大豆疫霉GPCR-PIPKs基因家族及PsYKT6功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是世界上重要经济农作物,大豆疫霉(Phytophthora sojae)侵染大豆而引起幼苗猝死和成株的根腐病是世界大豆生产上的主要病害之一,每年给世界的大豆产业带来巨额经济损失。大豆疫霉通过感受性激素、外界温度、湿度及条件的变化而进入不同的生活周期,在侵染寄主的过程中通过感知寄主而分泌大量的降解酶、坏死蛋白、蛋白酶抑制剂等效应因子以达到成功侵染寄主的目的,因此研究大豆疫霉如何感受外界的信息及信号传导机制、效应因子的分泌机制可以为防止病害的发生和扩展提供理论依据。但由于传统的、在其他生物中运用成熟的基因敲除等分子遗传操作技术不能运用在大豆疫霉中,因此对大豆疫霉的生长发育规律及致病性机理了解的相对较少。随着大豆疫霉全基因组数据、转录组数据的不断公布及完善,开发一种快捷、易操作、高通量的基因功能研究技术平台就显得尤为重要。
     大豆疫霉中利用双链RNA(dsRNA)介导的基因沉默。dsRNA介导的转录后基因沉默在真核生物中是普遍存在并且非常保守的一种降解靶标基因的机制。本研究将体外合成的dsRNA通过PEG介导的原生质转化方法转入大豆疫霉中从而介导目的基因的瞬时沉默,该技术不仅能利用单个dsRNA介导单个基因的沉默,更能够将不同基因合成的dsRNA同时介导多个内源基因的同时沉默。在本研究中选择了两个目的基因作为研究的靶基因,分别为细胞循环调控基因PsCdc14(调控有丝分裂细胞循环的蛋白质磷酸化酶)和一个无毒基因PsAvr3a(能被大豆抗病基因Rps 3a所识别的RxLR效应因子)。将体外分别合成的PsCdc14和PsAvr3a dsRNA转入大豆疫霉原生质体后,再生的转化子到第8天能够观察到转化子内源靶基因mRNA的减少;第9天到15天都表现出显著的基因沉默现象,沉默效率在50%-95%之间;第17天,所有的沉默转化子中内源基因都恢复到正常转录水平。本研究针对PsCdc14和PsAvr3a的基因沉默均导致了良好的表现型,证明dsRNA介导的大豆疫霉基因瞬时沉默系统可以用来鉴定基因功能,其耗时短、效率高、高通量操作的特点加快大豆疫霉功能基因组研究进展。
     大豆疫霉G蛋白偶联受体候选编码基因的生物信息学预测及转录分析。G蛋白偶联受体(G protein coupled receptors,GPCR)是真核生物中普遍存在的一类重要跨膜受体蛋白家族,通过感受外界信息后将信号传导到细胞内,从而激活细胞内的一系列信号传导途径,并最终影响生物个体的生长发育。本研究通过生物信息学方法方法从大豆疫霉、橡树疫霉和致病疫霉的全基因组数据库中挖掘出大量GPCR候选编码基因。对三种疫霉中GPCR候选基因之间进行了同源性比较,分析了基因在基因组中的结构特征。利用RNA-sequencing和qRT-PCR等技术分析了大豆疫霉中GPCR候选编码基因在生活史及侵染各个阶段的转录情况,为后续功能基因研究提供了思路,为大豆疫霉防治及新的药物靶标筛选提供了理论基础。
     新型G蛋白偶联受体PsPIPK4和PsPIPK10分别参与调控大豆疫霉的无性发育及有性生殖。游动孢子具有趋化性的特点,通过感受植物表面产生的物理或化学信号来后接近寄主、休止、萌发从而成功侵染寄主。大豆疫霉有性生殖产生具有厚壁的卵孢子,可以抵抗外界的不良环境从而比营养繁殖体存活的更久,同时卵孢子也是病害主要传播手段,是病害流行的初侵染源。生物信息学分析发现大豆疫霉的基因组中含有12个新型G蛋白偶联受体,GPCR-PIPK家族,其C端为GPCR所具有的典型的7次跨膜结构,而在N端具有磷脂酸肌醇激酶(PIPK)的结构域。qRT-PCR结果显示其中的一个编码基因PsPIPK4在休止孢及休止孢萌发阶段上调表达。功能分析证明PsPIPK4沉默突变体游动孢子的游动速率变慢,并且很快休止,导致游动孢子的趋化性丧失;休止孢的萌发显著降低,导致游动孢子的致病性减弱。另一个编码基因PsPIPK10在无性发育及侵染阶段都具有较高的转录量。功能分析证明PsPIPK10沉默突变体卵孢子产量急剧减少,所产的卵孢子量只有野生型菌株的1-5%。这也是在卵菌中第一次报道候选的GPCR编码基因参与调控无性发育及有性生殖。
     大豆疫霉SNARE蛋白家族生物信息学预测及PsYKT6的功能分析。在真核生物中,膜泡运输参与了细胞体内一系列的生理生化反应,这其中就包括调节细胞的极性生长及一些外泌蛋白的分泌。SNARE(可溶性N-乙基马来酰胺敏感因子附着蛋白膜受体)蛋白是真核生物细胞膜泡运输过程中发生膜融合最重要的调控蛋白家族,在真核生物中非常保守。在本研究中,通过生物信息学方法在大豆疫霉基因组中预测到35个编码SNARE蛋白的基因。利用转录谱RNA-sequencing测序技术对这35个基因在无性发育及侵染阶段进行了转录分析,发现大多数基因在发育和侵染的各个阶段都具有较高的转录水平,推测其可能在大豆疫霉的生长发育及侵染过程中具有重要作用。进一步利用疫霉菌稳定遗传转化技术将其中最为保守的一个SNARE基因PsYKT6沉默后的结果证实,PsYKT6在大豆疫霉的有性生殖、无性发育及致病性方面都发挥着重要调控作用。
Phytophthora sojae is the casual agent of damping off of the seedlings and root rot disease of soybean, which is an economically important crop around the world. It is one of the most notorious pathogens which caused tremendous economic loss in soybean production annually. P. sojae switch the life stages by sensing hormone, temperature, humidity and other environmental conditions.During infection of their hosts, P. sojae secreted a variety of extracellular proteins to promote the pathogenicity. Therefore, to study the mechanism that P. sojae sense the environmental factors and the signal transduction pathway, and the process that P. sojae secretie extracellular proteins will provide theoretical bases for disease control. Methods for reverse genetics involving gene disruption are not currently feasible in oomycetes due to low rates of homologous recombination during transformation and diploidy. The molecular mechanisms underlying development and infection are largely unknown. As the increasing mount of the genome sequence and transcription profile data for P. sojae available, a feasible and efficient genetics protocols is critical for studying the biology, pathogenicity, and evolution of these organisms.
     Double-stranded RNA mediated gene silencing in Phytophthora sojae. Double-stranded (ds)RNA mediated gene silencing, a post-transcriptional and highly conserved process in eukaryotes, results in specific gene silencing through degradation of the target mRNA. Recently, we set up a dsRNA mediated transient gene silencing protocol combined with in vitro dsRNA synthesis and a polyethylene glycol (PEG) mediated transformation system. Single-gene silencing is accomplished by introducing unique dsRNA fragments into protoplasts, and multiple-gene silencing is performed with chimeric overlapping dsRNA fragments. The cell cycle regulated gene PsCdcl4 (a protein phosphatase that regulates the mitosis and the cell cycle) and the avirulence gene PsAvr3a (an RxLR effector that is recognized by the soybean Rps3a resistance proteins) are transiently silenced by introducing in vitro synthesized dsRNA into P. sojae protoplasts. The results showed that there is no reduction in PsCdc14 or PsAvr3a mRNA in the transformants until 8 days after the specific gene dsRNA was transferred into protoplasts. From 9 to 15 days, the transformants exhibited significant gene silencing, with mRNA levels reduced by 50% to 95%. All the silencing transformants showed recovery of gene expression by 17 days. Thus, the gene silencing protocols could significantly reduce the mRNA level of PsCdcl4 and PsAvr3a, yielding detectable phenotypes. The successful setup of transient gene silencing could make P. sojae high-throughput gene function elucidation work feasible, facilitating our understanding of the development and pathogenicity mechanisms of this organism.
     Bioinformatics prediction and transcription analysis of GPCR candidate coding gene in phytophthora sojae.G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors in eukaryote and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks, affecting the development and metabolic pathway. Phytophthora sojae changes the life stages by sensed the hormone, temperature, humidity and other environmental condition. Consequently, to study the mechanism of P. sojae sense the environmental information and the signal transduction pathway will provide theoretical bases for disease control. In this study, we predicted many putative GPCRs coding genes in the genome of P. sojae, P. ramorum and P. infestans according to the sequences and domains from reported GPCR in other organisms. The ortholog alleles and the gene genomic distribution patterns of the putative GPCR genes of P. sojae, P. ramorum and P. infestans were analyzed. In P. sojae, the transcription profile of putative GPCR was also performed by RNA-sequencing and qRT-PCR. These results provide a new study way for analysis function gene, which is crucial to disease control and drug development.
     Two novel protens, PsPIPK4 and PsPIPK10 are respectively involved in asexual development and sexual reproduction in Phytophthora sojae. P. sojae, zoospores have the characteristic of chemotaxis, which can swim chemotactically toward compounds released by roots of their host plants, and then encyst on the root surface from where the hyphae penetrate the root directly from the cyst. Sexual oospores are often thick walled and thus more durable than vegetative structures. Also, sexual oospores are the main agents of dispersal for P. sojae. The genome sequencing of P. sojae provide a great opportunity to identify a novel group of GPCRs, termed as GPCR-PIPKs, which fused a typical GPCR 7-transmembrane domain at the N-terminusl combined with a phosphatidylinositol phosphate kinase (PIPK) domain at the C-terminus. PsPIPK4, one of GPCR-PIPks, was upregualted in cyst and cyst germination. The function analysis indicated zoospore encystment and cyst germination were badly affected, resulting in the inability of chemotaxis and infecting soybean in PsPIPK4-silenced mutants. PsPIPK10, another GPCR-PIPks, was constitutive expression in asexual development and infection stages. PsPIPK10-silenced mutants exhibit remarkable reduction of oospore number, just around 1-5% production compared to the wild type. This is the first reported that putative GPCRs are involved in asexual development and sexual reproduction according to our current knomledge.
     Genome-wide identification and transcriptional profiling of SNARE family genes and functional characterization of PsYKT6 in Phytophthora sojae. In eukaryotic cells, the intracellular vesicle trafficking is essential for many aspects of cellular processes including polarized growth and secretion of extracellular proteins. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are central components of the machinery mediating membrane fusion in all eukaryotic cells. Here, we identified 35 genes, which might be a total set, encoding putative SNARE proteins that are key factors for vesicular trafficking, taking advantage of available whole genome sequence in the oomycete plant pathogen Phytophthora sojae. The subsequent systematic analysis to determine its transcription in different development and infection stages revealed that most putative SNAREs show important roles in P. sojae. One of the most conserved SNARE proteins (PsYKT6) was functionally characterized by homology-dependent gene silencing method. The phenotype analysis showed that PsYKT6 plays key roles in both asexual development and sexual reproduction, and in pathogenesis on host soybean cultivars.
引文
[1]Alspaugh, J.A., Perfect, J.R., and Heitman, J. (1997). Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11,3206-3217.
    [2]Assmann, S.M. (2005). G Proteins Go Green:A Plant G Protein Signaling FAQ Sheet. Science 310, 71-73.
    [3]Attwood, T.K., and Findlay, J.B. (1994). Fingerprinting G-protein-coupled receptors. Protein Eng 7, 195-203.
    [4]Bahn, Y.-S., Hicks, J.K., Giles, S.S., Cox, G.M., and Heitman, J. (2004). Adenylyl Cyclase-Associated Protein Acal Regulates Virulence and Differentiation of Cryptococcus neoformans via the Cyclic AMP-Protein Kinase A Cascade. Eukaryotic Cell 3,1476-1491.
    [5]Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., and Cardenas, M.E. (2007). Sensing the environment:lessons from fungi. Nat Rev Micro 5,57-69.
    [6]Bakthavatsalam, D., Meijer, H.J., Noegel, A.A., and Govers, F. (2006). Novel phosphatidylinositol phosphate kinases with a G-protein coupled receptor signature are shared by Dictyostelium and Phytophthora. Trends Microbiol 14,378-382.
    [7]Bakthavatsalam, D., Brazill, D., Gomer, R.H., Eichinger, L., Rivero, F., and Noegel, A.A. (2007). A G Protein-Coupled Receptor with a Lipid Kinase Domain Is Involved in Cell-Density Sensing 17, 892-897.
    [8]Baldauf, S.L. (2003). The Deep Roots of Eukaryotes. Science 300,1703-1706.
    [9]Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000). A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290,972-977.
    [10]Bardwell, L., Cook, J.G., Inouye, C.J., and Thorner, J. (1994). Signal Propagation and Regulation in the Mating Pheromone Response Pathway of the Yeast Saccharomyces cerevisiae. Developmental Biology 166,363-379.
    [11]Borkovich, K.A., Alex, L.A., Yarden, O., Freitag, M., Turner, G.E., Read, N.D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F.E., Radford, A., Selitrennikoff, C., Galagan, J.E., Dunlap, J.C., Loros, J.J., Catcheside, D., Inoue, H., Aramayo, R., Polymenis, M., Selker, E.U., Sachs, M.S., Marzluf, G.A., Paulsen, I., Davis, R., Ebbole, D.J., Zelter, A., Kalkman, E.R., O'Rourke, R., Bowring, F., Yeadon, J., Ishii, C., Suzuki, K., Sakai, W., and Pratt, R. (2004). Lessons from the genome sequence of Neurospora crassa:tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68,1-108.
    [12]Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors:A molecular basis for odor recognition 65,175-187.
    [13]Burkholder, A.C., and Hartwell, L.H. (1985). The yeast alpha-factor receptor:structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res 13,8463-8475.
    [14]Chang, Y.C., Miller, G.F., and Kwon-Chung, K.J. (2003). Importance of a Developmentally Regulated Pheromone Receptor of Cryptococcus neoformans for Virulence. Infect. Immun.71, 4953-4960.
    [15]Chen, J.-G., Pandey, S., Huang, J., Alonso, J.M., Ecker, J.R., Assmann, S.M., and Jones, A.M. (2004). GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination. Plant Physiol.135,907-915.
    [16]Chen, J.G., Willard, F.S., Huang, J., Liang, J., Chasse, S.A., Jones, A.M., and Siderovski, D.P. (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301, 1728-1731.
    [17]Chung, K.S., Won, M., Lee, S.B., Jang, Y.J., Hoe, K.L., Kim, D.U., Lee, J.W., Kim, K.W., and Yoo, H.S. (2001). Isolation of a novel gene from Schizosaccharomyces pombe:stml+encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J Biol Chem 276,40190-40201.
    [18]Chung, K.S., Kim, D.U., Ryoo, S.W., Kang, E.J., Won, M., Kim, L., Jang, Y.J., Maeng, P.J., Kim, S.C., Yoo, H.S., and Hoe, K.L. (2003). Functional over-expression of the Stml protein, a G-protein-coupled receptor, in Schizosaccharomyces pombe. Biotechnol Lett 25,267-272.
    [19]Chung, S., Karos, M., Chang, Y.C., Lukszo, J., Wickes, B.L., and Kwon-Chung, K.J. (2002). Molecular Analysis of CPR{alpha}, a MAT{alpha}-Specific Pheromone Receptor Gene of Cryptococcus neoformans. Eukaryotic Cell 1,432-439.
    [20]Colucci, G., Apone, F., Alyeshmerni, N., Chalmers, D., and Chrispeels, M.J. (2002). GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci U S A 99,4736-4741.
    [21]Davidson, R.C., Nichols, C.B., Cox, G.M., Perfect, J.R., and Heitman, J. (2003). A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Molecular Microbiology 49, 469-485.
    [22]Drews, J., uuml, and rgen. (2000). Drug Discovery:A Historical Perspective. Science 287, 1960-1964.
    [23]Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., Tunggal, B., Kummerfeld, S., Madera, M., Konfortov, B.A., Rivero, F., Bankier, A.T., Lehmann, R., Hamlin, N., Davies, R., Gaudet, P., Fey, P., Pilcher, K., Chen, G., Saunders, D., Sodergren, E., Davis, P., Kerhornou, A., Nie, X., Hall, N., Anjard, C., Hemphill, L., Bason, N., Farbrother, P., Desany, B., Just, E., Morio, T., Rost, R., Churcher, C, Cooper, J., Haydock, S., van Driessche, N., Cronin, A., Goodhead, I., Muzny, D., Mourier, T., Pain, A., Lu, M., Harper, D., Lindsay, R., Hauser, H., James, K., Quiles, M., Madan Babu, M., Saito, T., Buchrieser, C., Wardroper, A., Felder, M., Thangavelu, M., Johnson, D., Knights, A., Loulseged, H., Mungall, K., Oliver, K., Price, C., Quail, M.A., Urushihara, H., Hernandez, J., Rabbinowitsch, E., Steffen, D., Sanders, M., Ma, J., Kohara, Y., Sharp, S., Simmonds, M., Spiegler, S., Tivey, A., Sugano, S., White, B., Walker, D., Woodward, J., Winckler, T., Tanaka, Y., Shaulsky, G., Schleicher, M., Weinstock, G., Rosenthal, A., Cox, E.C., Chisholm, R.L., Gibbs, R., Loomis, W.F., Platzer, M., Kay, R.R., Williams, J., Dear, P.H., Noegel, A.A., Barrell, B., and Kuspa, A. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature 435,43-57.
    [24]Fredriksson, R., and Schioth, H.B. (2005). The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67,1414-1425.
    [25]Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., and Schioth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63,1256-1272.
    [26]Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.G. (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52,1001-1013.
    [27]Gether, U. (2000). Uncovering Molecular Mechanisms Involved in Activation of G Protein-Coupled Receptors. Endocr Rev 21,90-113.
    [28]Gookin, T.E., Kim, J., and Assmann, S.M. (2008). Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar:computational prediction and in-vivo protein coupling. Genome Biol 9, R120.
    [29]Guo, J., Zeng, Q., Emami, M., Ellis, B.E., and Chen, J.G. (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS One 3, e2982.
    [30]Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L. Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Homer, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'eill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V, Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461,393-398.
    [31]Hagen, D.C., McCaffrey, G., and Sprague, G.F., Jr. (1986). Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor:gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci U S A 83,1418-1422.
    [32]Han, K.H., Seo, J.A., and Yu, J.H. (2004). A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51,1333-1345.
    [33]Hartwell, L.H. (1980). Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol 85,811-822.
    [34]Hoffman, C.S. (2005). Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem Soc Trans 33,257-260.
    [35]Hopkins, A.L., and Groom, C.R. (2002). The druggable genome. Nat Rev Drug Discov 1,727-730.
    [36]Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., and Govers, F. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    [37]Hull, C.M., and Heitman, J. (2002). GENETICS OF CRYPTOCOCCUS NEOFORMANS. Annual Review of Genetics 36,557-615.
    [38]Hur, E.-M., and Kim, K.-T. (2002). G protein-coupled receptor signalling and cross-talk:Achieving rapidity and specificity. Cellular Signalling 14,397-405.
    [39]Jones, A.M., and Assmann, S.M. (2004). Plants:the latest model system for G-protein research. EMBO Rep 5,572-578.
    [40]Josefsson, L.G., and Rask, L. (1997). Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem 249,415-420.
    [41]Kim, H., and Borkovich, K.A. (2004). A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52,1781-1798.
    [42]Kim, J.Y., Borleis, J.A., and Devreotes, P.N. (1998). Switching of Chemoattractant Receptors Programs Development and Morphogenesis inDictyostelium:Receptor Subtypes Activate Common Responses at Different Agonist Concentrations. Developmental Biology 197,117-128.
    [43]Kitamura, K., and Shimoda, C. (1991). The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J 10,3743-3751.
    [44]Kraakman, L., Lemaire, K., Ma, P., Teunissen, A.W., Donaton, M.C., Van Dijck, P., Winderickx, J., de Winde, J.H., and Thevelein, J.M. (1999). A Saccharomyces cerevisiae G-protein coupled receptor, Gprl, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32,1002-1012.
    [45]Lafon, A., Han, K.-H., Seo, J.-A., Yu, J.-H., and d'Enfert, C. (2006). G-protein and cAMP-mediated signaling in aspergilli:A genomic perspective. Fungal Genetics and Biology 43,490-502.
    [46]Latijnhouwers, M., and Govers, F. (2003). A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2,971-977.
    [47]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004). A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51,925-936.
    [48]Lemaire, K., Van de Velde, S., Van Dijck, P., and Thevelein, J.M. (2004). Glucose and Sucrose Act as Agonist and Mannose as Antagonist Ligands of the G Protein-Coupled Receptor Gprl in the Yeast Saccharomyces cerevisiae 16,293-299.
    [49]Li, L., and Borkovich, K.A. (2006). GPR-4 Is a Predicted G-Protein-Coupled Receptor Required for Carbon Source-Dependent Asexual Growth and Development in Neurospora crassa. Eukaryotic Cell 5,1287-1300.
    [50]Li, L., Wright, S.J., Krystofova, S., Park, G, and Borkovich, K.A. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi*. Annual Review of Microbiology 61,423-452.
    [51]Liu, X., Yue, Y, Li, B., Nie, Y, Li, W., Wu, W.-H., and Ma, L. (2007). A G Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid. Science 315, 1712-1716.
    [52]Lorenz, M.C., Pan, X., Harashima, T., Cardenas, M.E., Xue, Y, Hirsch, J.P., and Heitman, J. (2000). The G Protein-Coupled Receptor Gprl Is a Nutrient Sensor That Regulates Pseudohyphal Differentiation in Saccharomyces cerevisiae. Genetics 154,609-622.
    [53]Louis, J.M., Ginsburg, G.T., and Kimmel, A.R. (1994). The cAMP receptor CAR4 regulates axial patterning and cellular differentiation during late development of Dictyostelium. Genes Dev 8, 2086-2096.
    [54]Mackay, V., and Manney, T.R. (1974). Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. Ⅱ. Genetic analysis of nonmating mutants. Genetics 76,273-288.
    [55]Manahan, C.L., Iglesias, P.A., Long, Y., and Devreotes, P.N. (2004). Chemoattractant signaling in dictyostelium discoideum. Annu Rev Cell Dev Biol 20,223-253.
    [56]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002). Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36,137-146.
    [57]McCudden, C.R., Hains, M.D., Kimple, R.J., Siderovski, D.P., and Willard, F.S. (2005). G-protein signaling:back to the future. Cell Mol Life Sci 62,551-577.
    [58]Moriyama, E.N., Strope, P.K., Opiyo, S.O., Chen, Z., and Jones, A.M. (2006). Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol 7, R96.
    [59]Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Trong, I.L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., and Miyano, M. (2000). Crystal Structure of Rhodopsin:A G Protein-Coupled Receptor. Science 289,739-745.
    [60]Pandey, S., Nelson, D.C., and Assmann, S.M. (2009). Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis. Cell 136,136-148.
    [61]Pausch, M.H. (1997). G-protein-coupled receptors in Saccharomyces cerevisiae:high-throughput screening assays for drug discovery. Trends Biotechnol 15,487-494.
    [62]Perfus-Barbeoch, L., Jones, A.M., and Assmann, S.M. (2004). Plant heterotrimeric G protein function:insights from Arabidopsis and rice mutants. Current Opinion in Plant Biology 7,719-731.
    [63]Pierce, K.L., Premont, R.T., and Lefkowitz, R.J. (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3,639-650.
    [64]Prabhu, Y., and Eichinger, L. (2006). The Dictyostelium repertoire of seven transmembrane domain receptors. European Journal of Cell Biology 85,937-946.
    [65]Rasmussen, S.G.F., Choi, H.-J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R.P., Sanishvili, R., Fischetti, R.F., Schertler, G.F.X., Weis, W.I., and Kobilka, B.K. (2007). Crystal structure of the human P2 adrenergic G-protein-coupled receptor. Nature 450,383-387.
    [66]Saxe, C.L.,3rd, Ginsburg, G.T., Louis, J.M., Johnson, R., Devreotes, P.N., and Kimmel, A.R. (1993). CAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Dev 7,262-272.
    [67]Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krausz, N., Choe, H.-W., Hofmann, K.P., and Ernst, O.P. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497-502.
    [68]Seo, J.A., Han, K.H., and Yu, J.H. (2004). The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53, 1611-1623.
    [69]Spiegel, A.M., and Weinstein, L.S. (2004). Inherited diseases involving g proteins and g protein-coupled receptors. Annu Rev Med 55,27-39.
    [70]Tanaka, K., Davey, J., Imai, Y., and Yamamoto, M. (1993). Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 13,80-88.
    [71]Terakita, A. (2005). The opsins. Genome Biol 6,213.
    [72]Thompson, M.D., Percy, M.E., McIntyre Burnham, W., and Cole, D.E. (2008). G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 448,109-137.
    [73]Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant Signal Behav 4,942-947.
    [74]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L. Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    [75]Vassilatis, D.K., Hohmann, J.G., Zeng, H., Li, F., Ranchalis, J.E., Mortrud, M.T., Brown, A., Rodriguez, S.S., Weller, J.R., Wright, A.C., Bergmann, J.E., and Gaitanaris, G.A. (2003). The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100, 4903-4908.
    [76]Versele, M., Lemaire, K., and Thevelein, J.M. (2001). Sex and sugar in yeast:two distinct GPCR systems. EMBO Rep 2,574-579.
    [77]Wang, P., and Heitman, J. (1999). Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Current Opinion in Microbiology 2,358-362.
    [78]Wang, X.-Q., Ullah, H., Jones, A.M., and Assmann, S.M. (2001). G Protein Regulation of Ion Channels and Abscisic Acid Signaling in Arabidopsis Guard Cells. Science 292,2070-2072.
    [79]Wang, Y., Li, A., Wang, X., Zhang, X., Zhao, W., Dou, D., Zheng, X., and Wang, Y. (2010). GPR11, a Putative Seven-Transmembrane G Protein-Coupled Receptor, Controls Zoospore Development and Virulence of Phytophthora sojae. Eukaryotic Cell 9,242-250.
    [80]Welton, R.M., and Hoffman, C.S. (2000). Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics 156,513-521.
    [81]Whiteway, M., Hougan, L., Dignard, D., Thomas, D.Y., Bell, L., Saari, G.C., Grant, F.J., O'Hara, P., and MacKay, V.L. (1989). The STE4 and STE18 genes of yeast encode potential [beta] and [gamma] subunits of the mating factor receptor-coupled G protein. Cell 56,467-477.
    [82]Xue, C., Hsueh, Y.-P., and Heitman, J. (2008). Magnificent seven:roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews 32,1010-1032.
    [83]Xue, C., Bahn, Y.-S., Cox, G.M., and Heitman, J. (2006). G Protein-coupled Receptor Gpr4 Senses Amino Acids and Activates the cAMP-PKA Pathway in Cryptococcus neoformans. Mol. Biol. Cell 17,667-679.
    [84]Xue, Y., Batlle, M., and Hirsch, J.P. (1998). GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p G[alpha] subunit and functions in a Ras-independent pathway. EMBO J 17,1996-2007.
    [85]Yu, J.H. (2006). Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44,145-154.
    [1]Ah-Fong, A.M., Bormann-Chung, C.A., and Judelson, H.S. (2008). Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45,1197-1205.
    [2]Ah Fong, A.M., and Judelson, H.S. (2003). Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50,487-494.
    [3]Ardelt, B., Ardelt, W., and Darzynkiewicz, Z. (2003). Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2,22-24.
    [4]Baldauf, S.L. (2003). The Deep Roots of Eukaryotes. Science 300,1703-1706.
    [5]Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000). A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290,972-977.
    [6]Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucl. Acids Res.31,6593-6597.
    [7]Blanco, F.A., and Judelson, H.S. (2005). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    [8]Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10,185-191.
    [9]Bottin, A., Larche, L., Villalba, F., Gaulin, E., Esquerre-Tugaye, M.T., and Rickauer, M. (1999). Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phythphthora parasitica var. nicotianae. FEMS Microbiol Lett 176,51-56.
    [10]Bromley, M., Gordon, C., Rovira-Graells, N., and Oliver, J. (2006). The Aspergillus fumigatus cellobiohydrolase B (cbhB) promoter is tightly regulated and can be exploited for controlled protein expression and RNAi. FEMS Microbiology Letters 264,246-254.
    [11]Carthew, R.W., and Sontheimer, E.J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell 136,642-655.
    [12]Cogoni, C., and Macino, G. (1997). Isolation of quell ing-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci U S A 94,10233-10238.
    [13]Cogoni, C., and Macino, G. (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399,166-169.
    [14]Cvitanich, C., and Judelson, H.S. (2003). Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42,228-235.
    [15]Dou, D., Kale, S.D., Wang, X., Chen, Y., Wang, Q., Jiang, R.H., Arredondo, F.D., Anderson, R.G., Thakur, P.B., McDowell, J.M., Wang, Y., and Tyler, B.M. (2008). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avrlb. Plant Cell 20,1118-1133.
    [16]Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N., Hahn, W.C., Jackson, A.L., Kiger, A., Linsley, P.S., Lum, L., Ma, Y., Mathey-Prevot, B., Root, D.E., Sabatini, D.M., Taipale, J., Perrimon, N., and Bernards, R. (2006). Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3,777-779.
    [17]Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    [18]Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerre-Tugaye, M.T., and Bottin, A. (2002). The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115,4565-4575.
    [19]Gaulin, E., Haget, N., Khatib, M., Herbert, C., Rickauer, M., and Bottin, A. (2007). Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 53,152-157.
    [20]Goldoni, M., Azzalin, G., Macino, G., and Cogoni, C. (2004). Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genetics and Biology 41,1016-1024.
    [21]Grenville-Briggs, L.J., Anderson, V.L., Fugelstad, J., Avrova, A.O., Bouzenzana, J., Williams, A., Wawra, S., Whisson, S.C., Birch, P.R., Bulone, V, and van West, P. (2008). Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20,720-738.
    [22]Guo, S., and Kemphues, K.J. (1995). par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81,611-620.
    [23]Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T, Bozkurt, TO., Ah-Fong, A.M.V., Alvarado, L. Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Horner, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'eill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461,393-398.
    [24]Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., and Govers, F. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    [25]Huitema, E., Bos, J.I., Tian, M., Win, J., Waugh, M.E., and Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 12,193-200.
    [26]Joshua-Tor, L. (2004). siRNAs at RISC. Structure 12,1120-1122.
    [27]Judelson, H.S., and Tani, S. (2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6, 1200-1209.
    [28]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1991). Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4,602-607.
    [29]Judelson, H.S., Coffey, M.D., Arredondo, F.R., and Tyler, B.M. (1993a). Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23,211-218.
    [30]Judelson, H.S., Dudler, R., Pieterse, C.M., Unkles, S.E., and Michelmore, R.W. (1993b). Expression and antisense inhibition of transgenes in Phytophthora infestans is modulated by choice of promoter and position effects. Gene 133,63-69.
    [31]Kamoun, S. (2003). Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2,191-199.
    [32]Kamoun, S., van West, P., Vleeshouwers, V.G., de Groot, K.E., and Govers, F. (1998). Resistance of nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10,1413-1426.
    [33]Khatri, M., and Rajam, M.V. (2007). Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45,211-220.
    [34]Krajaejun, T., Gauthier, G.M., Rappleye, C.A., Sullivan, T.D., and Klein, B.S. (2007). Development and Application of a Green Fluorescent Protein Sentinel System for Identification of RNA Interference in Blastomyces dermatitidis Illuminates the Role of Septin in Morphogenesis and Sporulation. Eukaryotic Cell 6,1299-1309.
    [35]Lamour, K.H., Win, J., and Kamoun, S. (2007). Oomycete genomics:new insights and future directions. FEMS Microbiology Letters 274,1-8.
    [36]Latijnhouwers, M., and Govers, F. (2003). A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2,971-977.
    [37]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004). A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51,925-936.
    [38]Lee, Y., Jeon, K., Lee, J.-T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation:stepwise processing and subcellular localization. EMBO J 21,4663-4670.
    [39]Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
    [40]Liu, H., Cottrell, T.R., Pierini, L.M., Goldman, W.E., and Doering, T.L. (2002). RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160,463-470.
    [41]Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear Export of MicroRNA Precursors. Science 303,95-98.
    [42]Ma, Y., Creanga, A., Lum, L., and Beachy, P.A. (2006). Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443,359-363.
    [43]Mcleod, A., FRY, B.A., ZULUAGA, A.P., MYERS, K.L., and FRY, W.E. (2008). Toward Improvements of Oomycete Transformation Protocols. Journal of Eukaryotic Microbiology 55, 103-109.
    [44]Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431,343-349.
    [45]Mort-Bontemps, M., and Fevre, M. (1997). Transformation of the oomycete Saprolegnia monoica to hygromycin-B resistance. Curr Genet 31,272-275.
    [46]Nakayashiki, H., Hanada, S., Quoc, N.B., Kadotani, N., Tosa, Y, and Mayama, S. (2005). RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genetics and Biology 42,275-283.
    [47]Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2,279-289.
    [48]Nguyen, Q.B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S., and Nakayashiki, H. (2008). Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Molecular Microbiology 68, 1348-1365.
    [49]Peters, L., and Meister, G. (2007). Argonaute Proteins:Mediators of RNA Silencing. Molecular Cell 26,611-623.
    [50]Rappleye, C.A., Engle, J.T., and Goldman, W.E. (2004). RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Molecular Microbiology 53, 153-165.
    [51]Riedel, M., Calmin, G., Belbahri, L., Lefort, F., Gotz, M., Wagner, S., and Werres, S. (2009). Green Fluorescent Protein (GFP) as a Reporter Gene for the Plant Pathogenic Oomycete Phytophthora ramorum. J Eukaryot Microbiol 56,130-135.
    [52]Romano, N., and Macino, G. (1992). Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6,3343-3353.
    [53]Shabalina, S.A., and Koonin, E.V. (2008). Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution 23,578-587.
    [54]Shafran, H., Miyara, I., Eshed, R., Prusky, D., and Sherman, A. (2008). Development of new tools for studying gene function in fungi based on the Gateway system. Fungal Genetics and Biology 45, 1147-1154.
    [55]Si-Ammour, A., Mauch-Mani, B., and Mauch, F. (2003). Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker:beta-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol Plant Pathol 4,237-248.
    [56]Tijsterman, M., and Plasterk, R.H.A. (2004). Dicers at RISC:The Mechanism of RNAi. Cell 117, 1-3.
    [57]Tijsterman, M., Ketting, R.F., and Plasterk, R.H.A. (2002). THE GENETICS OF RNA SILENCING. Annual Review of Genetics 36,489-519.
    [58]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L. Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    [59]van West, P., Kamoun, S., van't Klooster, J.W., and Govers, F. (1999a). Internuclear gene silencing in Phytophthora infestans. Mol Cell 3,339-348.
    [60]van West, P., Reid, B., Campbell, T.A., Sandrock, R.W., Fry, W.E., Kamoun, S., and Gow, N.A. (1999b). Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiol Lett 178,71-80.
    [61]Vijn, I., and Govers, F. (2003). Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4,459-467.
    [62]Wang, Y., Li, A., Wang, X., Zhang, X., Zhao, W., Dou, D., Zheng, X., and Wang, Y. (2010). GPR11, a Putative Seven-Transmembrane G Protein-Coupled Receptor, Controls Zoospore Development and Virulence of Phytophthora sojae. Eukaryotic Cell 9,242-250.
    [63]Weiland, J.J. (2003). Transformation of Pythium aphanidermatum to geneticin resistance. Curr Genet 42,344-352.
    [64]Whisson, S.C., Avrova, A.O., Pieter Van West, and Jones, J.T. (2005). A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Molecular Plant Pathology 6, 153-163.
    [1]Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., and Mukherjee, S.K. (2003). RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev 67, 657-685.
    [2]Ah-Fong, A.M., Bormann-Chung, C.A., and Judelson, H.S. (2008). Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45,1197-1205.
    [3]Ah Fong, A.M., and Judelson, H.S. (2003). Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50,487-494.
    [4]Ardelt, B., Ardelt, W., and Darzynkiewicz, Z. (2003). Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2,22-24.
    [5]Avrova, A.O., Boevink, P.C., Young, V., Grenville-Briggs, L.J., van West, P., Birch, P.R., and Whisson, S.C. (2008). A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell Microbiol 10,2271-2284.
    [6]Baldauf, S.L. (2003). The Deep Roots of Eukaryotes. Science 300,1703-1706.
    [7]Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000). A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290,972-977.
    [8]Blanco, F.A., and Judelson, H.S. (2005). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    [9]Cogoni, C., and Macino, G. (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399,166-169.
    [10]Dou, D., Kale, S.D., Wang, X., Jiang, R.H., Bruce, N.A., Arredondo, F.D., Zhang, X., and Tyler, B.M. (2008a). RXLR-mediated entry of Phytophthora sojae effector Avrlb into soybean cells does not require pathogen-encoded machinery. Plant Cell 20,1930-1947.
    [11]Dou, D., Kale, S.D., Wang, X., Chen, Y., Wang, Q., Jiang, R.H., Arredondo, F.D., Anderson, R.G., Thakur, P.B., McDowell, J.M., Wang, Y., and Tyler, B.M. (2008b). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avrlb. Plant Cell 20,1118-1133.
    [12]Flor, H.H. (1971). Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology 9,275-296.
    [13]Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerre-Tugaye, M.T., and Bottin, A. (2002). The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115,4565-4575.
    [14]Grenville-Briggs, L.J., Anderson, V.L., Fugelstad, J., Avrova, A.O., Bouzenzana, J., Williams, A., Wawra, S., Whisson, S.C., Birch, P.R., Bulone, V., and van West, P. (2008). Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20,720-738.
    [15]Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L., Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Homer, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'eill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461,393-398.
    [16]Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., and Govers, F. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    [17]Huitema, E., Bos, J.I., Tian, M., Win, J., Waugh, M.E., and Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 12,193-200.
    [18]Joshua-Tor, L. (2004). siRNAs at RISC. Structure 12,1120-1122.
    [19]Judelson, H.S., and Tani, S. (2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6, 1200-1209.
    [20]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1991). Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4,602-607.
    [21]Kamoun, S., van West, P., Vleeshouwers, V.G., de Groot, K.E., and Govers, F. (1998). Resistance of nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10,1413-1426.
    [22]Khatri, M., and Rajam, M.V. (2007). Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45,211-220.
    [23]Lamour, K.H., Win, J., and Kamoun, S. (2007). Oomycete genomics:new insights and future directions. FEMS Microbiology Letters 274,1-8.
    [24]Latijnhouwers, M., and Govers, F. (2003). A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2,971-977.
    [25]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004). A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51,925-936.
    [26]Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
    [27]Liu, H., Cottrell, T.R., Pierini, L.M., Goldman, W.E., and Doering, T.L. (2002). RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160,463-470.
    [28]Marchler-Bauer, A., and Bryant, S.H. (2004). CD-Search:protein domain annotations on the fly. Nucleic Acids Res 32, W327-331.
    [29]Peters, L., and Meister, G. (2007). Argonaute Proteins:Mediators of RNA Silencing. Molecular Cell 26,611-623.
    [30]Qutob, D., Tedman-Jones, J., Dong, S., Kuflu. K., Pham, H., Wang, Y., Dou, D., Kale, S.D., Arredondo, F,D,, Tyler, B.M., and Gijzen, M. (2009). Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avrla and Avr3a. PLoS One 4, e5066.
    [31]Romano, N., and Macino, G. (1992). Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6,3343-3353.
    [32]Tijsterman, M., and Plasterk, R.H.A. (2004). Dicers at RISC:The Mechanism of RNAi. Cell 117, 1-3.
    [33]Tijsterman, M., Ketting, R.F., and Plasterk, R.H.A. (2002). THE GENETICS OF RNA SILENCING. Annual Review of Genetics 36,489-519.
    [34]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    [35]Walker, C.A., Koppe, M., Grenville-Briggs, L.J., Avrova, A.O., Homer, N.R., McKinnon, A.D., Whisson, S.C., Birch, P.R., and van West, P. (2008). A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45,954-962.
    [36]Wang, Y., Li, A., Wang, X., Zhang, X., Zhao, W., Dou, D., Zheng, X., and Wang, Y. (2010). GPR11, a Putative Seven-Transmembrane G Protein-Coupled Receptor, Controls Zoospore Development and Virulence of Phytophthora sojae. Eukaryotic Cell 9,242-250.
    [37]Whisson, S.C., Avrova, A.O., Pieter Van West, and Jones, J.T. (2005). A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Molecular Plant Pathology 6,153-163.
    [1]Attwood, T.K., and Findlay, J.B. (1994). Fingerprinting G-protein-coupled receptors. Protein Eng 7, 195-203.
    [2]Avrova, A.O., Venter, E., Birch, P.R., and Whisson, S.C. (2003). Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genet Biol 40,4-14.
    [3]Avrova, A.O., Whisson, S.C., Pritchard, L., Venter, E., De Luca, S., Hein, I., and Birch, P.R. (2007). A novel non-protein-coding infection-specific gene family is clustered throughout the genome of Phytophthora infestans. Microbiology 153,747-759.
    [4]Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., and Cardenas, M.E. (2007). Sensing the environment:lessons from fungi. Nat Rev Micro 5,57-69.
    [5]Bakthavatsalam, D., Meijer, H.J., Noegel, A.A., and Govers, F. (2006). Novel phosphatidylinositol phosphate kinases with a G-protein coupled receptor signature are shared by Dictyostelium and Phytophthora. Trends Microbiol 14,378-382.
    [6]Bakthavatsalam, D., Brazill, D., Gomer, R.H., Eichinger, L., Rivero, F., and Noegel, A.A. (2007). A G Protein-Coupled Receptor with a Lipid Kinase Domain Is Involved in Cell-Density Sensing 17, 892-897.
    [7]Baldauf, S.L. (2003). The Deep Roots of Eukaryotes. Science 300,1703-1706.
    [8]Chen, J.G., Willard, F.S., Huang, J., Liang, J., Chasse, S.A., Jones, A.M., and Siderovski, D.P. (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301, 1728-1731.
    [9]Chen, X., Shen, G., Wang, Y., Zheng, X., and Wang, Y. (2007). Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiol Lett 269,280-288.
    [10]Erwin, D.C., and Ribiero, O.K. (1996). Phytophthora Diseases Worldwide. APS Press.
    [11]Fabritius, A.L., Cvitanich, C., and Judelson, H.S. (2002). Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45,1057-1066.
    [12]Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L. Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Horner, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'eill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L. Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461,393-398.
    [13]Hopkins, A.L., and Groom, C.R. (2002). The druggable genome. Nat Rev Drug Discov 1,727-730.
    [14]Jacoby, E., Bouhelal, R., Gerspacher, M., and Seuwen, K. (2006). The 7TM G-Protein-Coupled Receptor Target Family. ChemMedChem 1,760-782.
    [15]Judelson, H.S., Narayan, R.D., Ah-Fong, A.M., and Kim, K.S. (2009). Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages. Mol Genet Genomics 281,193-206.
    [16]Judelson, H.S., Ah-Fong, A.M., Aux, G., Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L. Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008). Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21,433-447.
    [17]Kim, K.S., and Judelson, H.S. (2003). Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2,1376-1385.
    [18]Lafon, A., Han, K.-H., Seo, J.-A., Yu, J.-H., and d'Enfert, C. (2006). G-protein and cAMP-mediated signaling in aspergilli:A genomic perspective. Fungal Genetics and Biology 43,490-502.
    [19]Lamour, K.H., Win, J., and Kamoun, S. (2007). Oomycete genomics:new insights and future directions. FEMS Microbiology Letters 274,1-8.
    [20]Li, L., Wright, S.J., Krystofova, S., Park, G., and Borkovich, K.A. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi*. Annual Review of Microbiology 61,423-452.
    [21]Ling, K., Wang, P., Zhao, J., Wu, Y.L., Cheng, Z.J., Wu, G.X., Hu, W., Ma, L., and Pei, G.(1999). Five-transmembrane domains appear sufficient for a G protein-coupled receptor:functional five-transmembrane domain chemokine receptors. Proc Natl Acad Sci U S A 96,7922-7927.
    [22]Malbon, C.C. (2005). G proteins in development. Nat Rev Mol Cell Biol 6,689-701.
    [23]Maller, J.L. (2003). Signal transduction. Fishing at the cell surface. Science 300,594-595.
    [24]Meijer, H.J., and Govers, F. (2006). Genomewide analysis of phospholipid signaling genes in Phytophthora spp.:novelties and a missing link. Mol Plant Microbe Interact 19,1337-1347.
    [25]Moy, P., Qutob, D., Chapman, B.P., Atkinson, I., and Gijzen, M. (2004). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact 17, 1051-1062.
    [26]Musnier, A., Blanchot, B., Reiter, E., and Crepieux, P. (2009). GPCR signalling to the translation machinery. Cellular Signalling 22,707-716.
    [27]Pandey, S., Nelson, D.C., and Assmann, S.M. (2009). Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis. Cell 136,136-148.
    [28]Prakob, W., and Judelson, H.S. (2007). Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44,726-739.
    [29]Qutob, D., Kamoun, S., and Gijzen, M. (2002). Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32, 361-373.
    [30]Schmitthenner, A.F. (1985). Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69,362-368.
    [31]Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24,1596-1599.
    [32]Tani, S., Yatzkan, E., and Judelson, H.S. (2004). Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17,330-337.
    [33]Tani, S., Kim, K.S., and Judelson, H.S. (2005). A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42, 42-50.
    [34]Thompson, M.D., Percy, M.E., McIntyre Burnham, W., and Cole, D.E. (2008). G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 448,109-137.
    [35]Torto-Alalibo, T., Tian, M., Gajendran, K., Waugh, M.E., van West, P., and Kamoun, S. (2005). Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiol 5,46.
    [36]Torto-Alalibo, T.A., Tripathy, S., Smith, B.M., Arredondo, F.D., Zhou, L., Li, H., Chibucos, M.C., Qutob, D., Gijzen, M., Mao, C., Sobral, B.W., Waugh, M.E., Mitchell, T.K., Dean, R.A., and Tyler, B.M. (2007). Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact 20,781-793.
    [37]Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant Signal Behav 4,942-947.
    [38]Tyler, B.M. (2002). Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40,137-167.
    [39]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    [40]Vogel, C., Teichmann, S.A., and Pereira-Leal, J. (2005). The Relationship Between Domain Duplication and Recombination. Journal of Molecular Biology 346,355-365.
    [41]Xue, C., Hsueh, Y.-P., and Heitman, J. (2008). Magnificent seven:roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews 32,1010-1032.
    [42]郑小波.(1997).疫霉菌及其研究技术.中国农业出版社.
    [1]Aylor, D.E. (2003). Spread of plant disease on a continental scale:role of aerial dispersal of pathogens. Ecology 84,1989.
    [2]Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., and Cardenas, M.E. (2007). Sensing the environment:lessons from fungi. Nat Rev Micro 5,57-69.
    [3]Bakthavatsalam, D., Brazill, D., Gomer, R.H., Eichinger, L., Rivero, F., and Noegel, A.A. (2007). A G Protein-Coupled Receptor with a Lipid Kinase Domain Is Involved in Cell-Density Sensing 17, 892-897.
    [4]Connolly, M.S., Williams, N., Heckman, C.A., and Morris, P.F. (1999). Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet Biol 28,6-11.
    [5]Deacon, J.W. (1993). Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycological Research 97,1153.
    [6]Deacon, J.W., and Saxena, G. (1998). Germination triggers of zoospore cysts of Aphanomyces euteiches and Phytophthora parasitica. Mycological Research 102,33-41.
    [7]Donaldson, S.P., and Deacon, J.W. (1992). Role of calcium in adhesion and germination of zoospore cysts of Pythium:a model to explain infection of host plants. Journal of General Microbiology 138,2051-2059.
    [8]Donaldson, S.P., and Deacon, J.W. (1993a). Effect of amino acids and sugars on zoospore taxis, encystment and cyst germination in Pythium aphanidermatum (Edson) Fitzp., P. catenulatum Matthews and P. dissotocum Drechs. New Phytologist 123,289-295.
    [9]Donaldson, S.P., and Deacon, J.W. (1993b). Changes in motility of Pythium zoospores induced by calcium and calcium-modulating drugs. Mycological Research 97,877-883.
    [10]Dou, D., Kale, S.D., Wang, X., Chen, Y., Wang, Q., Jiang, R.H., Arredondo, F.D., Anderson, R.G., Thakur, P.B., McDowell, J.M., Wang, Y., and Tyler, B.M. (2008). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avrlb. Plant Cell 20,1118-1133.
    [11]Erwin, D.C., and Ribiero, O.K. (1996). Phytophthora Diseases Worldwide. APS Press.
    [12]Han, K.H., Seo, J.A., and Yu, J.H. (2004). A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51,1333-1345.
    [13]Hardham, A., and Gubler, F. (1990). Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell Biology International Reports 14,947-956.
    [14]Hua, C, Zheng, X., and Wang, Y. (2009). G protein alpha subunit may help zoospore to find the infection site and influence the expression of RGS protein. Commun Integr Biol 2,91-93.
    [15]Hua, C, Wang, Y, Zheng, X., Dou, D., Zhang, Z., and Govers, F. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    [16]Hur, E.-M., and Kim, K.-T. (2002). G protein-coupled receptor signalling and cross-talk:Achieving rapidity and specificity. Cellular Signalling 14,397-405.
    [17]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1991). Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4,602-607.
    [18]Judelson, H.S., Ah-Fong, A.M., Aux, G., Avrova, A.O., Bruce, C., Cakir, C, da Cunha, L. Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008). Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21,433-447.
    [19]Kim, K.S., and Judelson, H.S. (2003). Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2,1376-1385.
    [20]Latijnhouwers, M., and Govers, F. (2003). A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2,971-977.
    [21]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004). A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51,925-936.
    [22]Malbon, C.C. (2005). G proteins in development. Nat Rev Mol Cell Biol 6,689-701.
    [23]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002). Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36,137-146.
    [24]McCudden, C.R., Hains, M.D., Kimple, R.J., Siderovski, D.P., and Willard, F.S. (2005). G-protein signaling:back to the future. Cell Mol Life Sci 62,551-577.
    [25]McLeod, A., Fry, B.A., Zuluaga, A.P., Myers, K.L., and Fry, WE. (2008). Toward improvements of oomycete transformation protocols. J Eukaryot Microbiol 55,103-109.
    [26]Morris, P.F., Bone, E., and Tyler, B.M. (1998). Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117,1171-1178.
    [27]Musnier, A., Blanchot, B., Reiter, E., and Crepieux, P. (2009). GPCR signalling to the translation machinery. Cellular Signalling 22,707-716.
    [28]Pierce, K.L., Premont, R.T., and Lefkowitz, R.J. (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3,639-650.
    [29]Randall, T.A., Dwyer, R.A., Huitema, E., Beyer, K., Cvitanich, C., Kelkar, H., Fong, A.M., Gates, K., Roberts, S., Yatzkan, E., Gaffney, T., Law, M., Testa, A., Torto-Alalibo, T., Zhang, M., Zheng, L., Mueller, E., Windass, J., Binder, A., Birch, P.R., Gisi, U., Govers, F., Gow, N.A., Mauch, F., van West, P., Waugh, M.E., Yu, J., Boller, T., Kamoun, S., Lam, S.T., and Judelson, H.S. (2005). Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18,229-243.
    [30]Reid, B., Morris, B.M., and Gow, N.A.R. (1995). Calcium-Dependent, Genus-Specific, Autoaggregation of Zoospores of Phytopathogenic Fungi. Experimental Mycology 19,202-213.
    [31]Ribeiro, O.K., Erwin, D.C., Bartnicki-Garcia, S., and Tsao, P.H. (1983). Phytophthora:its biology, taxonomy, ecology and pathology.
    [32]Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant Signal Behav 4,942-947.
    [33]Tyler, B.M. (2002). Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40,137-167.
    [34]Tyler, B.M., Wu, M., Wang, J., Cheung, W., and Morris, P.F. (1996). Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones. Appl Environ Microbiol 62,2811-2817.
    [35]van West, P., Appiah, A.A., and Gow, N.A.R. (2003). Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology 62,99-113.
    [36]Warburton, A., and Deacon, J.W. (1998a). Trasmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genetics and Biology 25,54-62.
    [37]Warburton, A.J., and Deacon, J.W. (1998b). Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen phytophthora parasitica. Fungal Genet Biol 25,54-62.
    [38]郑小波.(1997).疫霉菌及其研究技术.中国农业出版社.
    [1]Ah Fong, A.M., and Judelson, H.S. (2004). The hAT-like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans. Mol Genet Genomics 271,577-585.
    [2]Bardwell, L., Cook, J.G., Inouye, C.J., and Thorner, J. (1994). Signal Propagation and Regulation in the Mating Pheromone Response Pathway of the Yeast Saccharomyces cerevisiae. Developmental Biology 166,363-379.
    [3]Burkholder, A.C., and Hartwell, L.H. (1985). The yeast alpha-factor receptor:structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res 13,8463-8475.
    [4]Chang, Y.C., Miller, G.F., and Kwon-Chung, K.J. (2003). Importance of a Developmentally Regulated Pheromone Receptor of Cryptococcus neoformans for Virulence. Infect. Immun.71, 4953-4960.
    [5]Chung, S., Karos, M., Chang, Y.C., Lukszo, J., Wickes, B.L., and Kwon-Chung, K.J. (2002). Molecular Analysis of CPR{alpha}, a MAT{alpha}-Specific Pheromone Receptor Gene of Cryptococcus neoformans. Eukaryotic Cell 1,432-439.
    [6]Erwin, D.C., and Ribiero, O.K. (1996). Phytophthora Diseases Worldwide. APS Press.
    [7]Fabritius, A.L., Cvitanich, C., and Judelson, H.S. (2002). Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45,1057-1066.
    [8]Grunwald, N.J., and Flier, W.G. (2005). The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopathol 43,171-190.
    [9]Hagen, D.C., McCaffrey, G., and Sprague, G.F., Jr. (1986). Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor:gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci U S A 83,1418-1422.
    [10]Hartwell, L.H. (1980). Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol 85,811-822.
    [11]Harutyunyan, S.R., Zhao, Z., Hartog, T., Bouwmeester, K., Minnaard, A.J., Feringa, B.L., and Govers, F. (2008). Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis. Proc Natl Acad Sci U S A 105,8507-8512.
    [12]Judelson, H.S. (1996). Chromosomal heteromorphism linked to the mating type locus of the oomycete Phytophthora infestans. Mol Gen Genet 252,155-161.
    [13]Kim, H., and Borkovich, K.A. (2004). A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52,1781-1798.
    [14]Kitamura, K., and Shimoda, C. (1991). The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J 10,3743-3751.
    [15]Lamour, K.H., and Hausbeck, M.K. (2002). The Spatiotemporal Genetic Structure of Phytophthora capsici in Michigan and Implications for Disease Management. Phytopathology 92,681-684.
    [16]Prakob, W., and Judelson, H.S. (2007). Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genetics and Biology 44,726-739.
    [17]Qi, J., Asano, T., Jinno, M., Matsui, K., Atsumi, K., Sakagami, Y., and Ojika, M. (2005). Characterization of a Phytophthora mating hormone. Science 309,1828.
    [18]Schmitthenner, A.F. (1985). Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69,362-368.
    [19]Tanaka, K., Davey, J., Imai, Y., and Yamamoto, M. (1993). Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 13,80-88.
    [20]Whiteway, M., Hougan, L., Dignard, D., Thomas, D.Y., Bell, L., Saari, G.C., Grant, F.J., O'Hara, P., and MacKay, V.L. (1989). The STE4 and STE18 genes of yeast encode potential [beta] and [gamma] subunits of the mating factor receptor-coupled G protein. Cell 56,467-477.
    [1]Antonin, W., Fasshauer, D., Becker, S., Jahn, R., and Schneider, T.R. (2002). Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Mol Biol 9,107-111.
    [2]Armstrong, M.R., Whisson, S.C., Pritchard, L., Bos, J.I.B., Venter, E., Avrova, A.O., Rehmany, A.P., Bhme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M.A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J.L., and Birch, P.R.J. (2005). An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm.Proceedings of the National Academy of Sciences of the United States of America 102,7766-7771.
    [3]Baldauf, S.L. (2003). The Deep Roots of Eukaryotes. Science 300,1703-1706.
    [4]Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000). A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290,972-977.
    [5]Birch, P.R., Armstrong, M., Bos, J., Boevink, P., Gilroy, E.M., Taylor, R.M., Wawra, S., Pritchard, L., Conti, L., Ewan, R., Whisson, S.C., van West, P., Sadanandom, A., and Kamoun, S. (2009). Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J Exp Bot 60,1133-1140.
    [6]Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409,839-841.
    [7]Bonifacino, J.S., and Glick, B.S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell 116, 153-166.
    [8]Burri, L., and Lithgow, T. (2004). A Complete Set of SNAREs in Yeast. Traffic 5,45-52.
    [9]Dou, D., Kale, S.D., Wang, X., Jiang, R.H., Bruce, N.A., Arredondo, F.D., Zhang, X., and Tyler, B.M. (2008). RXLR-mediated entry of Phytophthora sojae effector Avrlb into soybean cells does not require pathogen-encoded machinery. Plant Cell 20,1930-1947.
    [10]Fuchs, U., Hause, G., Schuchardt, I., and Steinberg, G. (2006). Endocytosis Is Essential for Pathogenic Development in the Corn Smut Fungus Ustilago maydis. Plant Cell 18,2066-2081.
    [11]Garcia, J., Dulubova, I., Sudhof, T.C., and Rizo, J. (2002). Solution Structure of the Vam7p PX Domain. Biochemistry 41,5956-5962.
    [12]Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerre-Tugaye, M.T., and Bottin, A. (2002). The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115,4565-4575.
    [13]Gaulin, E., Drame, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerre-Tugaye, M.T., and Rickauer, M. (2006). Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18,1766-1777.
    [14]Gilbert, M.J., Thornton, C.R., Wakley, G.E., and Talbot, N.J. (2006). A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440,535-539.
    [15]Gupta, G.D., and Brent Heath, I. (2002). Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genetics and Biology 36,1-21.
    [16]Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L. Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti. L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Horner, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'eill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L. Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461,393-398.
    [17]Hong, W. (2005). SNAREs and traffic. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1744,120-144.
    [18]Jahn, R., and Scheller, R.H. (2006). SNAREs ---engines for membrane fusion. Nat Rev Mol Cell Biol 7,631-643.
    [19]Jiang, R.H., Tripathy, S., Govers, F., and Tyler, B.M. (2008). RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105,4874-4879.
    [20]Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44,41-60.
    [21]Kamoun, S., Lindqvist, H., and Govers, F. (1997a). A novel class of elicitin-like genes from Phytophthora infestans. Mol Plant Microbe Interact 10,1028-1030.
    [22]Kamoun, S., van West, P., de Jong, A.J., de Groot, K.E., Vleeshouwers, V.G., and Govers, F. (1997b). A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol Plant Microbe Interact 10,13-20.
    [23]Kuratsu, M., Taura, A., Shoji, J.-y., Kikuchi, S., Arioka, M., and Kitamoto, K. (2007). Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genetics and Biology 44,1310-1323.
    [24]Kweon, Y., Rothe, A., Conibear, E., and Stevens, T.H. (2003). Ykt6p Is a Multifunctional Yeast R-SNARE That Is Required for Multiple Membrane Transport Pathways to the Vacuole. Mol. Biol. Cell 14,1868-1881.
    [25]McNew, J.A., Sogaard, M., Lampen, N.M., Machida, S., Ye, R.R., Lacomis, L., Tempst, P., Rothman, J.E., and Sollner, T.H. (1997). Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J Biol Chem 272,17776-17783.
    [26]Morris, P.F., Bone, E., and Tyler, B.M. (1998). Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117, 1171-1178.
    [27]Olson, G.M., Fox, D.S., Wang, P., Alspaugh, J.A., and Buchanan, K.L. (2007). Role of Protein O-Mannosyltransferase Pmt4 in the Morphogenesis and Virulence of Cryptococcus neoformans. Eukaryotic Cell 6,222-234.
    [28]Qutob, D., Tedman-Jones, J., and Gijzen, M. (2006). Effector-triggered immunity by the plant pathogen Phytophthora. Trends Microbiol 14,470-473.
    [29]Qutob, D., Tedman-Jones, J., Dong, S., Kuflu, K., Pham, H., Wang, Y., Dou, D., Kale, S.D., Arredondo, F.D., Tyler, B.M., and Gijzen, M. (2009). Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avrla and Avr3a. PLoS One 4, e5066.
    [30]Rose, J.K.C., Ham, K.-S., Darvill, A.G., and Albersheim, P. (2002). Molecular Cloning and Characterization of Glucanase Inhibitor Proteins:Coevolution of a Counterdefense Mechanism by Plant Pathogens. Plant Cell 14,1329-1345.
    [31]Rossi, V., Banfield, D.K., Vacca, M., Dietrich, L.E.P., Ungermann, C., D'Esposito, M., Galli, T., and Filippini, F. (2004). Longins and their longin domains:regulated SNAREs and multifunctional SNARE regulators. Trends in Biochemical Sciences 29,682-688.
    [32]Sanderfoot, A. (2007). Increases in the Number of SNARE Genes Parallels the Rise of Multicellularity among the Green Plants. Plant Physiol.144,6-17.
    [33]Shan, W., Cao, M., Leung, D., and Tyler, B.M. (2004). The Avrlb locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rpslb. Mol Plant Microbe Interact 17,394-403.
    [34]Siriputthaiwan, P., Jauneau, A., Herbert, C., Garcin, D., and Dumas, B. (2005). Functional analysis of CLPT1, a Rab/GTPase required for protein secretion and pathogenesis in the plant fungal pathogen Colletotrichum lindemuthianum. J Cell Sci 118,323-329.
    [35]Soaard, M., Tani, K., Ye, R.R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J.E., and Solner, T. (1994). A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78,937-948.
    [36]Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24,1596-1599.
    [37]Tian, M., and Kamoun, S. (2005). A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. BMC Biochem 6,15.
    [38]Tian, M., Benedetti, B., and Kamoun, S. (2005). A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138,1785-1793.
    [39]Tian, M., Huitema, E., Da Cunha, L., Torto-Alalibo, T., and Kamoun, S. (2004). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279,26370-26377.
    [40]Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. (2007). A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143,364-377.
    [41]Tochio, H., Tsui, M.M.K., Banfield, D.K., and Zhang, M. (2001). An Autoinhibitory Mechanism for Nonsyntaxin SNARE Proteins Revealed by the Structure of Ykt6p. Science 293,698-702.
    [42]Torto-Alalibo, T.A., Tripathy, S., Smith, B.M., Arredondo, F.D., Zhou, L., Li, H., Chibucos, M.C., Qutob, D., Gijzen, M., Mao, C., Sobral, B.W., Waugh, M.E., Mitchell, T.K., Dean, R.A., and Tyler, B.M. (2007). Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact 20,781-793.
    [43]Tsui, M., and Banfield, D. (2000). Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113,145-152.
    [44]Tyler, B.M., Forster, H., and Coffey, M.D. (1995). Inheritance of Avirulence Factors andRestriction Fragment Length Polymorphism Markersin Outcrosses of the Oomycete Phytophthora sojae. Mol. Plant Microbe Interact.8,515-523.
    [45]Tyler, B.M., Wu, M., Wang, J., Cheung, W., and Morris, P.F. (1996). Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones. Appl Environ Microbiol 62,2811-2817.
    [46]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L. Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    [47]Ungermann, C., von Mollard, G.F., Jensen, O.N., Margolis, N., Stevens, T.H., and Wickner, W. (1999). Three v-SNAREs and Two t-SNAREs, Present in a Pentameric cis-SNARE Complex on Isolated Vacuoles, Are Essential for Homotypic Fusion. J. Cell Biol.145,1435-1442.
    [48]Vleeshouwers, V.G., Rietman, H., Krenek, P., Champouret, N., Young, C., Oh, S.K., Wang, M., Bouwmeester, K., Vosman, B., Visser, R.G., Jacobsen, E., Govers, F., Kamoun, S., and Van der Vossen, E.A. (2008). Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3, e2875.
    [49]Walch-Solimena, C., Blasi, J., Edelmann, L., Chapman, E., von Mollard, G., and Jahn, R. (1995). The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J. Cell Biol.128,637-645.
    [50]Yi, M., Chi, M.-H., Khang, C.H., Park, S.-Y., Kang, S., Valent, B., and Lee, Y.-H. (2009). The ER Chaperone LHS1 Is Involved in Asexual Development and Rice Infection by the Blast Fungus Magnaporthe oryzae. Plant Cell 21,681-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700