茎瘤固氮根瘤菌ORS 571与小麦互作机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茎瘤固氮根瘤菌是一种内生固氮菌,它可以促进禾本科作物的生长。为了探讨茎瘤固氮根瘤菌与小麦互作的机理,本实验构建原核表达载体,为弄清根瘤菌的内生定殖规律奠定了基础;选取小麦不同生长时期的样品,对代表固氮水平和矿质元素吸收的硝酸还原酶,代表抗逆性的丙二醛含量和过氧化物酶活性进行了测定;利用实时定量PCR技术,对固氮菌与小麦互作初期防卫反应相关基因的表达情况进行了检测。结果表明:
     (1)将质粒pEGFP-C1中EGFP基因克隆至原核表达载体pGEX-4T-1上,成功构建重组质粒pGEX-4T-EGFP。下一步计划将重组质粒转入茎瘤固氮根瘤菌中,通过激光共聚焦显微镜来观测被浸染的小麦组织,初步判断在小麦体内的定殖与分布;
     (2)将茎瘤固氮根瘤菌制成的包衣包裹小麦种子,大田种植。硝酸还原酶活性在拔节期处理显著性高于对照,期间对小麦固氮相关基因的表达和矿质元素的吸收有一定的促进作用。丙二醛含量在灌浆期处理显著性高于对照,在小麦快成熟过程中对抗逆性有一定的提高。多酚氧化酶和过氧化物酶活性处理和对照各时期之间差异不明显;
     (3)虽然茎瘤固氮根瘤菌是一种益生菌,但与小麦互作初期仍然会引发小麦的防卫反应。选取侵染初期1h,3h,6h,9h,12h,24h,48h的小麦根,用实时定量PCR检测pox,sams,sod等防卫基因的表达情况。pox分别在1h和9h显著性高于对照,而sams则在第24h才达到最大显著性差异。sod与pox和sams相比,处理反而在第1h小于对照,在第24h和48h达到最大显著性差异。
Azorhizobium caulinodans ORS 571 is an endogenous azotobacter, which can promote growth of cereal crops. To find out colonization rule between wheat interaction with Azorhizobium caulinodans, a recombinant plasmid was constructed. We mensurate enzymatic activity of nitratereductase of wheat which represent nitrogen-fixing related gene expression and mineral element assimilation. Make use of real-time PCR to test defense related gene expression in preliminary stage of wheat interaction with Azorhizobium caulinodans. The result showed:
     (1) The EGFP gene was amplified by using PCR amplification methods and cloned to the prokaryotic expression vector pGEX-4T-1, a recombinant plasmid pGEX-4T-EGFP was successfully constructed. The next project is put the recombinant plasmid transformed into Azorhizobium caulinodans ORS 571 and infect wheat, then observe wheat organization use laser confocal miropsopy, preliminary assessment its colonization and distribution in wheat organization.
     (2) Make the Azorhizobium caulinodans ORS 571 as coating to package wheat seed and planting in field. Nitratereductase activity is significantly high compared with CK in shooting period. Nitratereductase may improve wheat nitrogen-fixing gene expression and assimilate mineral element. MDA content is significantly high compared with CK in watery stage and it can enhance stress resistance in this period. Polyphenoloxidase and peroxidase activity have not obvious difference among groups.
     (3)Although Azorhizobium caulinodans ORS 571 is a beneficial bacteria to wheat plant, it also can induce defense response. We choose wheat root simple of different time that 1h,3h,6h,9h,12h,24h and 48h, use real-time PCR amplification to check transcriptional level expression of defense-related gene, include pox,sams,and sod. The result show that pox transcriptional level expression is significantly high compared with CK at 1h and 9h, but the sams reach this difference at 24h. Compareing with pox and sams, sod transcriptional level expression below the CK at 1h and this tendency have significantly difference at 24h and 48h.
引文
安千里,杨学健. 2001.用共聚焦激光扫描显微镜观GFP标记的内生固氮菌Klebsiellaoxytoca SA2侵染水稻根.植物学报, 43(6): 558~564
    丁新伦,张孟倩. 2008.实时荧光定量PCR检测RSV胁迫下抗病、感病水稻中与脱落酸相关基因的差异表达.激光生物学报, 17(4): 464~469
    董越梅,安千里,李久蒂. 2000.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖.应用与环境生物学报, 6 (1): 61~65
    房增国,赵秀芬,孙建好,张福锁,李隆. 2009.接种根瘤菌对蚕豆/玉米间作系统氮营养的影响.华北农学报, 24(4): 124~128
    郝变青,马利平,乔雄梧. 2010. GFP标记的植物促生菌B96-Ⅱ-gfp的定殖能力研究.中国生态农业学报, 18(4): 861~865
    何海健,陈婷飞. 2008.绿色荧光蛋白及其在分子生物学上的应用.金华职业技术学院学报, 8(4): 13~18
    郝林. 2010.水杨酸参与生物学过程的交谈机制.沈阳师范大学学报, 28(4): 449~457
    林敏,尤崇杓. 1992.根际联合固氮作用的研究进展.植物生理通讯, 28(5): 323~329
    戚胜方,朱国富. 1999.不同大豆根瘤菌基因工程菌株接种对大豆的增产效果.安徽农学通报, 5(3): 54~55
    孙建光,张燕春,徐晶,胡海燕. 2010.玉米根际高效固氮菌Sphingomonas sp. GD542的分离鉴定及接种效果初步研究.中国生态农业学报, 18(1): 89~93
    宋燕飞,金忠华,孙丹丹. 2008.盐碱胁迫下复合微生物菌剂对玉米根系性状的影响.杂粮作物, 28 (3): 160~162
    田涛,亓雪晨. 2004.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报, 34(4): 346~351
    唐孝青,李斌,伍小兵,张亮.2009.绿色荧光蛋白及其应用的研究进展.陕西农业科学, 2(1): 19~23
    武帆,李淑敏,孟令波. 2009.菌根真菌、根瘤菌对大豆/玉米氮素吸收作用的研究.东北农业大学学报, 40(6): 6~10
    吴红梅.2004.多酚氧化酶酶源筛选及酶法制取茶色素研究.[硕士学位论文].合肥:安徽农业大学
    汪恒英,周守标,常志州,马艳,秦卫华. 2004.绿色荧光蛋白(GFP)研究进展.生物技术, 6(3): 12~15
    吴沛桥,巴晓革,胡海,赵静. 2009.绿色荧光蛋白GFP的研究进展及应用.生物医学工程研究, 4(1): 34~40
    王庆贺.2010.?巴西固氮螺菌Yu62在小麦中的定殖以及对小麦的促生作用.[硕士学位论文].杨凌:西北农林科技大学
    王逸群,钟秀容. 2008.水稻内生固氮细菌的生化特性及其对烟草和玉米的侵染.云南植物研究, 30(2): 211~220
    项海涛.2009. AsiaⅠ型口蹄疫基因治疗与基因免疫双功能疫苗载体的构建.[硕士学位论文].兰州:甘肃农业大学
    张炳欣,张平. 2000.影响引入微生物根部定殖的因素.应用生态学报, 11(6): 951~953
    张庆华,陆承平. 2002.绿色荧光蛋白标记的嗜水气单胞菌在越冬水体的饥饿存活及复苏.水生生物学报, 36 (5): 465~711
    张丽梅,方萍,朱日清. 2004.禾本科植物联合固氮研究及应用现状展望.应用生态学报, 15(9): 1 650~1 654
    占新华,蒋延惠,徐阳春. 1999.微生物制剂促进植物生长机理的研究进展.植物营养与肥料学报, 5(2): 97~105
    Adam A, Marc C, Francéline D, Jacques D, Philippe T. 2008. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biology, 8(113): 1~12
    An Y J, Kang S C, Kim K D, Hwang B K, Jeun Y C. 2010. Enhanced defense responses of tomato plants against late blight pathogen phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 29(12): 1406~1412
    Casper S J. 1996. Expression of the green fluorescent protein–encoding gene from a tobacco mosaic virus-based vector. Gene, 173(30): 69~73
    Chattoa J M, King B A, Bublizt G U. 1996. Ultra-fast exeited state dynamics in green fluoerseent portein:multiple states and protein transfer. PNAS, 93(16): 8362~8367
    Chi F, Shen S H, Cheng H P. 2005. Ascending migration of endophytic rhizobia, from roots to leaves,inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71(11): 7271~7278
    Chi F, Yang P F, Han F, Jing Y X, Shen S H.2010. Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics, 10(9):1861~1874
    Chiu W L, Niwa Y, Zheng W. 1996. Engineered GFP as a vital reporter in plants. Curr Biol, 6 (3): 325~330
    Chun Q C, Richard R, Belanger R, Necole B, Timothy C. P. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56(1): 13~23
    Cocking E C. 2003 . Endophytic colonization of plant roots by nitrogenfixing bacteria. Plant and Soil, 252(2): 169~175
    Corne M J, Pieterse, Marcel D. 2007. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 12(12): 564~569
    Crameri A, Whitehorn E A, Tate E, Stemmer W P C. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Biotechnol, 14(12): 315~319
    Elena S, Danielle L, Hirkala M, Louise M. 2007. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by pantoea agglomerans rhizosphere isolates. Plant Soil, 297(10): 1~13
    Francine M, Perrine W, Joko P, Barry G R, Jeremy J W, Charles H. 2007. Infection process and the interaction of rice roots with rhizobia. Journal of Experimental Botany, 58 (12): 3343~3350
    Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R. 2009. Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against banana bunchy top virus. Biological Control, 51(1): 16~25
    Hansen G, Wright M S. 1999. Recent advances in the transformation of plants. Trends Plants Science, 14 (6): 226~231
    Herman M A B, Davidson J K, Smart C D. 2008. Induction of plant defense gene expression by plant activators and pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology,98(11): 1226~1232
    James E K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65(2): 197~209
    Jayanand B, Seungho C, Gary J M. 2007. Transcriptome analysis of trichothecene-induced gene expression in barley. The American Phytopathological Society, 20(11): 1364~1375
    Jayanand B, Seungho C, Warren M K, Gary J M. 2006. Transcriptome analysis of the barley–fusarium graminearum interaction. Molecular Plant-microbe Interactions, 19(4): 407~417
    Kar R A, Dong W, Michael N. 2000. Green fluorescence protein as a transcrip tional reporter for the long terminal repeats of the human immunodeficiency virus type. Methods, 84 (2): 127 ~ 138
    Kjoumlhler R H, Zipfel W R, Webb W W. 1997. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant Journal, 11 (3): 613~621
    Ladha1 J K, Bruijn F J, Malik K A. 1997. Introduction: assessing opportunities for nitrogen fixation in rice-a frontier project. Plant and Soil, 194(1-2): 1~10
    Mandira M, Sheela S. 2008. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Biomedical and Life Sciences, 93(4): 425~433
    Mantis J, Tague B W. 2000. Comparing the utility ofβ-glucuronidase and green fluorescent protein for detection of weak promoter activity in Arabidopsis thaliana. Plant Molecular Biology Reporter, 18(4): 319~330
    Markus J H, Markus W C, Bernhard P. 2004. Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology, 15(1): 70~77
    Masayoshi K, Kiwamu M. 2010. Plant-microbe communications for symbiosis. Plant and Cell Physiology, 51(9): 1377~1380
    Madhaiyan M, Suresh R B V, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram S P. 2006. Plant growth promoting methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Current Microbiology, 53(4): 270~276
    Monica B, Ravindra N C, Kutty K K. 1995. Molecular cloning and expression analysis of peroxidase genes from wheat. Plant Molecular Biology, 29(4): 647~662
    Munusamy M, Selvaraj P, Murugaiyan S. 2004.Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Botanical Bulletin of Academia Sinica, 42(6): 315~324
    Nikos H, Saleema S S, Bernard R G. 2004. Changes in gene expression in canola roots induced by ACC deaminase containing plant growth promoting bacteria. The American Phytopathological Society, 17(8): 865~871
    Osmar R D S, Ramona F H, Gergina L, Michelena A, Pedro R J, Carlos R S. 2004. Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Brazilian Archives of Biology and Technology, 47(6): 843~850
    Patricia A O, Douglas R C, Youn K, Daniel Z S. 2010. Induction of defense gene homologues in wheat roots during interactions with pseudomonas fluorescens. Biological Control, 55(2): 118~125
    Pedrosa F O, Benelli E M, Yates M G, Wassem R, Monteiro R A, Klassen G, Steffens M B R, Souza E M, Chubatsu L S, Rigo L U. 2001. Recent developments in the structural organization and regulation ofnitrogen fixation genes in herbaspirillum seropedicae. Journal of Biotechnology, 91(2): 189~195
    Quaedvlieg N E M, Schlaman H R M, Admiraal P C. 1998. Fusions between green fluorescent protein and glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 37 (4): 715~727
    Rudd J C, Horsley R D, Mckendry A L, Elias E M. 2001. Host plant resistance genes for fusarium head blight: sources, mechanisms, and utility in conventional breeding systems. Crop Science, 41(3): 620~627
    Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R. 2008.Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology, 132(6): 469~479
    Senthilkumar M, Madhaiyan M, Sundaram S P, Sangeetha H, Kannaiyan S. 2008. Induction of endophytic colonization in rice (Oryza sativa L.) tissue culture plants by Azorhizobium caulinodans. Biotechnol Letters, 30(8): 1477~1487
    Sheen J, Hwang S, Niwa Y. 1995. Green fluorescenet protein as a new vital marker in plant cells. The Plant Journal, 5 (8): 777 ~784
    Shimon M, Tsipora T, Bernard R G. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress Plant. Physiology and Biochemistry, 42(6): 565~572
    Shino S, Toshihiro A, Kyung B L, Tadahiro S, Liu C T, Hiroki M, Seiji W, Taichiro I, Hiroshi O. 2007. Rhizobial factors required for stem nodule maturation and maintenance in sesbania rostrata Azorhizobium caulinodans ORS571 symbiosis. Applied and Environmental Microbiology, 10(8): 6650~6659
    Shuhei T, Toshihiro A, Noriko A, Kyung B L, Liu C T. 2009. Comparative genome wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free living and symbiotic conditions. Applied and Environmental Micromology, 75(15): 5037~5046
    Sofie D, Anja C, Amber T, Ann V B, Jos V. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212(2): 155~164 Sonia F, Viviana R, Gladys M. 2000. Colonization of wheat by Azospirillum brasilense Cd is impaired by saline stress. Plant and Soil, 225(2): 187~91
    Sreenivasulu N, Sopory S K, Kavi K P B. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1): 1~13
    Stavros D, Veresoglou, George M. 2010. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant and Soil, 227(1): 469~480
    Stijn S, Sofie D, Anja C, Jos V. 2008. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil, 3 (12): 15~23 Uwe C, CornéM J P, Brigitte M M. 2002. Priming in plant–pathogen interactions. Trends in Plant Science, 7(5): 210~216
    Vain P, Worland B, Kohli A. 1998. The green fluorescent protein(GFP) as a vital screenable marker in rice ransformation]. Theoretical and Applide Genetics, 96(5): 164 ~169
    Verónica S, Fabricio C, Oscar M, María F D P, Antonio L, Virginia L. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating bacteria associated tothe halophyte prosopis strombulifera. Applied Microbiolgy Biotechnology, 85(2): 371~381
    Vicky B W, Tania P, Elizabeth H, Emily B, Pyung O L. 2005. Comparative transcriptome analysis reveals significantdifferences in gene expression and signalling pathwaysbetween developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4): 567~585
    Webster G, Gough C, Vasse J, Batchelor C A, Callaghan K J, Kothari1 S L, Davey M R, Cocking E C. 1997. Interactions of rhizobia with rice and wheat. Plant and Soil, 194(2): 115~122
    Winston P K, Liu F, Trimarchi J. 2006. A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nature Biotechnology, 10:(7): 832~840
    Yang F,Moss L G. 1996. The molecular structure of green fluorescent protein. Nature Biotechnology, 14(8): 1246~1253
    Zimmer W, Bothe H. 1998. The phytohormonal interactions between Azospirillum and wheat. Plant and Soil, 10(2): 239~247
    Zhang G, Gurtu V, Kain S R. 1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications, 227 (3): 707 ~711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700