大型FPSO船舶结构疲劳寿命预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮式生产储油卸油轮(FPSO)是具有油船外形的近海结构物,与普通的油船相比,FPSO将承受更为严峻的载荷条件,因而其船体结构要具有特殊的疲劳耐久度和断裂强度,以确保在作业位置按照生产要求持续工作40年以上直至油田开采结束。
     根据对受损FPSO损伤情况的调查,开孔及纵骨穿越横框架处的连接节点等结构都是易于产生疲劳损伤的部位,因而有必要在有限元数值计算的基础上对结构形式进行符合实际建造条件的改进。FPSO的装卸载比油船更为频繁,因而装卸载对船体造成的低周疲劳损伤也不容忽视。由于结构节点在设计上的不合理或生产建造、监督管理等环节的漏洞,或是遭遇台风等恶劣海况,在FPSO船体结构上将会产生裂纹。在焊趾处裂纹萌生的初期,通过对裂纹进行打磨的方法进行修理,可以达到延长结构疲劳寿命的目的。目前国际国内对FPSO疲劳强度的研究工作主要集中在如何预防裂纹的产生上,对于产生裂纹后的结构进行的研究则较少。
     本文作为“大型船舶结构的超规范研究”的后续研究,主要研究工作有如下几个方面:
     (1)对国内外船舶结构疲劳强度的研究方法、低周疲劳强度的研究进展以及FPSO疲劳强度的研究情况进行了综述。
     (2)对某散货船和某入坞维修FPSO部分舱段的损伤情况进行了实船调查,对采集的数据进行了分析。
     (3)基于对FPSO开孔疲劳损伤调查的结果,采用考虑焊缝的体单元模型,对开孔处的应力集中系数进行了三维有限元数值计算,参照船厂的实际建造情况,提出了较目前规范更便于建造的结构形式并给出了相应的应力集中系数计算参考值。
     (4)基于对老龄船舶纵骨穿越横框架处疲劳损伤情况的调查,参考JTP规范中建议的节点连接形式,采用考虑焊缝的体单元模型,对FPSO舷侧水线位置纵骨穿越横框架节点的应力集中系数进行了三维有限元数值计算,给出当计算疲劳寿命不满足设计要求时对结构可能采取的改进形式。
     (5)分析了低周疲劳对FPSO船体结构疲劳寿命的影响,以某FPSO船体结构中纵骨穿越横框架连接节点为研究对象,采用考虑低周疲劳修正的疲劳校核方法进行了疲劳寿命的计算。
     (6)提出了对FPSO船体结构中具有一定板厚的含裂纹T型焊接连接节点进行打磨消除裂纹的修理方法。在拉弯载荷工况下对不同的T型节点裂纹修理切口形式进行了简化的二维有限元数值计算,得到相应的应力集中系数,并将应力集中系数较小的切口形式应用到采用体单元的三维有限元数值计算中,分析了板厚和修理切口长度对T型节点应力集中系数的影响。
     (7)考虑在含修理切口的T型节点切口底部再次出现表面裂纹的情况,建立含表面裂纹的有限元模型,采用线弹性断裂力学的方法,对拉弯载荷工况下不同尺度的表面裂纹最深处及端部的应力强度因子进行了系列有限元数值计算,并根据计算结果回归得出适用于含修理切口T型节点切口底部萌生的表面裂纹的应力强度因子经验计算公式。
     (8)对T型节点焊趾处的裂纹修理进行了试验研究,验证了采取打磨消除裂纹延长结构疲劳寿命的可行性,将试件断口上预制裂纹及其扩展的观察结果与计算值进行了比较,检验了经验公式的工程适用性。
     通过本文的研究得出的主要结论如下:
     (1)采用考虑焊缝的体单元模型,对开孔及纵骨穿越横框架连接节点处的应力集中系数进行有限元数值计算,能够更好的模拟实际结构。在船厂目前所具备的建造条件下,将环绕开孔的加强形式改为Type G型,既便于施工,又能有效降低开孔处的应力集中;扶强材、防倾肘板和背肘板的趾端设置成软趾的形式有利于降低应力集中,而采用背肘板的结构由于横框架间纵骨跨距的减小,应力集中的降低较为明显。
     (2)装卸载产生的低周疲劳损伤在FPSO的疲劳强度计算中占有较为重要的作用,综合考虑高、低周疲劳损伤进行计算的结果显示,考虑低周损伤后,结构节点的疲劳寿命由原来的92年下降到60年,这能够对不满足设计寿命的FPSO的损伤情况进行解释。
     (3)对FPSO船体结构中具有一定板厚的含焊趾处表面裂纹T型焊接节点进行裂纹打磨消除后,焊趾处将产生一定形状的表面缺陷。对拉弯载荷工况下含修理切口(表面缺陷)T型焊接节点的应力集中系数进行简化的二维有限元数值计算以及采用体单元的三维有限元数值计算表明:在修理切口表面半宽大于深度时,采用椭圆型的切口形式产生的应力集中系数将小于U型切口形式;不考虑焊趾的影响、减小母板板厚以及增加修理切口的长度都将增大焊趾处表面缺陷的应力集中系数;采用平板表面缺陷来代替焊趾处表面缺陷的简化方法偏于安全。
     (4)采用线弹性断裂力学的方法,对含修理切口的T型节点切口底部的表面裂纹最深处及端部,在拉伸、弯曲载荷工况下的应力强度因子进行了有限元数值计算,并根据计算结果回归得出适用于含修理切口T型节点切口底部萌生的表面裂纹的应力强度因子经验计算公式。
     (5)对FPSO典型焊接节点进行的短期修理试验表明,即便在焊趾处的萌生裂纹已扩展到一定程度,采取沿焊趾方向贯穿板厚的切口对裂纹进行打磨消除,仍可以有效地延长结构的疲劳寿命;并通过对断面的观察,检验了基于线弹性方法得出的含修理切口T型节点切口底部表面裂纹的应力强度因子经验公式的工程适用性。
Floating Production Storage and Offloading vessels (FPSO) are the ship-shaped offshore installations, which will subject to much harsher environmental loads compared to trading oil tankers. Therefore, particular fatigue endurance and fracture strength should be satisfied for the hull structures of FPSO to ensure the continuous operation for more than 40 years during the entire production period in a supposed field.
     According to the investigation on damaged FPSOs, fatigue damages are prone to arise in the structural sites or units as cutouts and connections of longitudinal/frame transition, which bears out the necessity to improve the practical structural form based on fine finite element numerical calculations. Since the loading and unloading are quite frequent for FPSO compared to oil tankers, the low cycle fatigue damage must be certainly considered. Fatigue cracks may be initiated by many factors as structural misalignments, the design and operational flaws, and harsh environmental conditions. During the crack initiation stage at the weld toe, cracks can be repaired by grinding treatment to elongate the fatigue life of the structure. To date, the research work related to the fatigue strength of FPSO is mainly on how to prevent crack initiation but neglects the treatment of damaged structures. As the post-research of“beyond rule research on large ship structures”, the following efforts have been made in this thesis:
     (1) A literature review of the related research works, including the current fatigue strength study methods of ship structures, the research progress of low-cycle fatigue strength and the existed conclusions for the fatigue strength of FPSO, is summarized, in which a description of the existing approaches, development procedure and applied conditions is introduced.
     (2) Practically investigated the damage conditions and distributions of the hull of a FPSO repaired in dry dock and a certain bulk carrier, the analyses on the obtained data are carried out.
     (3) On the basis of the investigation results for the fatigue damages of FPSO cutouts, three dimensional finite element numerical calculations are carried out to calculate the cutout stress concentration factors. And a new structural form which is more convenient for construction compared to current rules is put forward accordingly with the reference values of stress concentration factors.
     (4) On the basis of the investigation results for the fatigue damages at connections of longitudinal/frame transition of aged ships and according to the advised connection form in JTP rule, three dimensional finite element calculations are carried out to obtain the stress concentration factors at the connection of longitudinal/frame transition in the water line of FPSO, using the solid element model with the consideration of weld. And the possible improved structural forms were analyzed when the demanded fatigue life is not satisfied.
     (5) The effects of the low cycle fatigue damage on the hull structures of FPSO are analyzed and the fatigue life of a connection of longitudinal/frame transition for a certain FPSO hull structure is calculated using the fatigue assessment method considering low cycle fatigue correction.
     (6) The weld repair method is proposed for the cracked T-joints of FPSO hull structures, and the simplified two dimensional finite element calculations are carried out on the repaired T-joints under the tension and bending load conditions. Accordingly, the stress concentration factors are solved and the optimum repair profiles with the relative lower stress concentration factor are adopted in three dimensional finite element analyses with solid elements, which are used for analyzing the effects of plate thickness and repair profile length on the stress concentration factors of the joints.
     (7) Considering the condition that surface cracks may arise at the bottom of the repair profile of T-joints, a series of finite element models are established combined with the theory of linear elastic fracture mechanics for the calculations of the stress intensity factors at the bottom and the end point of surface cracks with different dimensions under tension and bending load conditions. Some empirical equations for the stress intensity factors of surface cracks initiated at the bottom of the repair profile of T-joints are obtained by analyzing the calculation results.
     (8) An experimental study on the weld repair by crack grinding treatment at the weld toe of the T-joint is made to validate the feasibility of the repair method for elongating the fatigue life of the structure. And the engineering applicability is proved to be satisfactory by comparing the results from the pre-cracked test and the finite element analyses.
     Through the studies,the following main conclusions can be drawn:
     (1) The stress concentration factors at the sites of cutouts and the connections of longitudinal/frame transition are analyzed by finite element method using solid elements with the consideration of weld for better modeling the practical structures. Under the current construction conditions of the ship yards, substituting the reinforcement of cutout with Type G will be more convenient for construction and effectively decrease the cutout stress concentrations. Soft toe setting at the weld toe of stiffener, tripping bracket and backing bracket is proved to be favorable for lowering the stress concentration factor while the structure with a backing bracket most obviously decreases the stress concentration factor as it reduces the space of longitudinals.
     (2) The low cycle fatigue damage caused by frequent loading and unloading affects a lot on the FPSO fatigue strength calculations. The reasons of the facts with unsatisfied demanded fatigue life could be illustrated by considering the low cycle fatigue together with high cycle fatigue.
     (3) Surface cracks may arise at the bottom of the weld repairs when repair by crack grinding treatment is implemented for the cracked T-joints of FPSO hull structures. A series of simplified two dimensional finite element models and more rational three dimensional models are established for the calculations of the stress concentration factors of T-joints with repair profiles (surface flaw) under tension and bending load conditions. It can be shown that the stress concentration factor of elliptical weld repair profile would be lower than that of U-shaped weld repair profile when the surface half width of the repair profile is larger than its deepness. The stress concentration of the surface flaw at the weld toe would be increased when neglecting the effect of weld toe, decreasing the thickness of the base plate and increasing the length of the repair profile. And the simplified method of substituting the surface flaw at weld toe by that in a plate would bring more conservative results.
     (4) Based on the theory of linear elastic fracture mechanics, a series of finite element analyses are carried out to calculate the stress intensity factors at the bottom and the end point of surface cracks with different dimensions under tension and bending load conditions. And empirical equations for the stress intensity factors of surface cracks initiated at the bottom of the repair profile of T-joints were obtained by analyzing the calculation results.
     (5) An experimental study on the short repair at the weld toe of the typical T-joints of FPSO is made to show that the crack grinding repair method is feasible for elongating the fatigue life of the structure even when the weld toe cracks had propagated to a certain extent. And the engineering applicability is proved to be satisfactory by comparing the results from the pre-cracked test and the finite element analyses.
引文
[1] ABS (2002) Guidance Notes on SFA for FPSO systems. American Bureau of Shipping, New York
    [2] ABS (2003) Guide for the Fatigue Assessment of Offshore Structures. American Bureau of Shipping, New York
    [3] ABS (2004a) Commentary on the guide for the Fatigue Assessment of Offshore Structures. American Bureau of Shipping, New York
    [4] ABS (2004b) Guide for Building and Classing Floating Production Installations. American Bureau of Shipping, New York
    [5] ABS (2004c) Guide for Fatigue Strength Assessment of Tanker. ABS Rules for building and classing steel vessels. American Bureau of Shipping, New York
    [6] Akihiko O., Osamu W. (2000) Fatigue strength improvement of box welds by low transformation temperature welding wire and PWHT. Welding in the World, 44(3): 52-58
    [7] Almar-Naess, A. (1985) Fatigue Handbook, Tapir.
    [8] Andersen M.R. (1998) Fatigue Crack Initiation and Growth of Ship Structures. PHD thesis, Department of Naval Architecture and Offshore Engineering, Technical University of Denmark
    [9] Bamford R.J., Stewart G. (2007) Application of the IACS common structural rules for oil tankers to FPSOs. Offshore Technology Conference, Texas, U.S.A.
    [10] Barsoum R.S. (1976) On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering. Vol.10, No.1: 25-37
    [11] Bergan, Lotsberg, Fricke et al (2002) Overview of the FPSO – Fatigue Capacity JIP. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Jun 23-28, 2002
    [12] Bonora N., Newaz G.M. (1997) Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model. International Journal ofSolids and Structures, Vol.35, No.16: 1881-1894
    [13] Bowness D. Lee M.M.K. (1996) Stress intensity factor solution for semi-elliptical weld toe cracks in T-butt geometries. Fatigue & Fracture of Engineering Materials and Structures. Vol.19, No.6: 787-797
    [14] Bowness D., Lee M.M.K. (2000a) Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint. International Journal of Fatigue, Vol.22: 369-387
    [15] Bowness D., Lee M.M.K. (2000b) Weld toe magnification factors for semi-elliptical cracks in T-butt joints-comparison with existing solutions. International Journal of Fatigue, Vol.22: 389-396
    [16] BSI (1997) Specification for unified fusion welded pressure vessels. BS5500:1997. Annex C, British Standard Institute
    [17] Chaboche J.L., Lesne P.M. (1988) A non-linear continuous fatigue damage model. Fatigue and Fracture of Engineering Materials and Structures, 11(1): 1-17
    [18] Chen W.M., Landet E. (2001) Stress Analysis of Cutouts with and without Reinforcement. Proceedings of the twentieth International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil
    [19] Cheung M.C., Slaughter S.B. (1998) Innerbottom design problems in double-hull tankers. Marine Technology, Vol.35, No.2: 65-73
    [20] ClassNK (1998) Casualty review – comparative damage review of 2nd generation VLCCs.
    [21] Cui Weicheng (2002a) A state-of-the-art review on fatigue life prediction methods for metal structures. Journal of Marine Science and Technology 7: 43-56
    [22] Cui W.C. (2002b) Relation between crack growth rate curve and S-N curve for metal fatigue. Journal of Ship Mechanics, Vol.6, No.6: 93-106
    [23] Cui Weicheng (2003) A feasible study of fatigue life prediction for marine structures based on crack propagation analysis. Journal of Engineering for the Maritime Environment, 217(5): 11-23
    [24] Cui W.C., Huang X.P. (2003) A general constitutive relation for fatigue crack growth analysis of metal structures. Acta Metallurgica Sinica, 16: 342-354
    [25] Dickerson T., Moura B.C. (1997) Weld improvement methods for low cycle fatigue applications, ECSC Report No. EUR 17823, European Commission, Luxembourg
    [26] DNV (1998) Fatigue assessment of ship structures. Det Norske Veritas Class Notes No. 30.7
    [27] DNV (2005) Recommended Practice - Fatigue design of offshore steel structures.
    [28] DNV (2006) Recommended Practice - Fatigue methodology of offshore ships.
    [29] Doerk O., Fricke W., Weissenborn C. (2003) Comparison of different calculation methods for structural stresses at welded joints. International Journal of Fatigue 25: 359–369
    [30] Doerk O., Fricke W. (2004) Fatigue strength assessment of fillet-welded toes of brackets and stiffeners. 9th Symposium on Practical Design of Ships and Other Floating Structures. Luebeck - Travemuende. Germany
    [31] Dong P. (2001) A structural stress definition and numerical implementation for fatigue analyses. Int J Fatigue 23: 865–876
    [32] Dong P. (2003) A robust structural stress method for fatigue analysis of ship structures. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering
    [33] Dong P., Hong J.K. (2003) Analysis of Hot Spot Stress and Alternative Structural Stress Methods. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering
    [34] Echtermeyer A.T., Larsen M.J., Fischer K.P. (2003) A new approach to repair of FPSO’s without hot work. 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico
    [35] Espen H. Cramer et al (1995) Fatigue assessment of ship structures. Marine Structures 8: 359-383
    [36] Ferreira et al (1998) Low cycle fatigue strength assessment of cruciform welded joints. Journal of Constructional Steel Research, 47(3): 223-244
    [37] Francois M., Mo O., Fricke W., Mitchell K., Healy B. (2000) FPSO Integrity: Comparative Study of Fatigue Analysis Methods. The 2000 Offshore Technology Conference
    [38] Fricke W., Paetzold H. (1987) Application of the cyclic strain approach to the fatigue failure of ship structural details. Journal of Ship Research, Vol.31, No.3: 177-185
    [39] Fricke W., Petershagen H., Paetzold H. (1997) Fatigue Strength of Ship Structures, Part I: Basic Principles. GL Technology
    [40] Fricke W., Petershagen H., Paetzold H. (1998) Fatigue Strength of Ship Structures, Part II: Examples. GL Technology
    [41] Fricke W. (2001) Recommended Hot Spot Analysis Procedure for Structure Details of FPSOs and Ships Based on Round-Robin FE Analysis. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Jun 17-22, 2001
    [42] Fricke W., Cui W., Kierkegaard H., Kihl D., Koval M., Lee H L, Mikkola T., Parmentier G., Toyosada M., Yoon J.-H. (2002) Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Marine Structures 15: 1-13
    [43] Fricke W., Kahl A. (2005) Comparison of different structural stress approaches for fatigue assessment of welded ship structures. Marine Structures 18: 473–488
    [44] Fu B, Haswell JV, Bettess P. (1993) Weld magnification factors for semi-elliptical surface cracks in fillet welded T–butt joint models. International Journal of Fracture 63: 155–171
    [45] Garbatov Y., Rudan S., Soares C.G. (2002) Assessment of geometry correction functions of tanker knuckle details based on fatigue tests and finite element analysis. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway
    [46] Gurney T.R. (1979) Fatigue of welded structures. Cambridge University Press. Second Edition
    [47] HAN Yun, HUANG Xiao-ping, ZHANG Yi, CUI Wei-cheng (2005) A comparative study of simplified SIF calculations of surface cracks at weld toe. Journal of Ship Mechanics, Vol.9 No.3: 87-96
    [48] Hansen P.F., Winterstein S. R. (1995) Fatigue Damage in the Side Shells of Ships. Marine Structures 8: 631-655
    [49] Hanzawa M, Yokote H, Iishiguro T et al. Improvement of fatigue strength in welded high tensile strength steels by toe treatment. IIW Doc. XIII-829-77
    [50] Healy B., Thomsen T. (2000a) Comparative Fatigue Performance of Alternative Outer Hull Connection Details-Part I: Procedure, Particulars, and Modeling. Proceedings of the Tenth International Offshore and Polar Engineering Conference, Seattle, USA
    [51] Healy B., Thomsen T. (2000b) Comparative Fatigue Performance of Alternative Outer Hull Connection Details-Part II: Results and Discussion. Proceedings of the Tenth International Offshore and Polar Engineering Conference, Seattle, USA
    [52] Henshell R.D., Shaw K.G. (1975) Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 9: 495-507
    [53] Heo H.J. et al (2004) A study on the design guidance for low cycle fatigue in ship structures. PRADS2004, Hamburg, Germany
    [54] Hoogeland M.G. et al (2003) FPSO fatigue assessment: Feedback from in-service inspections. Offshore Technology Conference
    [55] Huang X.P., Moan T. (2007) Improved modeling of the effect of R-ratio on crack growth rate. International Journal of Fatigue, 29: 591-602
    [56] Huang X.P., Moan T., Cui W.C. (2007) An engineering model of fatigue crack growth under variable amplitude loading. International Journal of Fatigue, Article in press.
    [57] Huther M., Parmentier G., Maherault S. (2004) Knowledge limits in cumulative fatigue assessment of marine structures. SeaTech2004 – Fatigue of Maritime Structures
    [58] IACS (1999) Fatigue Assessment of Ship Structures.
    [59] IACS (2004) Guidelines for surveys, assessment and repair of hull structure - Bulk Carriers.
    [60] IACS (2006a) Common Structural Rules for Double Hull Oil Tankers.
    [61] IACS (2006b) Common Rules for Bulk Carrier.
    [62] IACS (2006a) Shipbuilding and repair quality standard.
    [63] IACS (2006b) Guidelines for coating maintenance & repairs for ballast tanks and combined cargo/ballast tanks on oil tankers.
    [64] ISSC (2003a) Fatigue and fracture. Committee III.2
    [65] ISSC (2003b) Fatigue strength assessment. Special task committee VI.2
    [66] Iwahashi Y. et al (1998) Finite element comparative study of ship structural detail. Marine Structures 11: 127-139
    [67] Jeon W.S. and Song J.H. (2002) An expert system for estimation of fatigue properties of metallic materials. International Journal of Fatigue, 24(6): 685-698
    [68] Jordan C.R., Cochran C.S. (1978) In-service performance of structural details.SSC-272
    [69] Jordan C.R., Cochran C.S. (1980) Further survey of in-service performance of structural details. SSC-294
    [70] Kamoi, N. et al (1993) Static and fatigue strength of new slot structure. Journal of the Kansai Society of Naval Architects (in Japanese)
    [71] Kim K.S., Chen X. and Han C. et al. (2002) Estimation methods for fatigue properties of steels under axial and torsional loading. International Journal of Fatigue, 24(7): 783- 793
    [72] Kim W.S., Lotsberg I. (2004) Fatigue test data for welded connections in ship-shaped structures. Proceedings of OMAE-FPSO 2004
    [73] Kim Y.P. et al (2002) Spectral fatigue analysis for side longitudinals and hopper knuckle connection in VLCCs and FPSOs. Proceedings of the twelfth International Offshore and Polar Engineering Conference
    [74] Kujawski D. (2001) A new ( ΔK +Kmax)0.5 driving force parameter for crack growth in aluminum alloys. International Journal of Fatigue, 23: 733-740
    [75] Kumakura Y., et al (2001) Fatigue strength tests of side longitudinal frames under constant amplitude loading. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway
    [76] Kuo J.F., Lacey P.B., Zettlemoyer N. (2001) Fatigue Methodology Specification for New-Build FPSOs, Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering.
    [77] Le Jing-xia, Sun Hai-hong (2003) Fatigue analysis of critical structural details for FPSO hulls. Journal of Ship Mechanics, Vol.7, No.3: 68-75
    [78] Lee M.M.K., Bowness D. (2002) Estimation of stress intensity factor solutions for weld toe cracks in offshore tubular joints. International Journal of Fatigue, 24: 861-875
    [79] Lemaitre J. (1985) A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, 107(1): 83-89
    [80] Lemaitre J. (1986) Local approach of fracture. Engineering Fracture Mechanics, 25(5/6): 523-537
    [81] Lin X.B., Smith R.A. (1999a) Finite element modelling of fatigue crack growth of surface cracked plates. Part I: The numerical technique. Engineering FractureMechanics, Vol.63: 503-522
    [82] Lin X.B., Smith R.A. (1999b) Finite element modelling of fatigue crack growth of surface cracked plates. Part II: Crack shape change. Engineering Fracture Mechanics, Vol.63: 523-540
    [83] Lin X.B., Smith R.A. (1999c) Finite element modelling of fatigue crack growth of surface cracked plates. Part III: Stress intensity factor and fatigue crack growth life. Engineering Fracture Mechanics, Vol.63: 541-556
    [84] Lotsberg I. (2000) Background and Status of the FPSO Fatigue Capacity JIP, in Proceedings of Offshore Technology Conference 2000
    [85] Lotsberg I. (2001a) Overview of the FPSO – Fatigue Capacity JIP. Proceedings of the twentieth International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, Jun 3-8, 2001
    [86] Lotsberg I., Maddox S.J. (2001b) Full Scale Fatigue Testing of Side Longitudinals in FPSOs. Proceedings of the Eleventh International Offshore and Polar Engineering Conference
    [87] Lotsberg I., Landet E. (2005) Fatigue capacity of side longitudinals in floating structures. Marine Structures 18: 25-42
    [88] Machado C.L., Santos M.A. (2002) Structural Optimization on Topside Supports for Ship-shaped Hulls. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway
    [89] Maddox S.J. (1975a) An analysis of fatigue cracks in fillet welded joints. International Journal of Fracture, 11(2): 221-243
    [90] Maddox S.J. (1975b) The effect of mean stress on fatigue crack propagation - a literature review. International Journal of Fracture, 11(3): 389-408
    [91] Maddox S.J. (2001) Final report: Fatigue design review Task 5 - Assembly of available fatigue data relevant to Pressure Equipment Design. Sept, 2001
    [92] Maddox S.J. (2001) Recommended Hot-spot Stress Design S-N Curves for Fatigue Assessment of FPSOs. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Jun 17-22, 2001
    [93] Manson S.S. (1960) Thermal stresses in design, Part 19 – Cyclic life of ductile materials. Machine Design: 139-144
    [94] Manson S.S. (1965) Fatigue: A complex subject-some simple approximations.Experimental Mechanics, Vol.5, No.7: 193-226
    [95] Manson S.S., Halford G.R. (1986) Reexamination of cumulative fatigue damage analysis. Engineering Fracture Mechanics, Vol.25, No.5: 539-571
    [96] Marcos J.S. et al (1998) Structural design of process decks for floating production, storage and offloading units. Marine Structures 11: 403-412
    [97] Martijn G. H. et al (2003) FPSO fatigue assessment: Feedback from in-service inspections. Offshore Technology Conference
    [98] McEvily A.J., Ishihara S. (2001) On the dependence of the rate of fatigue crack growth on the σ an (2 a) parameter. International Journal of Fatigue, 23: 115-120.
    [99] Meggiolaro M.A. and Castro J.T.P. (2004) Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue, 26(5): 463-476
    [100] Miner M.A. (1945) Cumulative damage in fatigue. Journal of Applied Mechanics, 12(3): 159-164
    [101] Minner H. H., Seeger T. Investigation on the fatigue strength of welding high strength steel STE 460 and STE 690 in as-welded and TIG-dressed conditions. IIW/IIS-Doc. XIII-912-79
    [102] MSC (2004a) Fatigue Quickstart Guide
    [103] MSC (2004b) Fatigue User’s Guide
    [104] Neuber H. (1961) Theory of stress concentration for shear-stained prismatical bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanics (ASME), Vol.28: 544-550
    [105] Newman J.C., Raju I.S. (1981) An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics, Vol.15, No.1-2: 185-192
    [106] Niemi E. (2001) Structural Stress Approach to Fatigue Analysis of Welded Components - Designer’s Guide. IIW-Doc. XIII-1819-00/XV-1090-01 (Final Draft), International Institute of Welding,
    [107] Niu X.D., Li G.X., Lee H. (1987) Hardening law and fatigue damage of a cyclic hardening metal. Engineering Fracture Mechanics, 26(2): 163-170
    [108] NK (1998) Casualty review – comparative damage review of 2nd generation VLCCs.
    [109] Norman M., Lotsberg I. (2001) Fatigue life improvement of scallops in ships/FPSOs using finite element analysis. Proceedings of the 11th International Offshore andPolar Engineering Conference, Stavanger, Norway
    [110] Oh M.H., Sim W.S., Shin H.S. (2003) Fatigue Analysis of Kizomba ‘A’ FPSO using Direct Calculation Based on FMS. The 2003 Offshore Technology Conference
    [111] Ohta A., Maeda Y., Nguyen N.T. (2000) Fatigue strength improvement of box section beam by low transformation temperature welding wire. Welding in the World, 44(5): 26-30
    [112] Peeker, E., Niemi, E. (1999) Fatigue crack propagation model based on a local strain approach. Journal of Constructional Steel Research 49: 139-155
    [113] Pereira M. et al (2001) Programme of Mitigation for In-Service Damage of FPSO Hull Structure. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil
    [114] Polezhaeva H., Chung H. (2001) Effect of Misalignment on the Stress Concentration of a Welded Hopper Knuckle Connection. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil
    [115] Robles, L.B.R., Buelta, M.A., Goncalves, E. and Souza, G.F.M. (2000) A method for the evaluation of the fatigue operational life of submarine pressure hulls. International Journal of Fatigue, 22(1): 41-52
    [116] Rodriguez J.E., Brennan F.P. and Dover W.D. (1998) Minimization of stress concentration factors in fatigue crack repairs. International Journal of Fatigue, Vol.20, No.10: 719-725
    [117] Rodriguez J.E., Dover W.D. and Brennan F.P. (2003) Design of crack removal profiles based on shape development of surface defects. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico
    [118] Rodriguez J.E., Dover W.D. and Brennan F.P. (2004) Application of short repairs for fatigue life extension. International Journal of Fatigue, Vol.26: 413-420
    [119] Rodriguez J.E., Dover W.D., Brennan F.P. (2005) Fracture mechanics analysis of fatigue crack repaired joints. Journal of OMAE, Vol.127: 182-189
    [120] Roessle M.L. and Fatemi A. (2000) Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue, 22(6): 495-511
    [121] Rosenberg T.D., Andrews R.M., Gurney T.R. (1991) A compilation of fatigue test results for welded joints subjected to high stress / low cycle conditions – Stage I, thewelding institute, U.K.
    [122] Rucho P. et al (2001) Comparison of measurements and FE analysis of side longitudinals. Proceedings of the Eleventh International Offshore and Polar Engineering Conference
    [123] Sadananda K., Vasudevan A.K. (1997) Short crack growth and internal stresses. International Journal of Fatigue, 19(S1): 99-108
    [124] Schijve J. (2003) Fatigue of structures and materials in the 20th century and the state of the art, International Journal of Fatigue, Vol.25: 679-702
    [125] Schutz W. (1996) A history of fatigue. Engineering Fracture Mechanics, Vol.54, No.2: 263-300
    [126] Serratella C. and Spong R. (2005) Understanding Through Experience - Key Findings From the FPSO Structural Performance Joint Industry Project. Offshore Technology Conference, Houston, TX, USA
    [127] Shang H.X. and Ding H.J. (1995) Low cycle fatigue stress-strain relation model of cyclic hardening or cyclic softening materials. Engineering Fracture Mechanics, 54(1): 1-9
    [128] SHI L.J., Cui W.C. (2002) An investigation into the Uncertainty in the Calculated Hot spot Stresses of a Shipside Structure Detail. Journal of Ship Mechanics, Vol.6, No.6: 85-92
    [129] Stephen Bultema, Henk van den Boom, Max Krekel (2000) FPSO Integrity: JIP on FPSO Fatigue Loads. Offshore Technology Conference, Houston, Texas
    [130] Storhaug G., Berstad A.J. (2001) Fatigue in the Side Shell of Ship Shaped Structures. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering
    [131] Sumi Y. et al (1996) Two-phase Finite Element Comparative Study of a Side Structure of a Middle Size Tanker. Marine Structures 9: 151-179
    [132] Takuya Yoneya et al (2004) A comprehensive study on the practical strength assessment of tanker and bulk carrier structures
    [133] Tateishi K. and Hanji T. (2004) Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique. International Journal of Fatigue, 26(12): 1349-1356
    [134] Terai, K., Tomita, Y., Hashimoto, K., Osawa, N. (2001) Fatigue design method ofship structural members based on fatigue crack growth analysis. Proceedings of the International Offshore and Polar Engineering Conference 4: 589-594.
    [135] Terpstra T. et al (2001) FPSO Design and Conversion: A Designer’s Approach. Offshore Technology Conference
    [136] Tomazo G. N. et al (2001) Conversion of Tankers into FPSOs and FSOs: Practical Design Experiences. Offshore Technology Conference
    [137] Tveiten B. W., Moan T. (2000) Determination of Structural Stress for Fatigue Assessment of Welded Aluminum Ship Details. Marine Structures 13: 189-212
    [138] Ulleland T., Svensson M., Landet E. (2001) Stress concentration factors in side shell longitudinals connected to transverse webframes. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway
    [139] Urm H.S., Yoo I.S., Heo J.H., Kim S.C., Lotsberg I. (2004) LCF strength assessment for ship structures. 9th Symposium on Practical Design of Ships and Other Floating Structures. Luebeck - Travemuende, Germany
    [140] Vasudevan A.K., Sadananda K. (1999) Application of unified fatigue damage approach to compression-tension region, International Journal of Fatigue, 21(S1): 263–273
    [141] Wallgren G. (1949) Fatigue test with stress cycles of varying amplitude. FFA Reports, 28, Stockholm, Aeronautical Research Institute of Sweden
    [142] Wan Zheng-quan, Wang Yong-jun, Bian Ru-fang, Zhu Bang-jun (2004) Fatigue life prediction of structural details of submarine pressure hull. Journal of Ship Mechanics, Vol.8, No.6: 63-70
    [143] Wan Zheng-quan, Xu Bing-han (2002) Stress concentration factors of cutout for longitudinal. Journal of Ship Mechanics, Vol.6, No.3: 28-36
    [144] Wang X.Z., Sun H.H., Cheng Z. (2004) Methods for fatigue assessment of critical ship details. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering
    [145] Wang Y.F., Cui W.C., Wu X.Y., Wang F., Huang X.P. (2007) The extended McEvily model for fatigue crack growth analysis of Metal Structures. International Journal of Fatigue, Submitted
    [146] Williams C.R., Lee Y.L. and Rilly J.T. (2003) A practical method for statistical analysis of strain–life fatigue data. International Journal of Fatigue, 25(5): 427-436
    [147] Witmer D.J., Lewis J.W. (1994) Operational and scientific hull structure monitoring on TAPS trade tankers, Trans.SNAME, 102
    [148] Xiao Z.G., Yamada K. (2004) A method of determining geometric stress for fatigue strength evaluation of steel welded joints. International Journal of Fatigue 26: 1277-93
    [149] Xu T. (1997) Fatigue of ship structural details – technical development and problems. Journal of ship research, Vol.41, No.4: 318-331
    [150] Yang X.J. (2005) Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading. International Journal of Fatigue, 27(9):1124- 1132.
    [151] Yazid M., Philippe M., Naman R. et al (2004) Low cycle fatigue of welded joints: new experimental approach. Nuclear Engineering and Design, 228(1-3): 161-177
    [152] Yoneya T., Kumano N., Shigemi T. (1994) Hull cracking of very large ship structures. Integrity of Offshore Structures – 5. Emas Scientific Publications
    [153] Zhang B., Moan T. (2006) Mean stress effect on fatigue of welded joint in FPSOs. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany
    [154] Zhao Gengxian, Liu Xiaoming (2004) The analysis and study of module stool of FPSO in severe sea state. Proceedings of the 4th conference for new ship and marine technology, Shanghai, China
    [155] 陈传尧 (2002) 疲劳与断裂. 华中科技大学出版社
    [156] 陈江, 娄忆清 (1994) 表面裂纹准静态断裂扩展形貌的研究. 浙江工学院学报, 第 64 期: 34-40
    [157] 陈立, 钱茹 (1999) FPSO 对开发边际油田的商业价值. 中国海洋平台, 第 14 卷第 5 期: 6-9
    [158] 陈立杰, 冮铁强, 谢里阳 (2006) 低循环疲劳寿命预测的幂指函数模型. 机械强度, 28(5): 761-765
    [159] 陈良增, 陈孝渝 (1991) 潜艇结构低周疲劳性能试验研究. 舰船科学技术, 1991年第 2 期: 19-20
    [160] 陈凌, 蒋家羚 (2005) 一种新的低周疲劳损伤模型及实验验证. 金属学报, 第41 卷第 2 期: 157-160
    [161] 陈小弟 (2003) 我国浮式生产储油船(FPSO)的开发现状. 船舶, 2003 年 2 月:62-63
    [162] 陈孝渝 (1984) 可潜器结构的低周疲劳设计. 舰船科学技术, 1984 年第 10 期: 16-25
    [163] 陈信悦, 王成华, 马忠启, 张其芳 (1998) 对海上油田出口原油取样的研究与探讨. 现代商检科技第 8 卷, 第 6 期: 34-35
    [164] 陈旭, 许爽燕 (1997) 多轴低周疲劳研究现状. 压力容器, 第 14 卷第 3 期: 238-241
    [165] 程光旭 (1994) 压力容器低周疲劳寿命的损伤力学理论研究. 西安交通大学学报, 28(8): 59-64
    [166] 船舶设计实用手册编辑委员会 (1965) 船舶设计实用手册. 国防工业出版社
    [167] 崔维成, 蔡新刚, 冷建兴 (1998) 船舶结构疲劳强度校核研究现状及我国的进展. 船舶力学, Vol.2, No.4: 63-81
    [168] 崔维成,刘涛,祈恩荣,徐向东 (2000) 散货船疲劳强度校核的确定性方法. 船舶力学, Vol.4, No.1: 36-49
    [169] 戴仰山, 沈进威, 宋竞正 (2007) 极限强度校核中的几个问题. 中国造船, 第 48卷第 1 期, 总第 176 期: 102-105
    [170] 杜嘉立, 杨盐生, 郑云峰 (2003) 船舶疲劳强度. 大连海事大学学报. 11 月, 第28 卷第 4 期: 25-28
    [171] 冯国庆 (2003) 船舶结构疲劳评估方法研究. 哈尔滨工程大学硕士论文
    [172] 冯铁城, 朱文蔚, 顾树华 (1989) 船舶操纵与摇荡. 国防工业出版社, 第 1 版
    [173] 冯兆龙, 霍立兴, 王文先, 张玉凤 (2006) 利用低相变点焊条熔修方法改善焊接接头疲劳强度的试验. 焊接学报, 第 27 卷第 2 期: 11-14
    [174] 高震, 胡志强, 顾永宁, 江华涛 (2003) 浮式生产储油轮船艏结构疲劳分析. 海洋工程, Vol.21, No.2: 8-15
    [175] 葛菲 (2004) 非线性波浪载荷作用下多种应力成份组合的船体结构疲劳强度分析. 哈尔滨工程大学博士论文
    [176] 郭爱宾, 邵文蛟 (2000) 船舶结构疲劳强度分析中的几个问题. 中国造船, Vol.41, No.1: 52-59
    [177] 胡传炘 编 (1989) 断裂力学及其工程应用. 北京工业大学出版社
    [178] 胡耀君, 刘果宗 (1999) 船用 Ti-31 钛合金的低周疲劳特性. 材料开发与应用, 第 14 卷第 4 期: 9-11
    [179] 胡毓仁, 陈伯真 (1996) 船舶及海洋工程结构疲劳可靠性分析. 人民交通出版社
    [180] 胡毓仁, 陈伯真 (1998) 船体结构疲劳强度校核的许用应力范围衡准. 中国造船, 1998 年第 1 期: 66-74
    [181] 胡志强, 顾永宁, 何江 (2001) 浮式生产储油轮火炬塔结构的疲劳分析. 中国海上油气(工程), Vol.13, No.3: 14-18
    [182] 胡志强 (2001) 浮式生产储油轮全船结构疲劳校核与研究. 上海交通大学硕士论文
    [183] 华乃导 主编 (2000) 船体修造与工艺. 大连海事大学出版社
    [184] 黄小平, 崔宏斌, 石德新, 任慧龙 (2001) 压弯组合应力下高强钢表面裂纹形貌变化规律实验研究. 哈尔滨工程大学学报, Vol.22, No.3: 22-25
    [185] 黄小平, 崔维成, 石德新 (2002a) 压弯组合应力下高强钢焊接板表面裂纹疲劳寿命计算. 机械强度, 24(3): 413-416
    [186] 黄小平, 崔维成, 石德新 (2002b) 压弯载荷下焊趾表面裂纹工程萌生寿命预测. 海洋工程, Vol.20, No.3: 49-53
    [187] 黄小平, 石德新 (2002c) 压弯应力下焊趾表面裂纹疲劳性能试验研究. 船舶力学, Vol.6, No.1: 37-43
    [188] 霍立兴 (1995) 焊接结构工程强度. 机械工业出版社
    [189] 贾安东, 张见, 陈棣华 (1995) 海洋结构钢焊接接头低周疲劳强度的研究. 机械工程学报, 第 31 卷第 4 期: 92-97
    [190] 贾宝春, 李冬霞 (2003) TIG 熔修提高焊接接头疲劳强度的研究. 中原工学院学报, 第 14 卷第 1 期: 8-10
    [191] 贾法勇, 霍立兴 等 (2003) 热点应力有限元分析的主要影响因素. 焊接学报, 第 24 卷第 3 期: 27-30
    [192] 江华涛, 顾永宁, 马延德, 刘文民 (2001) 浮式生产储油船纵骨疲劳工程分析. 上海造船, 2001 年第 2 期: 24-27
    [193] 江华涛, 顾永宁, 胡志强 (2003) 海上石油浮式生产系统疲劳校核分析. 船舶力学, Vol.7: 70-80
    [194] 姜风春, 刘瑞堂 (1998) 一个新的低周疲劳失效准则. 理化检验-物理分册, 第34 卷第 6 期: 17-19
    [195] 揭敏, 杨挺青 (2001) X 型焊缝接头焊接缺陷处的应力集中. 机械, 第 28 卷第 1期
    [196] 拉达伊(Radaj D.) 郑朝云 张式程译 (1994) 焊接结构疲劳强度. 机械工业出版社, 北京
    [197] 乐京霞, 孙海虹 (2002) 浮式生产储油船局部节点疲劳强度计算和分析. 武汉理工大学学报, Vol.26, No.4: 488-491
    [198] 李春林 (1986) 几种潜艇耐压壳体用钢的低周疲劳性能研究. 材料开发与应用, 1986年第2期: 28-37
    [199] 李春林 (1999) 船体结构钢低周疲劳表面裂纹扩展规律. 钢铁, 第34卷第1期: 53-56
    [200] 李栋才, 曹历杰 (1997) 对接接头应力集中系数的有限元分析. 西安石油学院学报, 第12卷第1期: 30-34
    [201] 李冬霞, 贾宝春, 刘元杰 (2003) TIG熔修提高平台立焊接头疲劳强度及实船应用. 机械强度, 25(3): 271-274
    [202] 李冬霞, 贾宝春, 邱太生, 周金锁 (2005) 焊接接头TIG熔修的疲劳强度及低温性能研究, 机械强度, 27(1): 126-129
    [203] 李冬霞, 贾芳, 刘跃进 (2006) 二次TIG熔修焊缝的高周和低周疲劳性能研究. 中原工学院学报, 第17卷第1期: 59-60
    [204] 李芬, 邹早建 (2003) 浮式海洋结构物研究现状及发展趋势. 武汉理工大学学报, 第27卷第5期: 682-686
    [205] 李国义, 魏嘉荃, 钟伯明 (1995) 动态监测疲劳裂纹扩展. 大庆石油学院学报, 第19卷第1期: 90-94
    [206] 李建华 编. 压力容器缺陷评定. 劳动部锅炉压力容器安全杂志社
    [207] 李展 (2006) 浮式生产储油装置(FPSO)及其系泊系统. 广东造船, 2006 年第 3期: 40-45
    [208] 李正建, 王捷编译 (2002) FPSO 的改装市场. 中国修船, 2002 年第 1 期: 1-4
    [209] 黎之奇, 柳春图, 崔民子, 阚常珍 (2000) 海洋平台用钢的焊接疲劳性能分析. 机械强度, 第22卷第4期: 264-266
    [210] 林伍雄 (2007) 多点系泊型式浮式生产储油船(FPSO)的运动响应预报. 船舶, 2007 年第 1 期: 9-12
    [211] 刘建成, 顾永宁, 王自力, 马延德, 刘文民 (2001) 浮式生产储油船船体疲劳计算. 海洋工程, Vol.19, No.2: 50-55
    [212] 刘燕玲, 王勇 (1998) 浮式采储卸油船(FPSO)市场发展迅猛. 中国海洋平台, 第13 卷第 3 期: 39-44
    [213] 刘承宗, 周志勇, 陈新, 孙远孝 (2000) 钢构件应力集中区低周疲劳分析及实验研究. 应用力学学报, 第 17 卷第 3 期: 107-110
    [214] 刘红顺, 何庆复, 郝海龙 (2004) 多轴低周寿命预测方法研究. 铁道机车车辆, 第 24 卷第 3 期: 30-32
    [215] 茅永峻, 茅九岗 (1998) 高速发展中的 FPSO 产业及对策. 中国海洋平台, 第 13卷第 4 期: 4-8
    [216] 倪侃 等 (1997) 随机疲劳累积损伤理论最新进展. 强度与环境, 1997 (2): 1-8
    [217] 倪侃 (1999) 随机疲劳累积损伤理论研究进展. 力学进展, Vol.29, No.1: 43-65
    [218] 倪宗运 (1994) 船舶裂纹的修补. 中国修船, 1994 年第 4 期: 18-20
    [219] 邵天骏 (2005) 浮式生产储油船的发展. 航海, 2005 年第 6 期: 10-12
    [220] 邵文蛟, 王晖蓉 (1993) 船舶结构的疲劳分析. 船检科技, 1993 年第 1 期: 1-6
    [221] 邵文蛟 (2000) 船舶结构疲劳强度分析研究进展. 上海造船, 2000 年第 1 期: 37-40
    [222] 沈海军, 郭万林, 冯谦 (2003) 材料 S ? N、 ε ? N及 da /dN ?ΔK 疲劳性能数据之间的内在联系. 机械强度, 25(5): 556-560
    [223] 盛光敏, 龚士弘 (1990) C-M 公式的理论推证. 重庆大学学报, 第 13 卷第 5 期: 58-62
    [224] 石德新, 王晓天, 唐立强, 耿峰 (1999) 潜艇结构材料低周疲劳的损伤力学分析. 哈尔滨工程大学学报, 第 20 卷第 4 期: 1-7
    [225] 史进渊, 杨宇, 孙庆, 胡先约 (2004) 大型汽轮机部件低周疲劳安全寿命的设计和评定. 应用力学学报, 第 21 卷第 3 期: 153-156
    [226] 施丽娟 (2003) 船舶结构有限元强度分析中的质量控制研究. 上海交通大学博士学位论文
    [227] 施明泽, 黄志强 (1993) 关于低周疲劳损伤演变规律的探讨. 浙江大学学报(自然科学版), 第 27 卷第 2 期: 208-213
    [228] 孙意卿 编著 (1989) 海洋工程环境条件及其载荷. 上海交通大学出版社
    [229] 孙玉武, 聂武 (2000) 潜艇耐压壳体低周疲劳分析及贝叶斯法寿命估算. 中国造船, 第 41 卷第 4 期: 40-45
    [230] 谭伟, 张骅, 韩文政, 徐滨士, 胡勇 (2003) 提高装甲车辆 T 型焊接接头疲劳寿命的措施研究. 兵工学报, Vol.24, No.4: 540-543
    [231] 万正权, 卞如刚 (2002) 潜艇结构低周疲劳寿命工程评估方法. 舰船科学技术, 第 24 卷第 3 期: 3-5
    [232] 王东海 (1998) 船体总纵弯曲时的疲劳强度分析. 哈尔滨工程大学博士论文
    [233] 王东坡, 霍立兴, 张玉凤 (2004) TIG 熔修法改善含咬边缺陷焊接接头疲劳性能. 天津大学学报, 第 37 卷第 7 期: 570-574
    [234] 王刚 (2001) 低周疲劳寿命与累积损伤规律若干问题的研究. 博士学位论文, 哈尔滨工业大学
    [235] 王甲畏, 王德禹 (2004) 船体焊接结构疲劳问题的热点应力研究. 船海工程, 2004 年第 5 期: 22-25
    [236] 王甲畏, 王德禹 (2005) 基于热点应力的 FPSO 焊接结构疲劳问题研究. 船舶工程, 总第 27 卷, 2005 年第一期: 62-66
    [237] 王璞 (2006) 极限强度在FPSO总纵强度规范校核中的应用. 上海造船, 总第67期, 2006年第3期: 12-15
    [238] 王庭山 (2002) 汽轮发电机转子横截面应力及低周疲劳的计算分析. 上海大中型电机, 2002 年第 4 期: 7-14
    [239] 王庭山 (2006) 空冷180MW发电机转子护环部分的强度及低周疲劳分析. 上海大中型电机, 2006 年第 4 期: 7-13
    [240] 王文先, 霍立兴, 张玉凤 (2001) 利用低相变点焊条改善焊接接头疲劳强度. 焊接学报, 第 22 卷第 5 期: 37-40
    [241] 王文先, 霍立兴, 张玉凤, 王东坡 (2004) 提高焊接接头疲劳性能的低相变点焊条焊趾熔修技术. 机械工程学报, 第 40 卷第 2 期: 68-72
    [242] 王晓天, 黄小平, 耿峰, 石德新 (2000) 高强度材料 402 钢的低周疲劳性能实验研究. 哈尔滨工程大学学报, 第 21 卷第 3 期: 75-77
    [243] 王勖成 编著 (2003) 有限单元法. 清华大学出版社
    [244] 王中光等译, 李家宝校 (1993) 材料的疲劳. 国防教育出版社
    [245] 吴富民 主编 (1985) 结构疲劳强度. 西北工业大学出版社
    [246] 吴伦楷 (2002) 浮式生产系统新的发展动向. 中国海洋平台, 第 17 卷第 5 期: 7-10
    [247] 吴清可 (1991) 防断裂设计. 机械工业出版社
    [248] 西田正孝 (1986) 应力集中. 机械工业出版社
    [249] 谢里阳 (1995) 疲劳损伤状态的等效性. 机械强度, 第 17 卷第 2 期: 100-104
    [250] 谢永和, 余小川, 李润培 (2004) 浮式生产储卸油装置的若干关键技术问题. 中国海洋平台, 第 19 卷第 1 期: 8-12
    [251] 熊峻江 (2004) 飞行器结构疲劳与寿命设计 北京航空航天大学出版社
    [252] 徐桂龙, 李文英 (2002) 浮式生产储油轮的发展现状. 中国海上油气(工程),Vol.14, No.2: 1-4
    [253] 徐灏 (1988) 疲劳强度. 高等教育出版社出版
    [254] 徐继文, 王言英 (2006) 浮式生产储油船设计环境资料分析. 船海工程, 2006年第3 期(总第172 期): 38-41
    [255] 徐小兵, 周鹤法, 张晓东 (1996) 抽油杆表面横向裂纹扩展试验研究. 石油机械, 第 24 卷第 12 期: 20-22
    [256] 徐亦斌, 肖熙, 赵耕贤 (2004) 内转塔式 FPSO 局部强度分析研究. 中国海洋平台, 第 19 卷第 3 期: 17-19
    [257] 杨代盛 (1986) 船体强度与结构设计. 国防工业出版社
    [258] 杨显杰 (2004) 45 碳钢低周疲劳与应力循环棘轮失效的实验研究. 金属学报, 第 40 卷第 8 期: 851-857
    [259] 叶笃毅, 王德俊, 童小燕, 姚磊江 (1999) 一种基于材料韧性耗散分析的疲劳损伤定量新方法. 实验力学, 14(1): 80-88
    [260] 于有生, 卢伟 (2005) 对接接头工作应力分布及其应力集中系数的研究. 武汉理工大学学报, Vol.29, No.1: 123-125
    [261] 曾春华,邹十践 编译 (1991) 疲劳分析方法及应用 国防工业出版社
    [262] 张安哥, 谢敏 (1996) 低周疲劳失效寿命估算. 机械工程材料, Vol.20, No.1: 9-13
    [263] 张超, 刘建英 (2005) 常见焊接缺陷的成因探讨及对策. 煤矿机械, 2005 年第 11期: 97-98
    [264] 张国栋, 苏彬, 王泓, 何玉怀, 许超, 李骋 (2005) 弹性模量对低周疲劳性能参数的影响. 航空动力学报, 第20卷第5期: 768-771
    [265] 张国栋, 苏彬, 王泓, 钟斌, 许超 (2006) 一种确定低周应变疲劳应变-寿命曲线的方法. 航空动力学报, 第21卷第5期: 867-873
    [266] 张康达, 柴国钟 (1996) 表面裂纹疲劳扩展形貌变化规律的研究. 化工机械, 第23卷第4期: 198-203
    [267] 张瑞友 (2003) 船体结构中疲劳裂纹的分析与修复. 中国修船, 2003 年第 6 期: 21-23
    [268] 张耀春, 练尉安, 张文元 (2005) 焊接工字形截面钢支撑低周疲劳性能试验研究. 建筑结构学报, 第 26 卷第 6 期: 114-121
    [269] 张毅, 黄小平, 崔维成, 卞如冈 (2004) 对接接头焊趾应力集中有限元分析. 船舶力学, Vol.8, No.5: 91-99
    [270] 张以增, 李国琛, 徐明英等 (1995) 低碳钢的大应变低周疲劳. 机械强度, 17(4): 49-53
    [271] 张在鸿 (1995) 对接焊接接头的疲劳寿命预测. 焊接技术, 1995 年第 4 期: 29-31
    [272] 张祖枢 (1980) 潜水船耐压壳体结构低周疲劳分析与试验. 华中科技大学学报(自然科学版), 1980/S4: 69-74
    [273] 章漪云 (2004) 高强度钢在船体结构中的应用探讨. 船舶, 2004 年第 2 期: 30-33
    [274] 赵耕贤 (2002a) 浮式生产储油船(FPSO)设计. 上海造船, 2002 年第 2 期: 4-8
    [275] 赵耕贤 (2002b) FPSO 结构设计特点. 船舶, 2002 年 2 月: 38-41
    [276] 赵耕贤 (2006) FPSO 设计综述. 中国海洋平台, 第 21 卷第 1 期: 1-5
    [277] 赵思连 (2001) 船舶焊接缺陷及其质量检验. 武汉造船, 2001 年第 3 期: 21-23
    [278] 中国船级社 (2001) 船体结构疲劳强度指南. 中国船级社
    [279] 中国船级社 (2007) 钢质海船入级规范, 人民交通出版社
    [280] 周传月, 郑红霞, 罗慧强等 (2005) MSC.Fatigue 疲劳分析应用与实例. 北京, 科学出版社
    [281] 周风啸 (2003) 国外设计建造浮式生产储油船的若干经验. 造船技术,2003 年第 2 期: 1-2
    [282] 周守为, 曾恒一, 范模等 (2006) 我国浮式生产储油装置的研制与开发. 中国海上油气, 第 18 卷第 2 期: 73-78
    [283] 诸 德 超 , 傅 子 智 等 译 有 限 元 法 手 册 科 学 出 版 社 Kardestuncer H., Editor-in-Chief
    [284] 朱梅五, 陈德斌, 汪徽, 殷沐德 (1994) TIG 熔修改善船体钢焊接接头使用性能原因分析. 海军工程学院学报, 1994 年第 3 期: 31-38
    [285] 朱梅五, 严明君, 殷沐德 (1998) TIG 熔修提高船体钢焊接接头腐蚀疲劳抗力的研究. 船舶工程, 第 4 期: 34-36
    [286] 朱梅五, 严明君, 殷沐德 (1999) 45Kg 级船体钢焊接接头 TIG熔修效果研究. 中国造船, 1999 年第 1 期: 92-98
    [287] 朱锡, 陈巧观 (1994) 熔修对潜艇补强结构抗断性能影响的实验研究. 中国修船, 1994 年第 4 期: 11-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700