自行火炮行动系统疲劳断裂可靠性分析与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自行火炮行动系统疲劳寿命预测与可靠性仿真方法的研究,为自行火炮的维修保障提供了理论依据和参考价值,完善和提高武器装备的保障力和生存力,具有重要的意义。本文建立了一套随机载荷作用下行动系统疲劳断裂寿命可靠性分析的CAE仿真方法。在自行火炮虚拟样机仿真获得行动系统关重件随机载荷时间历程的基础上,以扭力轴为主要研究对象,疲劳断裂可靠性理论为基础,考虑各种随机因素的分散性,从安全寿命/损伤容限分析的角度,全面深入地研究了行动系统关重件在多行驶工况随机载荷作用下裂纹萌生可靠寿命及裂纹扩展可靠寿命计算理论和仿真方法。
     建立基于ATV的自行火炮虚拟样机、数字的等级路面以及虚拟样机与路面之间的接触模型组成的虚拟行驶试验系统,仿真并获得行动系统关重件在各级标准路面和不同档位时的随机载荷时间历程。通过改进的三峰谷计数、参数估计和权系数法,获得了各工况合成后的联合概率密度函数。并提出了概率密度——最速下降法来扩展多工况下的二维疲劳载荷,编制了8×8的全寿命里程载荷设计谱。
     提出了构件疲劳可靠性试验仿真并拟合获得构件P-S_a-S_m-N曲面的方法。考虑了构件的重要几何尺寸、应力集中系数K_f、尺寸修正系数ε和表面加工修正系数β等横向因素的随机性对疲劳寿命的影响。对于扭力轴相关重要几何尺寸的分散性影响,运用了改进的进化神经网络(MENN)进行模拟。通过MSC.Marc参数建模计算而获得的扭力轴危险部位的最大剪应力作为MENN训练样本,研究和运用了独特的编码技术和先进的遗传操作算子和进化策略,得到了用遗传算法优化后的神经网络结构及其权值和闽值矩阵。仿真结果检验表明MENN具有很好的精度、拟合能力和泛化能力。然后以材料P-S_a-S_m-N曲面为基础,由应力寿命法和Monte-Carlo法仿真并获得了扭力轴在各恒幅载荷作用下给定可靠度的疲劳寿命,由此拟合得到了扭力轴的P-S_a-S_m-N曲面。与实验结果比较,表明该疲劳可靠性试验仿真方法是合理的。
     考虑了扭力轴的两类不同性质的横向随机性和纵向随机性的影响,由MM法则和EM法则修正二维概率Miner准则,推导获得了MTPMiner准则和ETPMiner准则,运用了应力寿命—MTPMiner准则理论和应力寿命—ETPMiner准则理论分别进行了扭力轴的疲劳可靠性分析,提供了某个可靠度下扭力轴疲劳寿命的变化区间。并从疲劳安全寿命的角度,根据疲劳寿命的仿真结果提出了完善自行火炮扭力轴的大小修周期的建议。而且,运用上面的计算理论和仿真方法,仿真了行动系统履带销、履带板和主动轮等关重件的疲劳可靠寿命。同时开发了自行火炮行动系统疲劳可靠性仿真软件,该软件解决了VC与MATLAB之间数据多交互多
Fatigue lives prediction and reliability simulation of the driving system of a certain type of self-propelled gun are studied. This dissertation has provided these theoretic foundation and technical references for the maintenance guarantee of self-propelled guns. It is beneficial to improve guarantee capability and survivability of weapon equipments. A new set of CAE simulative method about fatigue fracture reliability analysis has been established. The random loading acting on the key components of the driving system have been obtained by simulating the virtual prototype of the self-propelled gun on various types of standard road. The scatters of all kinds of random factors are investigated based on fatigue fracture reliability theoretics. Furthermore, these calculation theoretics and simulation methods for crack initiation lives and crack propagation lives of the torsion shaft have been studied deeply from fatigue safe life/damage tolerance's view under multi-driving condition stochastic load.
    Firstly, the virtual driving experiment systems are built, which consist of the self-propelled gun virtual prototype using ATV (ADAMS/Tracked Vehicle), the numerical standard road surfaces and the contact models between the virtual prototype and the road surfaces. And the stochastic loading history of the key components of the driving system is simulated and obtained when the self-propelled gun drives in different speed grades on various types of standard road surfaces. The random loading has been counted, dealt with in statistics methods, synthesized and extended with these theories and methods, Which include the advanced rain-flow counting method, the weight coefficient method and the probability density — the steepest descent method. As a result, the 8 X 8 two-dimensional load design spectrum for the whole life was fulfilled.
    Secondly, this thesis has presented a fatigue reliability test simulation method of the structural detail to obtain the P-Sa-Sm-N fatigue surface. The random of these fatigue transverse factors has been considered, such as these correlative important sizes of the key components, the stress concentration factor K_f, the size correction factor ε and the surface quality correction factors β ,and so on. The effect of the scatter character of some critical sizes of the torsion shaft is investigated using the MENN (Modified Evolutionary Neural Network). The maximum shearing stress history of the critical location on the root of spline tooth obtained from results of simulation by MSC.Marc software is used for the MENN training samples. And the weight matrix and biases matrix of Neural Network is optimized and given by Genetic Algorithm simulation
引文
[1] 《坦克装甲车辆研制过程常见故障研究》课题组.坦克装甲车辆研制过程常见故障研究(研究报告之二:故障统计与评估).1994.
    [2] 杨绍奎,张福田,孟惠荣.履带车辆行星变速装置复合框架强度可靠度计算的智能仿真算法.兵工学报,1999,20(3):198-203.
    [3] 杨绍奎,陈千圣.坦克零部件疲劳可靠度计算的一种近似方法.兵工学报坦克装甲车与发动机分册.1997,65(1):1-5.
    [4] 臧廷杰.车辆传动系统随机载荷谱和疲劳设计研究.北京理工大学硕士论文,1999.
    [5] 蒋轩,张军,郑慕侨,孙逢春.用断裂力学理论预估负重轮疲劳寿命.兵工学报,2000,21(增),35-37.
    [6] 高连华,郭金茂.车辆悬挂系统扭杆弹簧疲劳寿命的统计分析.装甲兵工程学院学报,1994,8(1),31-35.
    [7] 李永东,张丙喜,贾斌.某型主战坦克扭力轴的疲劳断裂分析与寿命计算.机械强度,2004,26(4),443-446.
    [8] 瞿宏敏,程军.车辆动力学建模与模拟的研究.汽车研究与开发,1998,2.
    [9] 韩宝坤,李晓雷,孙逢春.履带车辆动力学仿真技术的发展与展望.兵工学报,2003.24(2)
    [10] 居乃鵕.装甲车辆动力学分析与仿真.国防工业出版社,2002.4
    [11] Bekker M G.地面—车辆系统导论.《地面—车辆系统导论》翻译组译.北京:机械工业出版社,1978.12
    [12] Mechanical Dynamics Sweden AB. ADAMS Tracked Vehicle Toolkit version 3.3 documentation and Training Guide, 2001. 4
    [13] 马吉胜.基于Adams履带车辆工具箱的自行火炮行军试验仿真,系统仿真学报,2002,14(7),939-941.
    [14] 吴大林.自行火炮行驶过程动态仿真研究.硕士学位论文.石家庄:军械工程学院,2004.
    [15] 贾长治,王兴贵,李金明.虚拟样机在火炮研制及评估中的应用研究.火力与指挥控制.2002,27(3),74-80.
    [16] Suresh S.王中光译.材料的疲劳.北京:国防工业出版社.1993.
    [17] 徐灏.疲劳强度.北京:高等教育出版社.1988.
    [18] 王珉.抗疲劳制造原理与技术.南京:江苏工业出版社.1998.
    [19] 王学颜,宋广惠.结构疲劳强度设计与失效分析.北京:兵器工业出版社.1991.
    [20] 张连营,余建星,胡云昌等.简易海洋平台疲劳可靠性优化设计的进化算法.海洋学报.1998,20(6):101-108.
    [21] 张正贵,张波,韩恩厚,黄雨华.应力与腐蚀因素对连接件腐蚀疲劳寿命交互作用的研究.机械强度.2001,23(2):243-245.
    [22] 郭隽,陈飞,郭成璧.高温疲劳短裂纹萌生与扩展的实验研究.机械强度.2002,24(3):423-425.
    [23] Gamstedt, E K, Berglund L A and Peijs T. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Composites Science Technology, 1999, 59(5): 759.
    [24] Gilchrist M D, Svensson N and Shishoo R. Fracture and fatigue performance of textile commingled yarn composites. J Materials Science, 1998, 33(16): 4049.
    [25] 姚起杭,姚军.结构振动疲劳问题的特点与分析方法.机械科学与技术.2000,19,56-58.
    [26] Jiang Y, Sehitoglu H.Amodel for rolling contact failure.Wear,1999,224(1):38.
    [27] 周仲荣.关于微动磨损与微动疲劳的研究.中国机械工程.2000,11(10):1146-1150.
    [28] 高镇同,熊峻江.疲劳学的研究进展.北京航空航天大学学报.1996,22(3):245-248.
    [29] Dossou D, Azari Z. and Pluvinage C. A strain-energy-density-based lifetime prediction model for notched specimens: polycarbonate under thermal fatigue. Problemy Prochnosti, 1998, 30(6):32.
    [30] 金尧,孙亚芳,孙训方,邓勇.蠕变/疲劳共同作用下寿命估算方法.材料工程.2000,11:6-8.
    [31] Johnson W S, Calcaterra J R. A fibre stress-based parameter for thermomechanical fatigue life predictions of titanium matrix composites. Fatigue Fract Engng Mater Struct, 1998, 21(4): 479.
    [32] Stanzl-Tschegg S E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies. Fatigue Fract Engng Mater Struct, 1999, 22(7): 567.
    [33] 杨卫.宏微观断裂力学.北京:国防科技大学出版社.1995.
    [34] 沈为,彭立华.疲劳损伤演变方程与寿命估算—连续损伤力学的应用.机械强度.1994,16(2),52-57.
    [35] 丁智平,刘义伦,尹泽勇.镍基单晶高温合金蠕变—疲劳寿命评估方法进展.机械强度.2003.25(3):254-259.
    [36] 程文明.集装箱门式起重机动态仿真与疲劳寿命研究.西南交通大学博士论文.2000.
    [37] 姚卫星.结构疲劳寿命分析.北京:国防工业出版社.2003.
    [38] 郑楚鸿.高周疲劳设计方法—应力场强法的研究.清华大学博士论文.1984.
    [39] 吴富民.结构疲劳强度.西安:西北工业大学出版社.1983.
    [40] 姚磊江,童小燕,吕胜利.金属低周疲劳的能量耗散与热发射.机械科学与技术.2003,22(5),799-801.
    [41] 吕海波.结构疲劳可靠性分析方法研究.南京航空航天大学博士论文.2000.
    [42] Palmgren A. Die lebensdauer von kugellsgern. Z Ver Deut Ing, 1924,68:339-341.
    [43] Miner M A. Cumulative damage in fatigue. J Appl Mech, 1945,17A(159).
    [44] 姚卫星,杨晓华.疲劳裂纹随机扩展模型进展.力学与实践.1995,17(3):1-7.
    [45] 航空工业部科学技术委员会编.飞机结构损伤容限设计指南.1985.
    [46] Sobczyk K, Trebicki J. Modeling of random by cumulative jump processes. Engineering Fracture Mechanics. 1989, 34: 477-493.
    [47] Arone R. Fatigue crack growth under stationary random load. Engineering Fracture Mechanics. 1991, 39: 895-903.
    [48] Kozin F, Bogdanoff J L. Probabilistic models fatigue crack growth. Engineering Fracture Mechanics. 1984,20:255-270.
    [49] 赵少汴.常用累积损伤理论疲劳寿命估算精度的试验研究.机械强度.2000,22(3),206-209.
    [50] 董聪,何庆芝.随机疲劳累积损伤可靠性分析模型.北京航空航天大学学报.1995,21(2):33-39.
    [51] 董聪,杨庆雄.用于疲劳寿命预测的概率型线性累积损伤准则.西北工业大学学报.1993,11(2):139-143.
    [52] 郦明,奥脱·布克斯鲍姆,哈茨·罗华克.结构抗疲劳设计.北京:机械工业出版社.1987.
    [53] Buch A. Fatigue Strength Calculation. Switzerland: Trans Tech Publications,1988.
    [54] Zhao Z, Haldar A and Breen F L. Fatigue-reliability evaluation of steel bridges. J.Struct. Engrg., ASCE, 1994,120(5):1604-1623.
    [55] 高镇同.疲劳应用统计学.北京:国防工业出版社.1986.
    [56] 倪侃,高镇同.疲劳可靠性二维概率MINER准则.固体力学学报.1996,17(4):341-346.
    [57] 倪侃,张圣坤.二维概率MINER准则的试验数据验证.机械强度.1997,19(3):52-56.
    [58] Ni Kan, Gao Zhentong. Constant amplitude fatigue strength and P-S_a-S_m-N surface family. Chinese J. of Aeronautic. 1996.9(1): 28-29.
    [59] Weibull W. A statistical representation of fatigue failure in solids. Acta Polytech Mech. Engrg. Serv., 1949,1(9).
    [60] Birnbaum Z W, Saunders S C. A new family of life distfibutions.J. Applied Probability, 1969,6: 319-327.
    [61] Payne A O. A reliability approach to fatigue for structure. Probabilistic Aspects of Fatigue, ASTM, 1972, STP511: 106-155.
    [62] Gao Z T, Fei B J and Fu H M. Two dimensional stress-strength interference model for reliability-based design[A]. Conference proceedings of ICM-6. Kyoto, 1991.
    [63] 熊峻江,高镇同.稳态循环载荷下疲劳/断裂可靠性寿命估算.应用力学学报,1997,14(3):14-20.
    [64] 徐灏.机械强度的可靠性设计.北京:机械工业出版社.1984.
    [65] Kececioglu D. Fatigue prevention and reliability. Proc. ASME[C]. 1978. 285-309.
    [66] 吕海波,姚卫星.元件疲劳可靠性估算的剩余强度模型[J].航空学报,2000,21(1):74-77.
    [67] 郭盛杰,姚卫星.结构元件疲劳可靠性估算的剩余寿命模型.南京航空航天大学学报.2003,35(1):25-29.
    [68] 顾怡,吕海波.结构元件疲劳可靠性分析的累积损伤模型.机械强度,2000,22(3):228-230.
    [69] Wirsching P H. Fatigue reliability for offshore structures. Journal of Structural Engineering ASCE,1984,110(10): 2340-2356.
    [70] Zhao Z W, Haldar A and Breen Jr F L. Fatigue -reliability evaluation of steel bridges.Journal of Structural Engineering. ASCE, 1994,120(5): 1608-1623.
    [71] Kozin F, Bogdanoff J L. Parobabilitstic models of fatigue crack growth.Engineering Fracture Mechanics, 1984, 20: 255-270.
    [72] Arone R. Fatigue crack growth under satationary random load. Engineering Fracture Mechanics,1991,39:895-903.
    [73] Karamchandani A, Dalane J I, Bjerager P. Systems reliability approach to fatigue of structures. J Structural Engineering, ASCE, 1992, 118(3): 684-700.
    [74] 郭书祥.疲劳裂纹扩展随机模型和动态可靠性[J].机械强度,1998,20(2):120-125.
    [75] 欧进萍,段忠东.基于随机裂纹扩展机制的构件抗力衰减分析.机械强度,1994,16(3):46-51.
    [76] 熊峻江,高镇同等.稳态循环应力下结构断裂可靠性设计方法.固体力学学报,1996,17(3):235-237.
    [77] Kam C P, Birkinshaw M. Reliability-based fatigue and fracture mechanics assessment methodology for offshore structural components. Fatigue,994,16:183-191.
    [78] 李良巧,顾唯明.机械可靠性设计与分析[M].国防工业出版社.1998.
    [79] Freudenthal A M. Safety under conditions of ultimate load failure and fatigue WADD Tech. Report, 1961: 61-677.
    [80] Freudenthal A M. Analysis of safety, J.struct Div, ASCE,Vol. 92, NO. STI, 1966:267-325.
    [81] Trotter M E Conditional Monte Carlo for normal sampling, Symposium on Monte Carlo Methods, John-wiley, New York, 1984.
    [82] Hasofer A M, Lind N C. Exact and invariant second-moment code format, J. Eng. Mech. Div., ASCE,Vol. 100, No. EM1, 1974: 111.
    [83] Rackwitz R, Fiessler B. Structural Reliability under combined random load sequences, Comput. Struct., Vol. 9, 1979: 489-494.
    [84] Comell C A. Bounds on the reliability of structural system, J.Struct. Div., ASES, Vol.93.No.ST1, Feb., 1967:171-200.
    [85] Ditlevesen O. Generalized second moment reliability index, J.Struct.Mech., Vol.7, No.4:453-472.
    [86] Ang A H S, Abdalnour J, Chaker A A. Analysis of activity networks and uncertainty, J. Eng. Mech.Div.,ASCE, 101 (EM4), 1975.
    [87] 冯元生,张立,把多维正态分布非线性安全边界方程求解可靠怀问题降阶为一重积分的精确解法,中国机械工程,Vol.5,1994.
    [88] Fu G. Variance reduction by truncated multi-modal importance sampling. Struct. Safety, 1994,13;267-283.
    [89] Pulido J E, Jacobs T L, Prates E C. Structural reliability using Monte-Carlo simulation with variance reduction techniques on elastic-plastic structures. Comput & Struct, 1992, 43:419-430.
    [90] Ayyub B M, Chiu C Y. Generalized conditional espection for structural reliability assessment. Struct Safety, 1992,11: 131-146.
    [91] 宋笔峰.结构体系失效概率计算方法研究.博士学位论文,西北工业大学,1994.
    [92] 张立.结构可靠性的近似解析法和数值—解析混合解法的研究.博士学位论文,西北工业大学,1995.
    [93] 洪延姬,金星,钟群鹏.16MnR钢疲劳可靠性分析单随机变量模型.工程力学.2002,19(2):115-118.
    [94] Hong Y J, Xing J. Statistical analysis of fatigue crack growth for 16MnR steel under constant amplitude loads. International Joutnal of Pressure Vessels and Piping. 1999, 76: 380-385.
    [95] Yang J N, Maning S D. A simple second order approximation for stochastic crack growth analysis. Eng. Fract. Mech. 1996,53:677-686.
    [96] 丁克勤,柳春图.重要性抽样法在管节点疲劳可靠性分析中的应用.力学学报.1996,28(3):359-362.
    [97] Rajashekhar M R, Eligwood B R. A new look at the response surface approach for reliability analysis, Struct Safety. 1993, 12: 205-220.
    [98] 徐军,刘东升,郑颖人.具有高次非线性和复杂性功能函数的岩石土工程可靠度分析.岩石力学与工程学报,2001,2.
    [99] 徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用.计算力学学报,2002,19(2):217-221.
    [100] 杨绍奎,张福田,孟惠荣.基于人工神经网络的结构零件可靠度仿真方法.机械强度,1999,21(4):258-261.
    [101] 阎宏生,胡云昌,牛勇.基于神经网络响应面的结构可靠性分析方法研究.海洋工程,2002,20(2):1-6.
    [102] 田辰,阎宏生,胡去昌.基于神经网络响应面的疲劳裂纹扩展寿命的可靠性分析.机械强度.2004,26(1):58-62.
    [103] 吕震宙,冯元生.元件强度可靠性的模糊概率计算模型.航空学报,1996,17(6):752-754.
    [104] 王光远,王文泉,段明珠.具有多种失效模式的抗震结构的模糊可靠性分析.力学学报,1998,20(3):278-282.
    [105] 郭惠昕.模糊变量与随机变量组合时的模糊可靠度计算方法.机械强度,2002,24(1):20-22.
    [106] 吕震宙,冯蕴雯.结构可靠性问题研究的若干进展.力学进展,2000,30(1):21-28.
    [107] 高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望.机械强度,1995,17(3):61—80.
    [108] 高镇同,阎楚良.结构全寿命主动可靠性设计与失效智能在线预示.中国机械工程,2000,11(1):53-55.
    [109] Naruhito S, Hitoshi E System reliability analysis of existing structures. Sturct Safety. 1990, 7: 297-294.
    [110] Huang Hong-zhong. Fuzzy reliability analysis of generalize strength of mechanical structure based on defining fuzzy safety state by generalized fuzzy strength. Journal of Mechanical Strength, 2000, 22(1): 36-40.
    [111] 黄洪钟.机械结构广义强度的模糊可靠性计算理论.机械工程学报,2001,37(6):106-108.
    [112] 郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度,2002,24(4):524-526.
    [113] Bern-Haim Y. A nom-probabilistic concept of reliability. Structural Safety, 1994, 16(4): 227-245.
    [114] 薛红军.结构疲劳断裂中的若干可靠性问题研究.博士学位论文,西北工业大学,2000.
    [115] 方华灿,陈国明.模糊概率断裂力学.石油大学出版社.1999.
    [116] 江爱民,任永坚,丁皓江.概率断裂分析的随机边界元法,应用力学学报.1995,12(3),76-80.
    [117] 李佳,平安,王德俊.基于材料非稳态疲劳损伤过程的可靠性分析智能化仿真方法.机械工程学报,2001,37(1):1-5.
    [118] Bolotin V V. Stochastic models of cumulative damage in composite materials. Engineering Fracture Mechanics. 1976, 8(1): 103-113.
    [119] Robert C. Anthony M. Probability methods for the fracture of composite materials. Composite Structures, 1994, 28(1): 113-119.
    [120] Koichi Goda. A strength reliability model by Markov process of unidirectional composites with fibers placed in hexagonal arrays. International Journal of Solids and Structures. 2003, 40(24): 6813-6837.
    [121] Burak Birgoren, Husnu Dirikolu M. A computer simulation for estimating lower bound fracture strength of composites using Weibull distribution. Composites Part B: Engineering. 2004, 35(3): 263-266.
    [122] Kamio Z, Matsushita H and Stmadel B. Statistical analysis of ice fracture characteristics. Engineering Fracture Mechanics. 2003,70(15): 2075-2088.
    [123] Xiu-San Xing and Hai-Yun Hu. From statistical distribution of microcrack to statistical distribution of strength and toughness. Physics Letters A. 2002, 296(1): 61-64.
    [124] Bullough R, Burdekin F M, et al. The probability of 'large' defects in thick-section butt welds in nuclear components. International Journal of Pressure Vessels and Piping. 2001, /8(8): 553-565.
    [125] Tom Lassen, John D. A probabilistic damage tolerance concept for welded joints Part 2: a supplement to the rule based S-N approach. Marine Structures, 2002, 15(6): 615-626.
    [126] Mladen Luki, Christian Cremona. Probabilistic optimization of welded joints maintenance versus fatigue and fracture. Reliability Engineering & System Safety.Volume 72, Issue 3, June 2001, 72(3): 253-264.
    [127] Bullough R, Green V R, Tomkins B, Wilson R and Wintle J B. A review of methods and applications of reliability analysis for structural integrity assessment of UK nuclear plant. International Journal of Pressure Vessels and Piping. 1999, 76(13): 909-919.
    [128] Chad M. Landis, Irene J. Beyerlein and Robert M. McMeeking. Micromechanical simulation of the failure of fiber reinforced composites. Journal of the Mechanics and Physics of Solids. Volume 48, Issue 3, March 2000, 48(3): 621-648.
    [129] Mao, Hongyin. Probabilistic life prediction of structures under fatigue and creep[D]. Vanderbilt University. 2001.
    [130] Riesch-Oppermann H, Bruckner-Foit A. Probabilistic fracture mechanics applied to high temperature reliability. Nuclear Engineering and Design. 1991, 128 (2): 193-200.
    [131] Deschanels H, Escaravage C, et al. Assessment of industrial components in high temperature plant using the "ALIAS-HIDA" -A case study. Engineering Failure Analysis. 2005.
    [132] Pan Shi, Sankaran Mahadevan. Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction. Engineering Fracture Mechanics. 68(13): 1493-1507.
    [133] Simonen F A, Khaleel M A, Phan H K, Harris D O, Dedhia D D, Kalinousky D N and Shaukat S K. Evaluation of environmental effects on fatigue life of piping. Nuclear Engineering and Design. 2001,208(2): 143-165.
    [134] Grujicic M, DeLong J R. and DeRosset W. S.. The effect of lining segmentation on the reliability of hybrid ceramic/steel gun barrels. Materials & Design. 2003, 24(1): 69-78.
    [135] Zou, Bin. Ships in ice: The interaction process and principles of design[D]. Memorial University of Newfoundland (Canada). 2001.
    [136] Veronique Lazarus. Fatigue propagation path of 3D plane cracks under mode I loading. Comptes Rendus de 1'Academie des Sciences-Series IIB-Mechanics-Physics-Astronomy. 1999,327(13): 1319-1324.
    [137] Chen, Guofeng. Sensitivity and reliability analyses of linear and nonlinear cracked structures[D]. The University of Iowa. 2001.
    [138] 熊峻江.可靠性设计中的疲劳裂纹扩展随机模型.应用力学学报.1998,15(4):82-86.
    [139] 蒋鸣晓,朱位秋.疲劳裂纹扩展随机模型研究近期进展.力学进展.1999,29(1):34-42.
    [140] Zheng Ruohua. Stochastic fatigue crack growth in steel structures subjected to random loading. Johns Hopkins University. 1998.
    [141] Kuo Chi-jui. Reliability assessment of deteriorating component due to fatigue crack growth under a random loading. University of Arizona. 1997.
    [142] Lin Y K, Yang J N. On statistical moments of fatigue crack propagation. Engineering Fracture Mechanics. 1983,18(2):243-262.
    [143] 崔海涛,温卫东.随机有限元及其工程应用.南京航空航天大学学报.2000,32(1):91-98.
    [144] Liebowitz H. Computational fracture mechanics: research and application. Engineering Fracture Mechanics. 1995,50(5):653-670.
    [145] Nisbioka, Toshibisa. State of the art in computational dynamic fracture mechanics. JSME International Journal, Series A, 1994, 37(4): 313-333.
    [146] 李健康.断裂力学分析中的随机有限元方法.固体力学学报.2001,22(1):85-88.
    [147] Zhang J, Ellingwood B. SFEM for reliability of structures with material nonlinearities. J Struct Engng. 1996,122 (6):701-704.
    [148] 冒小萍,郎福元,柯显信.断裂力学的计算方法及研究现状与展望.商丘师范学院学报.2004,20(2):20-25.
    [149] 杨德全.边界元理论及应用.北京:北京理工大学出版社.2002.
    [150] 黎在良.断裂力学中的边界数值方法.北京:地震出版社.1996.
    [151] 朱加铭,欧贵宝,何蕴增.有限元与边界元法.哈尔滨:哈尔滨工程大学出版社.2002.
    [152] Portela A, Aliabadi M H, Rooke D P. Dual boundary element incremental analysis of crack propagation. Int Journal Computers and Structures 46, 1993: 237-247.
    [153] Aliabadi M H. A new generation of boundary element methods in fracture mechanics. International Journal of Fracture 86,1997: 91-125.
    [154] Mi Y., Aliabadi M. H. Three-dimensional crack growth simulation using BEM. Computers & Structures. 1994,Vol52: 871-878.
    [155] 陆山,黄其青.复杂载荷三维裂纹分析双重边界元法.力学学报,2002,34(5),715-725.
    [156] Xu Y, Saigal S. Element free galerkin study of steady quasi-static crack growth in plane strain in elastic-plastic materials. Computational Mechanics. 1998, 22: 255-265.
    [157] Nageswararao, Bhairavavajjula. Stochastic meshless methods for deformation and fracture in materials and structures. University of Iowa. 2002.
    [158] 寇晓东,周维恒.应用无单元法追踪裂纹扩展.岩土力学与工程学报.2000,19(4):18-23.
    [159] 李卧东.模拟裂纹传播的新方法——无网格伽辽金法.岩土力学.2001,22(1):33-36.
    [160] 石根华.数值流形方法与非连续变形方法.北京:清华大学出版社.1997.
    [161] SHI G H. Proceedings of the First International Forum on DDA and Simulation of Discontinous. Media Berkeley. 1996. 52-204.
    [162] 张大林.基于流形方法的动态应力强度因子数值算法.大连理工大学学报.2002,42(5):590-593.
    [163] 沈远彤,羿旭明.断裂分析的小波数值方法.应用数学和力学.2000,21(10):1028-1032.
    [164] Gallagher R H. A review of finite element techniques in fracture mechanics, Proc. of the First Conference on Numerical Methods in Fracture Mechanics, A.R. Luxmoore & D.R.J. Owen (ed), University college of Swansea, 1978: 1-25.
    [165] Rice J R, Tracey D M. Computational fracture mechanics, in Numerical and Computer Methods in Structural Mechanics, Academic Press, New York, 1973.
    [166] Smith R A, Cooper J F. A finite element model for the shape development of irregular planar cracks. Int. J. Pre. Ves and Piping. 1989,36(4):315-326.
    [167] Sumi Y, Yang C, Hayashi S. Morphological aspects of fatigue crack propagation:Part Ⅰ. Computational Procedure, Int. J. Fracture. 1996,82:205-220.
    [168] 高庆.工程断裂力学.重庆:重庆大学出版社.1996:1-5.
    [169] Cruse T A. Numerical evaluation of elastic stress intensity factor by the BIEM. In: Swedlow JL ed. The Surface Crack: Physical Problems and Computational Solution. American Society of Mechanical Engineers. 1972: 153-170.
    [170] Ingraffea A R, Blandford G E & Ligget J A. Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method, Proc. of Fracture Mechanics: Fourteenth Symposium, ASTM STP 791, J. C. Lewis & G. Sines (ed), ASTM, 1983: 407-I426.
    [171] Li Z L, Zhan F L and Du S H. A highly accurate BEM in fracture mechanics.Key Engineering Materials. 2000: 91-96.
    [172] Hagedom. Karl Edgar. Some aspects of fracture mechanics research during the last 25 years. Steel Research, 1998, 69: 206-213.
    [173] Snyder M D, Cruse T A. Boundary integral equation analysis of cracked anisotropic plates, Int. Journal of Fracture, 1975, 11:315-328.
    [174] Crouch S L. Solution of plane elasticity problems by the displacement discontinuity method, Int. Journ. Num. Meth. Engng., 1976, 10: 301-342.
    [175] Blandford G E, Ingraffea A R & Liggett J A. Two-dimensional stress intensity factor computations using the boundary element method, Int. Journ. Num. Meth. Engng., 1981, 17:387-404.
    [176] Portela A, Aliabadi M H & Rooke D P. The dual boundary element method: effective implementation for crack problems, Int. Journ. Num. Meth. Engng., 1991, 33: 1269-1287.
    [177] Sladek V, Sladek J, Balas J. Boundary integral formulation of crack problems, ZAMM, 1986, 66: 83-94.
    [178] Cruse T A. Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, 1989.
    [179] Cisilino A P, Aliabadi M H. Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Engineering Fracture Mechanics 1999,63:713-733.
    [180] Blandford G E, Ingraffea A R & Liggett J A. Two-dimensional stress intensity factor computations using the boundary element method, Int. Journ. Num. Meth. Engng., 1981, 17:387-404.
    [181] Mi Y, Aliabadi M H. Dual boundary element method for three-dimensional fracture mechanics analysis, Engineering Analysis with Boundary Elements, 1: 161-171.
    [182] Mi Y. Three-dimensional analysis of crack growth, Topics in Engineering, 28, Computational Mechanics Publ., Southampton, U. K. (1996),
    [183] Aliabadi M H, Rooke D P. Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton and Kluwer Academic Publishers, Dordrecht, 1991.
    [184] 徐晓飞.飞机结构多裂纹损伤容限研究综述.洪都科技.1221-1229.
    [185] 晏思聪,李泰来.汽包与管道抗疲劳断裂可靠性分析方法.武汉大学学报.2001,34(1):60-64.
    [186] 李光煜,黄厚宝.承受交变载荷时大型轴类零件断裂可靠性设计.煤矿机械.1999,(5):7-8.
    [187] 赵少汴.损伤容限设计方法和设计数据.机械设计.2000,5:4-7.
    [188] 刘文廷,郑仲,费斌军.概率断裂力学与概率损伤容限/耐久性.北京:北京航空航天大学出版社.1998.
    [189] 廖敏,孙秦.含多裂纹连接结构损伤容限试验研究,航空学报,1998,19(1):103-106.
    [190] 费斌军,童明波,刘文.含多裂纹结构的概率损伤容限评定方法,航空学报,1995,16(2):137-142.
    [191] 张建宇,费斌军,腐蚀环境下多裂纹结构的概率损伤容限分析,北京航空航天大学学报,2002,28(2):202-204
    [192] 熊峻江,高镇同.用于疲劳可靠性设计的P-S_a-S_m-N曲面拟合法.实验力学.1995,10(1):53-67.
    [193] 凌静,高镇同.P-S-N曲线测定的最大似然法.航空学报.1992,13(5):A247-A252.
    [194] 高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望.机械强度.1995,17(3):61-80.
    [195] 胡俏,徐灏,谢里阳.疲劳应力统计分布与可靠度计算模型.机械工程学报.1994,30(2):105-110.
    [196] 胡俏,谢里阳,徐灏.复杂载荷下构件疲劳可靠度的一种评估模型.机械强度.1992,14(2):38-41.
    [197] 凌静等.随机载荷作用下构件疲劳可靠性分析方法.航空学报.1992,13(3):146-152.
    [198] 倪侃,张圣坤.变幅加载下疲劳可靠性分析.航空动力学报.1997,12(3):230-234.
    [199] 徐灏,胡俏.随机载荷下零件的可靠度计算新方法.农业机械学报.1995,26(2):97-100.
    [200] 苏志霄,刘宏昭,李鹏飞,曹惟庆.随机应力循环下结构疲劳寿命和可靠性的计算.机械强度.1999,21(2):137-140.
    [201] 乐晓斌,高德平,何明鉴.对称随机循环应力作用时零件的疲劳可靠度和寿命的预测方法.航空动力学报.1995,11(1):22-24.
    [202] 吕文阁,谢里阳,徐灏.一种随机载荷作用下疲劳可靠性估算的新方法.农业机械学报.2000,31(1):104-107.
    [203] 苏彦江,高庆,王光钦.考虑两类不同随机应力时的构件疲劳可靠度计算模型.西南交通大学学报.2001,36(6):584-587.
    [204] 苏彦江.构件随机疲劳可靠性分析方法与应用研究.西南交通大学博士论文.2001.
    [205] 张钰,王丹,张风和,孙志礼,丁津原.一种新的疲劳可靠寿命计算方法.东北大学学报.2000,21(1):42-45.
    [206] 崔俊芝.计算机辅助工程(CAE)的现在和未来.计算机辅助设计与制造.2000,6(3):3-7.
    [207] Riha D S, et al. Capabilities and applications of probabilistic methods in finite element analysis. TSSAT Proceedings of the 5th international conference on reliability and quality in design. Las Vegas.TSSAT, 1999: 16-21.
    [208] 杜宏云,施红星.计算机辅助工程CAE在汽车开发中的应用与展望.交通标准化.2004,4.
    [209] 刘检华,郭钢,徐宗俊.计算机辅助工程应用及展望.重庆大学学报.2001,24(6):113-116.
    [210] Sandford M H, Jones R D. Power plant systems and the role of CAE. SAE 920396.
    [211] 王自勤.计算机辅助工程(CAE)技术及其应用.贵州工业大学学报.2001,30(4):16-19.
    [212] 郑建荣.ADAMS—虚拟样机技术入门与提高.机械工业出版社.2002.1
    [213] 赵雯,王维平,朱一凡.武器系统虚拟样机技术研究.国防科技大学学报.1999,21(1).
    [214] Mechanical Dynamics Sweden AB. ADAMS Tracked Vehicle Toolkit version 3.3 documentation and Training Guide. 2001.4.
    [215] Anders godin. Study of the influence of vehicle parameters on tractive performance in deep snow. Journal of Terramechanics. 2001,38:47-59.
    [216] 1983年式152mm履带自行加农榴弹炮设计说明书.(内部资料)
    [217] 中国人民解放军总参谋部炮兵装备技术研究所.炮兵武器装备论证参考(下)
    [218] 1983年式152mm履带自行加农榴弹炮兵器构造与使用维护.军械工程学院.1992.
    [219] 杨国来,闵建平,王长武.火炮多柔体系统参数化仿真平台研究.弹道学报.2000,12(4):53-57.
    [220] 张克健.车辆地面力学.国防工业出版社.2002.
    [221] Bekker M G.孙凯南[译].陆用车辆行驶原理.中国工业出版社.1962.
    [222] 李长祜,陈德兴,刘述学[译].地面车辆原理..机械工业出版社.1985.
    [223] 韩宝坤,李晓雷,孙逢春.履带车辆动力学仿真技术的发展与展望.兵工学报.2003,24(2):246-249.
    [224] Chang J B, Szamossi M. Random Spectrum Fatigue Crack Life.Predictions with or without Considering Load Interactions. ASTM STP749,1981.
    [225] 程文明.集装箱门式起重机动态仿真与疲劳寿命研究.博士学位论文,西南交通大学.2000.
    [226] Glinka G, P. Kam J C. Rain-flow Counting Algorithm for Very Long Stress Histories. Int. J. Fatigue. 1987,(9): 223-228.
    [227] Downing S, Socie D F.Simple Rain-flow Counting Algorithms. Int. J. Fatigue, 1982,(4): 31-40.
    [228] Cacko J. Simultaneous Computer Simulation of Operational Random Processes and Continual Rain-flow Counting. Int. J. Fatigue, 1992,(14): 183-188.
    [229] 徐灏.概率疲劳.沈阳.东北大学出版社.1994.
    [230] 凌静,高镇同.多工况机械结构疲劳载荷的统计处理.机械强度.1992,14(2):34-38.
    [231] 高镇同.二维随机疲劳载荷的统计处理及应用.北京航空学院学报.1986(4):75-80.
    [232] 马逢时.应用概率统计(上).北京:高等教育出版社.1989.
    [233] 项昌乐.车辆传动系轴类零件疲劳设计与变矩器动态特性研究.博士学位论文,北京:北京理工大学,2001.
    [234] PTZ89式152mm自行加农榴弹炮技术检查连队保管保养规范.中国人民解放军总参谋部兵种部.1994.
    [235] 王长利,崔约贤,蒋大鸣.扭力轴台架实验断裂失效分析.物理测试.2000,No.4:21-24.
    [236] 郦明.汽车结构抗疲劳设计.合肥:中国科技大学出版社.1995.
    [237] 赵少汴.抗疲劳设计.北京:机械工业出版社.1995.
    [238] 刘义伦.工程构件疲劳寿命预测理论与方法.长沙:湖南科学技术出版社.1997.
    [239] 封建湖,车刚明,聂玉峰.数值分析原理.北京:科学出版社.2001.
    [240] 马东升.数值计算方法.北京:机械工业出版社.2001.
    [241] 《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册.北京:机械工业 出版社.1995.
    [242] 史升坚.扭力轴断裂失效的断口形态,断裂形式和应力状态分析.西车科技.1991(1):42-45.
    [243] 殷兆辉,黄华,韩宝坤.履带车辆扭杆弹簧有限元模型与优化.计算机仿真.2003,20(9):56-57.
    [244] 焦李成.神经网络系统理论.西安电子科技大学出版社.1995.
    [245] 闻新,周露,李翔.Matlab神经网络仿真与应用.北京:北京科学出版社.2003.
    [246] 唐春明,高协平.进化神经网络的研究进展.系统工程与电子技术.2001,23(10):93-97.
    [247] 李敏强.遗传算法的基本理论与应用.北京:科学出版社.2002.
    [248] 张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社.2000.
    [249] 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社.1999.
    [250] 王健,王健华.标准遗传算法的研究进展,华东船舶工业学院学报.2000,14(3):28-34.
    [251] E.J.Chang, R.P. Lippmann. Using genetic algorithms to improve pattern classification performance. Advances in Neural information Processing 3. San Mateo. 1991:797-803.
    [252] Harp S A. Towards the genetic synthesis of Neural Networks. Proc. Of 3rd Conf. On GA. Arlington, 1989: 360-390.
    [253] Whiteley D. Genetic Algorithms and Neural Networks. Optimizing Connections and Connectivity. Parallel Computing. 1990, 14: 347-361.
    [254] Caudel T P, Dolan C P. Parametric Connectivity. Training of Constrained Networks Using Genetic Algorithms. Proc.of 3rd Cone On GA. Arlington, 1989.
    [255] Varrio J, Ohsuga S. Adaptive Neural Architectures Through Growth Control. Intelligent Engineering systems Through Artifical Neural Networks.New York: ASM Press. 1991: 11-16.
    [256] Boets E J. Designing Modular Artificial Neural Networks. Technick Report 93(24).Leiden University. The Netherland. 1993.
    [257] Yao X. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems. 1993, 8(4): 539-567.
    [258] 赖鑫生.神经网络结合遗传算法优化应用.贵州大学学报.2004,21(2):179-184.
    [259] 赵正佳,黄洪钟,陈新.优化设计求解的遗传神经网络新算法研究.西南交通大学学报,2000,35(1):65-68.
    [260] 王小平,曹立明.遗传算法—理论、方法与软件实现.西安:西安交通大学出版社.2002.
    [261] 饶文碧,徐锐,尚钢.基于遗传算法的结构损伤识别.武汉理工大学学报.2003,25(7):75-77.
    [262] 白新理 刘祚秋.单轴等幅载荷下零件疲劳寿命的可靠性估算.华北水利水电学院学报.1999,20(4):49-51.
    [263] 郑晓阳,谢基龙.16Mn钢焊接接头的Miner疲劳累积损伤可靠性模型研究.北方交通大学学报.1999,23(1):109-112.
    [264] 倪侃,张圣坤,高镇同.二维概率MINER准则的试验数据验证.机械强度.1997,19(3):52-56.
    [265] 高镇同,熊峻江.疲劳可靠性.北京:北京航空航天大学出版社.2000.
    [266] 什科利尼克.疲劳试验方法手册.北京:机械工业出版社.1983.
    [267] Zhao Z, Haldar A, Breen F L. Fatigue-reliability evaluation of steel bridges. J.Struct. Engrg., ASCE, 1994,120(5): 1604-1623.
    [268] 赵浩东,张立翔.谱荷载下剩余强度衰减的混凝土疲劳寿命可靠性分析.力学与实践.2002,24(10):28-30.
    [269] 张少名.实用应力集中手册.西安:陕西科学技术出版社.1984.
    [270] 凌树森.可靠性在机械强度设计和寿命估计中的应用.北京:宇航出版社.1988.
    [271] 程育仁.疲劳强度.北京:中国铁道出版社.1990.
    [272] 机械工程手册编辑委员会.机械工程手册(第19篇机械结构强度).机械工业出版社.1980.
    [273] 席庆,张春林,Visual C4-+6.0实用编程技术[J],中国水利水电出版社,1999.
    [274] 沈智芳,易当祥.Visual C++与MATLAB程序的接口研究与实现.计算机应用研究.2005,22:551-552.
    [275] 何强,何英,MATLAB扩展编程,北京:清华大学出版社,2002.
    [276] 李江红,田涛.Matlab和Visual C++接口中编译环境的配置,微型机与应用,2000(4):10-11.
    [277] 刘国庆,何国胤,董绪荣.Visual C++与Matlab的混合编程研究,指挥技术学院学报,2001,12(5):36-38.
    [278] 王铎.断裂力学.哈尔滨:哈尔滨工业大学出版社.1989.
    [279] Portela A, Aliabadi M H, Rooke D P. The dual boundary element method: effective implementation for crack problems. Int. J. Num Meth. Engng 1992(33):1269-1287.
    [280] Brebbia C A, Dominguez J. Boundary elements: an introductory course. Southampton/London: Computational Mechanics Publications/Mc-Graw Hill Company. 1992.
    [281] Brebbia C A, Tells C F and Wrobel L C. Boundary element technique. Berlin: Springer-Verlag. 1984.
    [282] Portela A, Aliabadi M H, Rooke D P. Dual boundary element incremental analysis of crack propagation. Computers and Structures. 1993,46(2):237-247.
    [283] Mi Y, Aliabadi M H. Discontinuous crack-tip elements: application to 3D boundary element method. Int Journal o f Fracture. 1994,67:R67-R71.
    [284] 申光宪,肖宏,陈一鸣.边界元法.北京:机械工业出版社.1998.
    [285] Rizzo F J, Shioppy D J. An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Num Meth Engng 1977,11:1753-1768.
    [286] Guiggiani M, Krishnasamy G, Rizzo F J, Rudolphi T J. Hypersingular boundary integral equationa. In: Morino L, Piva R, editors. A new approach to their numerical treatment, in boundary vntegral methods, theory and applications. Berlin:Springer-Verlag. 1991:211-220.
    [287] 钟群鹏,金星,洪延姬,陶春虎.断裂失效的概率分析和评估基础.北京:北京航空航天大学出版社.2000.
    [288] 袁懋昶.断裂力学理论及其工程应用.重庆:重庆大学出版社.1989.
    [289] 洪其麟,郑光华,郑祺选.高等断裂力学.北京:北京航空学院出版社.1987.
    [290] Sih G C. Mechanics of fracture initiation and propagation. London: Kluwer Academic Publishers, 1991.
    [291] Gerstle W H. Finite and boundary element modeling of crack propagation in two-and three-dimensions using interactive computer graphics. Ph. D. thesis. Cornell University. Ithaca NY, USA,1986.
    [292] Cisilino A P, Aliabadi M H. Three-dimensional BEM analysis for fatigue crock growth in welded components. Int Journal of Pressure Vessels and Piping. 1997,70:135-144.
    [293] 陈志伟.随机谱下裂纹扩展分析的几种模型.机械强度.2000,22(4):245-248.
    [294] Elber W. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics 1970; 29: 37-45.
    [295] 中国航空研究院编著.军用飞机损伤容限设计手册.内部发行,1994.
    [296] 程文明,王金诺.桥门式起重机疲劳裂纹扩展寿命的模拟估算.起重运输机械.2001,2:1-4.
    [297] 中国航空科学研究院.应力强度因子手册.航空工业出版社.1997.
    [298] Chen Zhi Gang, Zhang Xmg. A Closed Form Solution of Stress Intensity Factor about a Circular Tube with a Surface Crack by Energy Release Rate Method, Engineering Fracture Mechanics. 1989,32(4): 639-652.
    [299] 崔振源.表面裂纹理论及其应用.西安:西北工业大学出版社.1987.
    [300] Makoto AKAMA等(日).用概率断裂力学对车轴进行可靠性分析.国外铁道车辆.1995,4:38-43.
    [301] 罗毅,黄培彦,刘文珽.裂纹扩展寿命安全可靠性分析模型研究.北京航空航天学报.2002,28(1):113-115.
    [302] 刘文珽,费斌军.概率断裂力学与概率损伤容限/耐久性.北京:北京航空航天大学出版社.1998.
    [303] PROVAN J W.概率断裂力学和可靠性.航空工业部((AFFD》系统工程办公室.北京:航空工业出版社.1989.
    [304] 杨杉,熊先仁,蔡锌如.汽包与管道疲劳损伤断裂可靠性分析.江西科学.2002,20(2):78-84.
    [305] 金星,洪延姬,钟群鹏,沈怀荣.16MnR钢疲劳统计特性评估的双随机变量法.强度与环境.2002,29(3):28-31.
    [306] 刘嘉琨,王家生,张玉环.应用概率统计.北京:科学出版社.2004.
    [307] 李幸人.东风4B型内燃机柴油机曲轴疲劳裂纹扩展可靠性分析.硕士学位论文,西南交通大学.2000.
    [308] 马希文.正交设计的数学理论.北京:人民教育出版社.1981.
    [309] 杨子胥.正交表的构造.济南:山东人民出版社.1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700