR1, IFNAR2, IL-6, IL-8,IL-17A, IL-17F, IL-17RA, IL-17RC, TGF-β1和TNF-α的mRNA水平用SYBR Green RT-PCR进行监测。
     肝组织中IFNAR-1和IFNAR-2用免疫荧光以及免疫组化染色进行观察。提取肝组织RNA,RT-PCR检测肝组织内IFNAR1,IFNAR2,IL-6,IL-8,IL-17A,IL-17F, IL-17RA, IL-17RC, TGF-β1和TNF-α的mRNA水平。
     在应用干扰素a2b治疗的患者中,每一个月监测外周血淋巴细胞以及单核细胞内IFN-α/βR-1和IFN-α/βR-2的表达以及外周血单个核细胞内IFNAR1, IFNAR2, IL-17A, IL-17F, IL-17RA和IL-17RC的mRNA变化。
     研究结果:慢性乙肝患者外周血单核细胞和淋巴细胞中IFN-α/βR-1和IFN-α/βR-2的表达升高,肝组织内IFNAR-1和IFNAR-2的水平也明显升高,并与与肝组织HBV-DNA正相关。在应用干扰素α2b治疗的慢性乙肝患者中,单核细胞和淋巴细胞内IFN-α/βR-1和IFN-α/βR-2的表达在第一个月明显升高,而在随后的两个月治疗中逐步降低。在治疗应答组(12/25)单核细胞和淋巴细胞中IFN-α/βR-1和IFN-α/βR-2的表达明显高于非应答组(13/25)。治疗前单核细胞内IFNα/βR-2表达较高的患者其干扰素应答率明显高于较低的患者。另外慢性乙型病毒性肝炎患者肝组织和PBMC中IFNAR,IL-17A, IL-17F,IL-17RA,IL-17RC,IL-6,IL-8,TGF-β1和TNF-α的表达明显升高,IL-17及其受体的表达与血清转氨酶的水平呈正相关,并且与炎症细胞因子IL-6,IL-8, TGF-β1和TNF-α的水平呈正相关。PBMCs中IFN-α/βR1和IFN-α/βR2的表达与IL-17及其受体呈负相关,并且随着干扰素的应用,IL-17及其受体的水平明显降低。
     结论:慢性乙型病毒性肝炎外周血单个核细胞以及肝组织内IFN-α/βR-1和IFN-α/βR-2的表达升高。在干扰素治疗有效组,其外周淋巴细胞和单核细胞IFNAR的表达均高于无效组,提示IFNAR在外周血单个核细胞的表达影响干扰素的疗效;干扰素治疗前,外周血单核细胞表面IFNAR-2的表达可以作为预测干扰素治疗慢性乙型病毒性肝炎疗效的预测指标。
     第二部分:IL-17及其信号系统参与肝纤维化的形成
     研究背景:研究发现产生IL-17的Thl7细胞与慢性炎症反应以及自身免疫性疾病广泛相关。而且我们发现慢性乙型病毒性肝炎患者外周血单个核细胞以及肝组织内IL-17及其受体的水平明显升高。提示Th17可能参与慢性肝病的发病机制。近来有研究发现IL-17可以导致肺间质纤维化,为我们进一步探讨IL-17在肝纤维化发病中的作用提供了依据。
     研究目标:确定IL-17在肝纤维化发病机制中的作用,包括IL-17对肝脏枯否氏细胞以及肝星状细胞的激活作用,以及其在肝脏原代细胞中的信号转导。
     研究方法:应用IL-17A和IL-17F刺激人LX-2和hTERT (human telomerase reverse transcriptase)星状细胞株,分析IL-17对星状细胞株的激活作用以及其在星状细胞株中的信号传导。星状细胞α-SMA, collagenα1(Ⅰ), TGF-β1和TIMP1mRNA的表达用RT-PCR方法检测,IL-17诱导的ERK1/2(extracellular regulated proteinkinases ERK), AKT (serine Threonine Kinase)和NF-κB (nuclear factorκB)的磷酸化用Western blot方法检测,NF-κB在星状细胞内的细胞核内移位用细胞免疫荧光染色观察。
     分离原代肝脏枯否氏细胞、星状细胞和肝细胞,分别应用IL-17A, IL-17F以及IL-17A+IL-17F进行刺激,IL-17对肝脏原代肝脏枯否氏细胞、星状细胞和肝细胞的作用用RT-PCR, Western blot以及细胞免疫荧光的方法进行检测,IL-17A依赖的胶原蛋白激活的机制进一步由体外实验野生型以及IL-17R敲除型collagen-GFP小鼠原代星状细胞中加以证实。
     我们利用纯合子STAT3 floxed等位基因(homozygous for STAT3 floxed allele STAT3f1/f1)小鼠与(胶质细胞原纤维酸性蛋白-cre Glial fibrillary acidic protein GFAP-cre)小鼠进行杂交,获得定靶于星状细胞敲除STAT3的小鼠,分离小鼠的星状细胞,应用IL-17A进行刺激,观察星状细胞的活化情况,应用STAT3f1/f1小鼠作为对照。从而确定IL-17A对星状细胞的激活是否依赖于STAT3的激活。
     野生型(WT)以及IL-17RA敲除型小鼠用胆总管结扎(bile duct ligationBDL)和四氯化碳(carbon tetrachloride CCl4)腹腔内注射诱导肝纤维化,通过天狼腥红(Sirius Red)染色观察肝组织病理,分离BDL模型组以及对照组肝脏内实质性细胞(non-parenchymal cells NPCs)。用流式细胞仪检测NPCs各细胞群中IL-17A的表达。α-SMA免疫组化染色评估肝纤维化的程度,提取肝组织RNA, RT-PCR评估肝组织内MMP3,TIMP, TNF-α, TGF-β1, IL-6, IL-1-β的表达。提取肝组织蛋白质Western-blot检测肝组织蛋白中α-SMA的表达。
     研究结果:IL-17A在体外实验中可以激活枯否氏细胞(表达IL-17A, IL-17F, TGF-β1, IL-6 and IL-1-β)以及肝脏星状细胞(表达α-SMA, collagenα1 (I), TGF-β1, and TIMP1),表明IL-17A可以独立激活枯否氏细胞以及产胶原细胞。IL-17A激活星状细胞的信号通路包括STAT3, ERK1/2, AKT, NF-κB的磷酸化,其中STAT3的磷酸化是IL-17A激活星状细胞的首要信号通路,定靶于星状细胞敲除STAT3后,IL-17A激活星状细胞的功能被明显阻断。进一步研究发现清除IL-17A信号通路(在IL-17RA敲除型小鼠)与野生型相比可以明显减轻BDL (65±7%)以及CCl4(45±8%)诱导产生的肝纤维化。BDL诱导的肝纤维化模型中IL-17A主要在炎症细胞中明显升高(CD4+, CD8+ T cells>Kupffer cells)。IL-17A的作用与星状细胞内I型胶原蛋白的表达增高相关,
     结论:IL-17在肝纤维化的发病机制中有重要的作用,IL-17A可以明显激活肝脏枯否氏细胞和星状细胞,IL-17A激活星状细胞主要依赖于STAT3的磷酸化。
     第三部分:枯否氏细胞IL-17A/IL-17RA信号通路在Th17导致肝纤维化的发病机制中至关重要
     研究背景:枯否氏细胞被认为是参与肝内炎症反应的首要靶细胞。在肝脏受损伤后,枯否氏细胞可以激活并释放一系列验证前细胞因子以及活性氧介质,可以激活星状细胞,从而导致肝纤维化。我们研究发现IL-17可以激活枯否氏细胞和星状细胞,敲除IL-17RA可以明显减轻由BDL和CCl4诱导的肝纤维化。同时发现IL-17在体外激活枯否氏细胞的作用明显强于星状细胞。为此我们应用体外枯否氏细胞与星状细胞联合培养,体内进行IL-17RA和WT小鼠之间的骨髓移植(bone marrow transplantation BMT),试图揭示IL-17导致肝纤维化的机制。
     研究目标:确定IL-17导致肝纤维化的发病机制,探讨枯否氏细胞和星状细胞内IL-17及其信号通路在肝纤维化发病机制中的地位。
     研究方法:体外实验中我们分离WT和IL-17RA小鼠原代枯否氏细胞,同时分离WT-collage-GFP和IL-17R-/--collagen-GFP小鼠原代星状细胞,联合培养后应用IL-17A进行刺激24小时,观察星状细胞表达胶原蛋白-GFP的阳性率。
     体内试验我们采用了骨髓移植的实验方法,受体小鼠经氯膦酸盐脂质体(Clodronate-Liposomes)静脉注射清除单核-巨噬细胞系统和放射性照射清除淋巴细胞之后完成IL-17A-/-,IL-17RA-/-与WT小鼠之间的骨髓移植,共获得5组嵌合体小鼠,分别为:WT移植入WT组(枯否氏细胞为野生型,HSCs为野生型);IL-17A-/-移植入WT组(枯否氏细胞无IL-17A; HSCs为野生型);WT移植入IL-17RA-/-组(枯否氏细胞为野生型,HSCs无IL-17RA);IL-17RA-/-移植入WT组(枯否氏细胞无IL-17RA, HSCs为野生型)以及IL-17RA-/-移植入IL-17RA-/-组(枯否氏细胞和HSCs均无IL-17RA)。2个月后嵌合体小鼠行胆管结扎构建肝纤维化模型,通过天狼腥红染色(Sirius Red),α-SMA免疫组化染色以及RT-PCR评估肝纤维化。
     研究结果:WT枯否氏细胞与IL-17RA-/--collagen-GFP星状细胞联合培养组经IL-17A刺激24小时后,其星状细胞表达collagen-GFP的阳性率明显高于IL-17RA-/-枯否氏细胞与WT-collagen-GFP星状细胞联合培养组(34±11%比25±7%)。而在骨髓移植实验中,清除骨髓来源的IL-17A/IL-17RA信号通路系统(IL-17RA-/-移植入WT或者IL-17A移植入WT)组,可以分别减轻肝纤维化55±9%和50±12%。但是清除肝脏内生性细胞(肝细胞和星状细胞)IL-17A/IL-17RA信号通路组(WT移植入IL-17RA-/-),其肝纤维化程度仍有所减轻,但不是很明显(25±7%)。
     结论:枯否氏细胞内IL-17A/IL-17RA信号通路对于诱导肝纤维化至关重要
PartⅠ:Alteration of Interferon-α/βReceptors and Relationship with Interleukin-17 in Chronic Hepatitis B Patients
     Background:Interferon-alpha (IFN-α) is among the first line of anti-virus drugs applied in the treatment of chronic hepatitis B (CHB) patients. TypeⅠinterferon receptor (interferon-a/p receptor, IFNAR) plays a key role in the effective action of interferon-alpha. We have found out that T helper 17 cells (Th17) may be involved in the pathogenesis of CHB. The predicable role of IFNAR during IFN-a treatment and its relationship with interleukin-17 (IL-17) secreted by Th17 cells in patients with chronic hepatitis B have not been intensively studied. Aims:The present study determined type I interferon receptor (interferon-α/βreceptor, IFNAR) and its predicable role in interferonα2b treatment in chronic hepatitis B (CHB) patients. At the same time to explore the relationship between IFNAR and IL-17 in chronic hepatitis B patients.
     Methods:84 CHB patients were enrolled,25 accepted liver biopsy and 25 were treated with interferonα2b for at least three months. The expression of IFN-α/βR-1 and IFN-α/βR-2 in lymphocytes and monocytes was measured by flow cytometry. IFNAR1, IFNAR2, IL-17A, IL-17F, IL-17RA, IL-17RC, IL-6, IL-8, TGF-β1 and TNF-αmRNA from peripheral blood mononuclear cells (PBMCs) and liver tissue were quantified using SYBR Green RT-PCR. Immunofluorescence double staining with IFN-α/βR-1 and IFN-α/βR-2 antibodies was performed, and immunohistochemistry was measured using IFN-α/βR-2. During three-month application of IFN-α2b, monitored the alteration of IFN-α/βR-1 and IFN-α/βR-2 in PBMCs by flow cytometry every month. Changes of IL-17 and IL-17 receptors were measured in PBMCs in the same time.
     Results:Our results found that IFN-α/βR-1,2 in monocytes and lymphocytes increased in CHB patients. Expression of IFNAR-1 and IFNAR-2 in liver was also increased and had positive correlation with HBV-DNA in liver tissue. Expression of IFN-α/βR-1,2 in lymphocytes and monocytes increased in the first month, but then decreased during the subsequent interferon-α2b treatment, patients who had higher levels of IFN-a/(3R-2 in monocytes prior to therapy showed better viral response than those with lower levels. mRNA expression of IFNAR, IL-17, IL-17R, IL-6, IL-8, TGF-β1 and TNF-a significantly increased in PBMCs and liver tissues of all chronic HBV patients, while the expression of IFN-α/βR1, IFN-α/βR2 had a negative correlation with IL-17 and IL-17 receptors in PBMCs. mRNA levels of IL-17 cytokines and receptors simultaneously decreased after IFN-α2b administration.
     Conclusions:Expression of IFN-α/βR-2 in monocytes can be used as a predictable parameter to evaluate the effect of IFN-a treatment in CHB patients. IL-17 and IL-17 receptors were increased in CHB patients, and they had negative correlation with IFNAR.
     PartⅡ:Interleukin-17 and its cell signal pathway contribute to liver fibrosis
     Backgrounds:Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) have been broadly linked to chronic inflammation and human autoimmunity. We have found out that IL-17 and IL-17 receptors are increased both in PBMCs and in liver tissue of CHB patients, and are down-regulated by application of IFN-α2b. TGF-β1 and IL-6 who were involved in the induction of Th17 differentiation are both up-regulated during development of liver fibrosis. And most recently, it is reported that IL-17 contributed to the formation of lung fibrosis. So we set up this project to explore the role of IL-17 in liver fibrosis.
     Aims:To determine the role of IL-17A in pathogenesis of liver fibrosis, including the activation of kupffer cells and hepatic stellate cells (HSCs).
     Methods:Effect of IL-17 on hLX-2 and hTERT hepatic stellate cell lines was determined by RT-PCR, Western blot, fluorescent microscopy. The effect of IL-17A on liver resident cells was studied in primary cultures of mouse KC, HSCs and hepatocytes by RT-PCR, Western blot, fluorescent microscopy, and flow cytometry. We generated IL-17RA-/--collagen-GFP mice, isolated primary quiescent HSCs stimulated with IL-17A to evaluated the GFP positive cells compared with WT-collagen-GFP HSCs. We took advantage of STAT3fl/fl and GFAP-cre mice, so we got mice without STAT3 focus on hepatic stellate cells. After isolation of quiescent HSCS, we stimulated the HSCs with IL-17A to compare the expression of collagenα1(Ⅰ) with STAT3fl/fl HSCs. The development of liver fibrosis in response to bile duct ligation (BDL) or carbon tetrachloride (CCl4) was compared in wild type mice and IL-17RA-/-mice, devoid of the IL-17A receptor. Liver fibrosis was assessed by Sirius Red staining, a-SMA staining, and RT-PCR.
     Results:IL-17A in vitro stimulated Kupffer cells (to express IL-17A, TGF-β1, IL-6 and IL-1) and HSCs (to expressα-SMA, collagenα1(1), TGF-β1, and TIMP1), suggesting that IL-17A independently contributes to the activation of inflammatory and collagen producing cells. In support of this hypothesis, abrogation of IL-17A signaling in IL-17RA-/- mice attenuated development of BDL-(by 65±7%) or CCl4-(by 45±8%) induced liver fibrosis in comparison with wild type mice. IL-17A and IL-17F was mainly increased in inflammatory cells (CD4+,CD8+ T cells> Kupffer cells) of BDL mice. The activation of IL-17A on hepatic stellate cells depends on the phosphorylation of STAT3, ERK1/2, AKT and NF-κB. This effect of IL-17A correlated with increased expression of the collagenα1(Ⅰ) gene. Phosphorylation of Stat3 in HSCs is the primary cell signal pathway during the activation of IL-17A.
     Conclusion:IL-17 plays as an important role in the pathogenesis of liver fibrosis. IL-17 can significantly activate kupffer cells and HSCs. IL-17A has a direct role on the activation of HSCs via the activation of STAT3's phosphorylation.
     PARTⅢIL-17A/IL-17RA signal pathway in kupffer cells is critical in the pathogenesis of Th17 involved in liver fibrosis
     Backgrounds:Kupffer cells are thought to be the key target cells involved in the chronic inflammatory reaction in liver. After liver injury, kupffer cells can be activated to produce a series of pro-inflammatory cytokines and reactive oxygen species, so as to induce liver fibrosis. We have found out that IL-17 can induce the activation of kupffer cells and HSCs, and knockout IL-17RA can amerolate liver fibrosis induced by BDL and CCl4 injection in mice. Most surprisingly, the activation effect of kupffer cells by IL-17A was more significantly than HSCs. So we accomplished co-culture of kupffer cells and HSCs in vitro and applied bone marrow transplantation between IL-17A-/-, IL-17RA-/- and WT mice in vivo, to explore the mechanism of IL-17 in the pathogenesis of liver fibrosis.
     Aims:To determine the role of IL-17 and its cell signaling transduction in kupffer cells and HSCs in pathogenesis of liver fibrosis, and focus on the effect of kupffer cells in the IL-17's fibrosis induction effect.
     Methods:After the isolation of WT and IL-17RA-/- kupffer cells, we co-cultured them with quiescent WT-collage-GFP and IL-17R-/--collagen-GFP HSCs. After 24-hour stimulation with IL-17A, percentage of GFP positive cells was calculated under fluorescent microscopy.
     After clodronate-liposome injection to deplete mononuclear phagocyte system and irradiation to deplete lymphocytes, we accomplished bone-marrow transplantation (BMT) using IL-17A-/-, IL-17RA-/- and WT mice. Total five groups of chimera mice were generated, WT into WT group (kupffer cells and HSCs both have IL-17RA); IL-17A-/- into WT group (with no IL-17A, kupffer cells and HSCs both have IL-17RA); IL-17RA-/- into WT group (kupffer cells with no IL-17RA, HSCs have IL-17RA); WT into IL-17RA-/- group (kupffer cells have IL-17RA, HSCs with no IL-17RA) and IL-17RA-/- into IL-17RA-/- group (both kupffer cells and HSCs have no IL-17RA). Two months after BMT, we applied BDL to induce liver firosis on all the chimera mice. Liver fibrosis was assessed by Sirius Red staining, a-SMA staining, and RT-PCR.
     Results:After stimulated with IL-17A for 24 hours, the percentage of GFP positive HSCs in WT kupffer cells co-cultured with IL-17RA-/--collagen-GFP HSCs is much higher than in IL-17RA-/- kupffer cells co-cultured with WT HSCs (34±11% vs. 25±7%). In all the chimera mice after bone marrow transplantation, Disruption of IL-17A/IL-17RA signaling in the BM-derived cells of chimera mice (IL-17RA-/- into WT or IL-17A-/- into WT) resulted in reduction of fibrosis by 55±9% and 50±12%, respectively. However, disruption of IL-17A/IL-17RA signaling in endogenous liver cells including HSCs reduced liver fibrosis by 25±7% in chimera mice (WT into IL-17RA-/- mice).
     Conclusion:IL-17A/IL-17RA signaling pathway in kupffer cells has a critical role in development of liver fibrosis in mice.
引文
1. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet.2009 Feb 14; 373 (9663):582-92.
    2. 中华医学会肝病学分会和感染病学分会慢性乙型肝炎防治指南2010年更新版.
    3. Isaacs, A., and Lindenmann, J. (1957). Virus interference.1. The interferon. Proc. R. Soc. Lond. B. Biol. Sci.147,258-267.
    4. Howie J.W. Experiments with interferon in man. A report to the medical research council from the scientific committee on interferon. The Lancet.1965 Mar 6;1(7384):505-6.
    5. Friedman RM, Contente S. Treatment of hepatitis C infections with interferon:a historical perspective. Hepat Res Treat.2010; 2010:323926.
    6. Greenberg HB, Pollard RB, Lutwick LI, Gregory PB, Robinson WS, Merigan TC. Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis. N Engl J Med.1976 Sep 2; 295(10):517-22.
    7. Langer JA. Interferon at 50:new molecules, new potential, new (and old) questions. Sci STKE 2007; 405:pe53.
    8. Branca AA, Baglioni C. Evidence that types Ⅰ and Ⅱ interferons have different receptors. Nature.1981 Dec 24; 294(5843):768-70.
    9. Novick D, Orchansky P, Revel M, Rubinstein M. The human interferon-gamma Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma:an overview of signals, mechanisms and functions. J Leukoc Biol.2004 Feb; 75(2):163-89.
    10. receptor. Purification, characterization, and preparation of antibodies. J Biol Chem.1987 Jun 25; 262(18):8483-7.
    11. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type Ⅰ interferon receptors: biochemistry and biological functions. J Biol Chem.2007 Jul 13; 282(28): 20053-7.
    12. G, Lutfalla G, Gresser I. Genetic transfer of a functional human interferon a receptor into mouse cells:Cloning and expression of its cDNA. Cell 1990; 60: 225-34.
    13. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type Ⅰ interferon receptors: biochemistry and biological functions. J Biol Chem.2007 Jul 13; 282(28):20053-7.
    14. Prinz M, Kalinke U. New lessons about old molecules:how type I interferons shape Th1/Th17-mediated autoimmunity in the CNS. Trends Mol Med.2010 Aug; 16(8):379-86.
    15. Perrillo RP, Schiff ER, Davis GL, Bodenheimer HC Jr, Lindsay K, Payne J, Dienstag JL, O'Brien C, Tamburro C, Jacobson IM. A randomized, controlled trial of interferon alfa-2b alone and after prednisone withdrawal for the treatment of chronic hepatitis B. The Hepatitis Interventional Therapy Group. New Engl J Med 1990 Aug 2;323(5):295-301.
    16. Davis GL, Hoofnagle JH. Interferon in viral hepatitis:role in pathogenesis and treatment. Hepatology.1986 Sep-Oct; 6(5):1038-41.
    17. Ikeda T, Lever AM, Thomas HC. Evidence for a deficiency of interferon production in patients with chronic hepatitis B virus infection acquired in adult life. Hepatology.1986 Sep-Oct; 6(5):962-5.
    18. Zachoval R, Abb J, Zachoval V, Eisenburg J, Pape GR, Paumgartner G, Deinhardt F. Interferon alpha in hepatitis type B and non-A, non-B. Defective production by peripheral blood mononuclear cells in chronic infection and development of serum interferon in acute disease. J Hepatol.1988 Jun; 6(3):364-8.
    19. Products of new biotechnologies. FDA Drug Bull.1986 Nov; 16(2):19.
    20. Fujiwara D, Hino K, Yamaguchi Y, Kubo Y, Yamashita S, Uchida K, Konishi T, Nakamura H, Korenaga M, Okuda M, Okita K. Type I interferon receptor and response to interferon therapy in chronic hepatitis C patients:a prospective study. J Viral Hepat.2004 Mar; 11 (2):136-40.
    21. Taniguchi H, Iwasaki Y, Takahashi A, Shimomura H, Moriya A, Yu PC, Umeoka F, Fujioka S, Koide N, Shiratori Y. Intrahepatic mRNA levels of type I interferon receptor and interferon-stimulated genes in genotype 1b chronic hepatitis C. Association between IFNAR1 mRNA level and sustained response to interferon therapy. Intervirology.2007; 50(1):32-9.
    22. Zhou J, Huang JD, Poon VK, Chen DQ, Chan CC, Ng F, Guan XY, Watt RM, Lu L, Yuen KY, Zheng BJ. Functional dissection of an IFN-alpha/beta receptor 1 promoter variant that confers higher risk to chronic hepatitis B virus infection. J Hepatol.2009 Aug;51(2):322-32.
    23. He XX, Chang Y, Jiang HJ, Tang F, Meng FY, Xie QH, Li PY, Song YH, Lin JS. Persistent effect of IFNAR-1 genetic polymorphism on the long-term pathogenesis of chronic HBV infection. Viral Immunol.2010 Jun;23(3):251-7.
    24. Gong QM, Kong XF, Yang ZT, Xu J, Wang L, Li XH, Jin GD, Gao J, Zhang DH, Jiang JH, Lu ZM, Zhang XX. Association study of IFNAR2 and IL10RB genes with the susceptibility and interferon response in HBV infection. J Viral Hepat. 2009 Sep;16(9):674-80.
    25. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A. Attenuated liver fibrosis in the absence of B cells. J Clin Invest.2005 Nov; 115(11):3072-82.
    26. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.2006 May 11; 441(7090):235-8.
    27. Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, Demetter P, de Nadai P, Geerts A, Quertinmont E, Vercruysse V, Le Moine O, Deviere J. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009 Feb; 49(2):646-57.
    28. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology.2010 Jan; 51(1):81-91.
    29. Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC. Implication of Th17 and Th1 Cells in Patients with Chronic Active Hepatitis B. J Clin Immunol.2009 Jan; 30(1):60-7.
    30. Moschen AR, Geiger S, Krehan I, Kaser A, Tilg H. Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology.2008;213(9-10):779-87.
    31. Guo B, Chang EY, Cheng G. The type Ⅰ IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest.2008 May; 118(5):1680-90.
    32. Domanski, P and Colamonici, OR. The type-Ⅰ interferon receptor, The long and short of it. Cytokine Growth Factor Rev 1996 Aug; 7(2):143-51.
    33. Pogue SL, Preston BT, Stalder J, Bebbington CR, Cardarelli PM. The receptor for type Ⅰ IFNs is highly expressed on peripheral blood B cells and monocytes and mediates a distinct profile of differentiation and activation of these cells. J Interferon Cytokine Res 2004 Feb; 24(2):131-9.
    34. Tochizawa S, Akamatsu S, Sugiyama Y, Muraguchi M, Ohmoto Y, Ono Y, Ishikawa H, Tanigami A, Sumida T, Mori T. A flow cytometric method for determination of the interferon receptor IFNAR2 subunit in peripheral blood leukocyte subsets. J Pharmacol Toxicol Methods 2004 Jul-Aug; 50(1):59-66.
    35. Lau JY, Sheron N, Morris AG, Bomford AB, Alexander GJ, Williams R. Interferon-alpha receptor expression and regulation in chronic hepatitis B virus infection. Hepatology 1991 Feb; 13(2):332-8.
    36. Fujiwara D, Hino K, Yamaguchi Y, Kubo Y, Yamashita S, Uchida K, Konishi T, Nakamura H, Korenaga M, Okuda M, Okita K. Type I interferon receptor and response to interferon therapy in chronic hepatitis C patients:a prospective study. J Viral Hepat 2004 Mar; 11(2):136-40.
    37. Yamaguchi Y, Hino K, Fujiwara D, Ren F, Katoh Y, Satoh Y, Okita K. Expression of type I interferon receptor in liver and peripheral blood mononuclear cells in chronic hepatitis C patients. Dig Dis Sci 2002 Jul; 47(7):1611-7.
    38. Taniguchi H, Iwasaki Y, Takahashi A, Shimomura H, Moriya A, Yu PC, Umeoka F, Fujioka S, Koide N, Shiratori Y. Intrahepatic mRNA levels of type Ⅰ interferon receptor and interferon-stimulated genes in genotype 1b chronic hepatitis C. Association between IFNAR1 mRNA level and sustained response to interferon therapy. Intervirology 2007; 50(1):32-9.
    39. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med.2007 Feb; 13(2):139-45.
    40. Wei L, Laurence A, Elias KM, O'Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem.2007 Nov 30;282(48):34605-10.
    41. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006 May; 441:235-238.
    42. Moschen AR, Geiger S, Krehan I, Kaser A, Tilg H. Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology 2008; 213:779-787.
    43. Guo B, Chang EY, Cheng G. The type Ⅰ IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest.2008 May; 118(5):1680-90.
    1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest.2005 Feb; 115(2):209-18.
    2. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A. Attenuated liver fibrosis in the absence of B cells. J Clin Invest.2005; 115(11):3072-82.
    3. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity.2006; 24(2):179-89.
    4. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.2006 May 11; 441(7090):235-8.
    5. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature.2006; 441(7090):231-4.
    6. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem.2007; 282(13):9358-63.
    7. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effect T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol.2005; 6(11):1123-32.
    8. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity, 2004; 21(4):467-76.
    9. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol.2009 Aug;9(8):556-67.
    10. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK.. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity.1995; 3(6):811-21.
    11. Yao Z, Spriggs MK, Derry JM, Strockbine L, Park LS, VandenBos T, Zappone JD, Painter SL, Armitage RJ. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine.1997; 9(11):794-800.
    12. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med.2001 Aug 20; 194(4):519-27.
    13. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J. Cutting edge:interleukin 17 signals through a heteromeric receptor complex. J Immunol.2006; 177(1):36-9.
    14. Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, Miossec V, Miossec P. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol,2008; 180(1):655-63.
    15. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol. 2009; 5(6):325-31.
    16. Monson NL, Cravens P, Hussain R, Harp CT, Cummings M, de Pilar Martin M, Ben LH, Do J, Lyons JA, Lovette-Racke A, Cross AH, Racke MK, Stuve O, Shlomchik M, Eagar TN. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis. PLoS One.2011; 6(2):e17103.
    17. Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology.2011; 140(3): 957-65.
    18. Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, Demetter P, de Nadai P, Geerts A. Quertinmont E, Vercruysse V, Le Moine O, Deviere J. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009; 49(2):646-57.
    19. Lafdil F, Wang H, Park O, Zhang W, Moritoki Y, Yin S, Fu XY, Gershwin ME, Lian ZX, Gao B. Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production. Gastroenterology.2009; 137(6):2125-35.
    20. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology.2010 Jan; 51(1):81-91.
    21. Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC. Implication of Th17 and Th1 Cells in Patients with Chronic Active Hepatitis B. J Clin Immunol.2010 Jan; 30(1):60-7.
    22. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med.2007 Feb; 13(2):139-45.
    23. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, Wynn TA. Bleomycin and IL-1{beta}-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med.2010; 207(3):535-52.
    24. Xu L, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ. Human hepatic stellate cell lines, LX-1 and LX-2:new tools for analysis of hepatic fibrosis. Gut.2005 Jan; 54(1):142-51.
    25. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology.2003 Mar; 37(3):653-64.
    26. Yata Y, Scanga A, Gillan A, Yang L, Reif S, Breindl M, Brenner DA, Rippe RA. DNase Ⅰ-hypersensitive sites enhance alpha1(Ⅰ) collagen gene expression in hepatic stellate cells. Hepatology.2003 Feb; 37(2):267-76.
    27. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med.2001 Aug; 194(4):519-27.
    28. Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol.2001 Mar; 21(5): 1621-32.
    29. Johnson WB, Ruppe MD, Rockenstein EM, Price J, Sarthy VP, Verderber LC, Mucke L. Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene:in vitro comparison of distinct GFAP-lacZ transgenes. Glia.1995 Mar; 13(3):174-84.
    30. Yata Y, Scanga A, Gillan A, Yang L, Reif S, Breindl M, Brenner DA, Rippe RA. DNase I-hypersensitive sites enhance alphal(I) collagen gene expression in hepatic stellate cells. Hepatology.2003 Feb; 37(2):267-76.
    31. Lan RY, Salunga TL, Tsuneyama K, Lian ZX, Yang GX, Hsu W, Moritoki Y, Ansari AA, Kemper C, Price J, Atkinson JP, Coppel RL, Gershwin ME. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 2009 Feb; 32(1):43-51.
    32. Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 2009 Aug; 157(2):261-70.
    33. Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, Zhu Y, Lu H, Zhang S, Wang P, Zhang B, Zhong R. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis:the serum cytokine profile and peripheral cell population. Clin Exp Immunol 2009 May; 156(2):217-25.
    34. Longhi MS, Hussain MJ, Mitry RR, Arora SK, Mieli-Vergani G, Vergani D, Ma Y. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 2006 Apr; 176(7):4484-91.
    35. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 2004 Jul;41(1):31-7.
    36. Longhi MS, Meda F, Wang P, Samyn M, Mieli-Vergani G, Vergani D, Ma Y. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology 2008 Feb; 47(2):581-91.
    37. Rowan AG, Fletcher JM, Ryan EJ, Moran B, Hegarty JE, O'Farrelly C, Mills KH. Hepatitis C virus-specific Th17 cells are suppressed by virus-induced TGF-beta. J Immunol.2008 Oct; 181(7):4485-94.
    38. Jimenez-Sousa MA, Almansa R, de la Fuente C, Caro-Paton A, Ruiz L, Sanchez-Antolin G, Gonzalez JM, Aller R, Alcaide N, Largo P, Resino S, de Lejarazu RO, Bermejo-Martin JF. Increased Th1, Th17 and pro-fibrotic responses in hepatitis C-infected patients are down-regulated after 12 weeks of treatment with pegylated interferon plus ribavirin. Liver Transpl.2011 Mar 21. doi: 10.1002/kt.22303. [Epub ahead of print]
    39. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity.1995 Dec; 3(6):811-21.
    40. Awane M, Andres PG, Li DJ, Reinecker HC. NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. J Immunol.1999 May; 162(9): 5337-44.
    41. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther.2004; 6(2):R120-8.
    42. Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med.2000 Apr; 191(7):1233-40.
    43. Shen F, Ruddy MJ, Plamondon P, Gaffen SL. Cytokines link osteoblasts and inflammation:microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells. J Leukoc Biol.2005 Mar; 77(3):388-99.
    44. Attur MG, Patel RN, Abramson SB, Amin AR. Interleukin-17 upregulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum 1997 Jun;40(6):1050-3.
    45. Martel-Pelletier J, Mineau F, Jovanovic D, Di Battista JA, Pelletier JP. Mitogen-activated protein kinase and nuclear factor kappa B together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes:possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). Arthritis Rheum 1999 Nov; 42(11): 2399-409.
    46. Shalom-Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappa B. J Biol Chem 1998; 273(42):27467-73.
    47. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol.2009 Aug; 9(8):556-67.
    48. Zhu L, Wu Y, Wei H, Xing X, Zhan N, Xiong H, Peng B. IL-17R activation of human periodontal ligament fibroblasts induces IL-23 p19 production:Differential involvement of NF-κB versus JNK/AP-1 pathways. Mol Immunol.2011 Jan; 48(4):647-56.
    49. Huang F, Kao CY, Wachi S, Thai P, Ryu J, Wu R. Requirement for both JAK-mediated PI3K signaling and ACT 1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol.2007 Nov 15; 179(10):6504-13.
    50. Mertens C, Darnell JE Jr. SnapShot:JAK-STAT signaling. Cell.2007 Nov 2; 131(3):612.
    51. Zhong Z, Wen Z, Darnell JE Jr. Stat3:a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science.1994 Apr 1; 264(5155):95-8.
    52. Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine 2008 Feb; 41(2): 92-104.
    53. Yao Z, Spriggs MK, Derry JM, Strockbine L, Park LS, VandenBos T, Zappone JD, Painter SL, Armitage RJ. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine.1997 Nov; 9(11):794-800.
    1. Hellerbrand, Wang SC, Tsukamoto H, Brenner DA, Rippe RA. Expression of intracellular adhesion molecule 1 by activated hepatic stellate cells. Hepatology. 1996 Sep; 24(3):670-6.
    2. Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone.2010 Nov 26. [Epub ahead of print]
    3. van Rooijen N, Poppema A. Efficacy of various water-soluble chelator molecules in the liposome-mediated macrophage "suicide" technique. J Pharmacol Toxicol Methods.1992 Dec; 28(4):217-21.
    4. Bangham AD. Liposomes and the physico-chemical basis of unconsciousness. FASEB J.2005 Nov; 19(13):1766-8.
    5. Bangham AD. Liposomes:realizing their promise. Hosp Pract (Off Ed).1992 Dec 15; 27(12):51-6,61-2.
    6. Gregoriadis G. Liposome research in drug delivery:the early days. J Drug Target. 2008 Aug; 16(7):520-4.
    7. van Rooijen N, Sanders A, van den Berg TK. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods.1996 Jun 14;193(1):93-9.
    8. Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods.1994 Sep; 174(1-2):83-93.
    9. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity.2002 Sep; 17(3):375-87.
    10. Yata Y, Scanga A, Gillan A, Yang L, Reif S, Breindl M, Brenner DA, Rippe RA. DNase I-hypersensitive sites enhance alphal(I) collagen gene expression in hepatic stellate cells. Hepatology.2003 Feb; 37(2):267-76.
    11. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med.2001 Aug; 194(4):519-27.
    12. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med.2007 Nov; 13(11):1324-32.
    13. Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH, Lotze MT, Geller DA, Billiar TR. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol.2005 Dec 1; 175(11): 7661-8.
    14. Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol.2006 Sep;45(3):429-38.
    15. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest.2005 Feb; 115(2):209-18.
    16. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem.2000 Jan; 275(4):2247-50.
    17. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell.2005 Jul; 121(7):977-90.
    18. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature.2004 Sep; 431(7007):461-6.
    19. Gao B, Jeong WI, Tian Z. Liver:An organ with predominant innate immunity. Hepatology.2008 Feb; 47(2):729-36.
    20. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol.2009; 27:147-63.
    21. Rivera CA, Bradford BU, Hunt KJ, Adachi Y, Schrum LW, Koop DR, Burchardt ER, Rippe RA, Thurman RG. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 2001 Jul; 281:G200-7.
    22. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005 Jan; 115:56-65.
    23. Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of Kupffer cells on stellate cells. Hepatology 2006; 44:1487-501.
    24. Heymann F, Trautwein C, Tacke F. Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets.2009 Sep; 8(4):307-18.
    25. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med.2005 Jan; 201(2):233-40.
    26. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol.2011 May; 300(5):G723-8.
    27. Xie X, Ye Y, Zhou L, Jiang G, Xie H, Feng X, He Y, Zheng S. Kupffer cells promote acute rejection via induction of Th17 differentiation in rat liver allografts. Transplant Proc.2010 Nov; 42(9):3784-92.
    28. Verstegen MM, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, Ploemacher RE, Wagemaker G, Wognum AW. Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice:evidence for accessory cell involvement in expansion of immature CD34+CD38- cells. Blood.1998 Mar 15; 91(6):1966-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700