空间环境下星载转台的热结构力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载机构在宇宙空间运行,工作期间要承受复杂辐射环境的影响,并周期性的进入地球日照区及阴影区。在这种条件下,星载机构超过许用范围的极限温度或温度波动会影响其内部仪器设备的正常工作。并且,非均匀的温度场及材料热物理性质的差异必然导致热应力及热变形的产生。因此,为了得到空间环境对星载二轴转台的综合热影响,本文采用有限元方法对其进行了热耦合场的分析。
     首先,本文在总结热结构力学有限元分析理论的基础上计算了星载二轴转台所受各种热辐射载荷,并以等效热流密度的形式将其加载到星载二轴转台的受载面上。经过求解,本文得到了星载二轴转台在轨运行期间的温度极值及温度场分布云图,跟踪了星载二轴转台五处关键位置在一周期内的温度变化,并对所得温度场及温度变化曲线进行了分析。
     其次,以热分析结果作为结构分析的初始条件对星载二轴转台进行了热-结构耦合分析,得到了转台结构在轨运行期间的热应力及热变形极值,跟踪了星载二轴转台五处关键位置在一周期内热应力及热变形的变化,对热应力和热变形等值云图及其变化趋势曲线进行了分析。此外,由于星载二轴转台经历循环热载荷的作用,本文对其进行了疲劳寿命校核分析。通过热-结构耦合分析,得到了星载二轴转台的结构综合热响应结果。
     最后,建立了一种用于热辐射分析的空间点光源辐射模型,给出了模型理论和模型参数。通过对简单圆筒结构分别应用等效热流密度加载模型和空间点光源辐射模型进行热分析,验证了空间点光源辐射模型的有效性。既而,使用空间点光源辐射模型对星载二轴转台进行了二次热分析。通过对比分析,空间点光源辐射模型对于复杂热辐射分析具有更高的准确性和更大的灵活性。
Working in the space, the satellite subassembly must endure more complicated radioactive environment, it will also enter into the sunshine and the earth shadow periodically. Under this condition, the extreme temperature and the temperature fluctuation of satellite subassembly which exceed the permission may influence the working of the instruments inside. Also, the uneven temperature field and the difference of thermophysical properties will result in production of thermal stress and deformation. In order to acquire the compositive influence of space environment, the study on thermal coupling field of satellite two-axis table is done.
     Firstly, based on the finite element theory of thermal coupling field, all kinds of radiation loads are calculated in this paper, and the loads are applied to the satellite two-axis table in form of equivalent heat flux. The extreme temperature value and field of satellite two-axis table under working are acquired, also, this paper tracks the temperature fluctuation of five key positions on the two-axis table, the analyses of temperature field and curves are performed.
     Secondly, taking the temperature field as initial conditions, the thermal-structure coupling analysis is performed, the thermal stress and deformation of the two-axis table in the orbit are gained. The paper also acquires thermal stress and deformation fluctuation of the same five key positions in one cycle, both the chorograms and the fluctuation curves of stress and deformation are studied. Moreover, the two-axis table suffers effects of periodic thermal loads, so, the fatigue life is calculated and checked. By the thermal-structure coupling analysis, all the thermal coupling responses of satellite two-axis table are acquired.
     Finally, a new model used for radiation analysis called space pointolite radiation model is given out. By the thermal analysis of cylinder structure with the equivalent heat flux load model and the space pointolite radiation model, the availability of later is proved. Then, the thermal analysis of the two-axis is performed again with the space pointolite radiation model. After comparing, the space pointolite radiation model is believed to be more accurate and more flexible.
引文
1闵桂荣.发展战略的重要领域.空间技术. 2002, (3):17~19
    2丁勇.大型空间结构的热-结构有限元分析.清华大学博士学位论文. 2002:1~3, 67~97
    3 E. A. Thornton, R. S. Foster. Dynamic Response of Rapidly Heated Space Structure. AIAA. Computational Nonlinear Mechanics in Aerospace Engineering, Progress in Astronautics and Aeronautics, Washington D. C., 1992:451~477
    4 B. Etkin. Explanation of the Anomalous Spin Behavior of Satellite with Long Flexible Antenna. Journal of Spacecraft and Rockets. 1967, 4(9):1139~1145
    5 P. C. Hughes, D. B. Cherchas. Spin Decay of Explore XX. Journal of Spacecraft and Rockets. 1970, 7(1):92~93
    6 T. W. Flately. Nutational Behavior of Explore-45. NASA SP-361. Significant Accomplishments in Science and Technology, Goddard Space Flight Center, 1973:140~143
    7 H. Peterson. Ulysses One Year After Launch. ESA. The 4th European Symposium on Space Environmental Control Systems, Florence, Italy, 1991:951~955
    8 E. A. Thornton, A. K. Yool. Thermal Induced Bending Vibrations of a Flexible Rolled-Up Solar Array. Journal of Spacecraft and Rockets. 1993, 30(4):438~448
    9 P. W. Chung, E. A. Thornton. Torsional Buckling and Vibrations of a Flexible Rolled-Up Solar Array. AIAA Paper. 1995, 1355:1654~1664
    10 M. Masahiko, E. A. Thornton. Buckling and Quasistatic Thermal-Structural Response of Asymmetric Rolled-Up Solar Array. Journal of Spacecraft and Rockets. 1998, 35(2):438~448
    11屈金祥.航天系统热分析综述.红外. 2004, (10):22~24,25~26
    12胡金刚.中国航天器热控制技术进展.航天器工程. 2001, 10(1):15~22
    13翁建华,潘增富.航天器热网络模型及其系数修正法.中国空间科学技术. 1995, (4):11~13
    14 M. V. Papalexandris, M. H. Milman. Active Control and Parameter Updating Techniques for Nonlinear Thermal Network Models. Computational Mechanics. 2001, (27):11~22
    15 J. M. Csrlson. Highly Optimized Tolerance Robustness and Design in Complex Systems. Phys Rev Lett. 2000, (84):25~26
    16张淑杰.空间可展桁架结构的设计与热分析.浙江大学博士学位论文. 2001:51~52, 89~90
    17朱敏波,曹峰云,刘明治,何恩.星载大型可展开天线太空辐射热变形计算. 2004, 31(1):28~31
    18 A. Kwan. A Parabolic Pantographic Deployable Antenna. Journal of Space Structure. 1995, 10(4):195~203
    19 H. Tsunoda, K. Nakajima and A. Miyasaka. Thermal Design Verification of a Deployable Antenna for a Communication Satellite. Journal of Spacecraft and Rockets. 1992, 29(2):271~278
    20 C. Reddy. Radiation Characteristics of Cavity Backed Aperture Antennas Infinite Ground Plane Using the Hybrid FEM/MoM Technique and Geometrical Theory of Diffraction .IEEE Trans. AP. 1996, 44(10):1327~1333
    21 A. Farah, J. Godoy. Finite Element Analysis of the GTC Commissioning Instrument Structure. Proceedings of SPIE-The International Society for Optical Engineering. 2002, 4837(1):317~324
    22 D. Trujillo, C. Pappoff. A General Thermal Contact Resistance Finite Element. Finite Elements in Analysis and Design. 2002, (38):263~276
    23 G. Metris, D. Vokrouhlicky. Thermal Force Perturbations of the LAGEOS’Orbit. Planet. Space Sci.,1996,44(6):611~617
    24 D. Vokrouhlicky, P. Farinella. Radiative Forces and LAGEOS’Orbit. Adv. Space Res. 1995,16(12):15~19
    25 F. Cuttaia, L. Valenziano. Analysis of the Radiometer-Reference Load System On Board the Plank/LFI Instrument. Nuclear Instruments and Methods in Physics Research. 2004, A(520):396~401
    26 E. A. Thornton, D. B. Paul. Thermal-Structural Analysis of Large Space Structures: An Assessment of Recent Advance. Journal of Spacecraft and Rockets. 1985, 22(4):385~393
    27 E. A. Thornton, P. Dechaumphai. Finite-Element Thermal-Structural Analysis of a Cable-Stiffened Orbiting Antenna. Journal of Spacecraft. 1986, 23(6):620~624
    28程乐锦,薛明德.大型空间结构热-动力学耦合有限元分析.清华大学学报(自然科学版). 2004, 44(5):681~687
    29杨玉龙,关富玲,张淑杰.可展桁架天线温度场和热变形分析.空间科学学报. 2005, 25(3):235~240
    30贾震江.卫星热分析建模方法研究.南京理工大学硕士学位论文. 2004:52
    31周晓琴,李华强,刘杰,肖金生. ANSYS三维热分析及应用.武汉交通科技大学学报. 1999, 23(1):9~12
    32禹秉熙,方伟,王玉鹏.卫星上绝对辐射计观测太阳时与太空的辐射交换.光学学报. 2005, 25(8):1048~1052
    33安翔,冯刚.某空间站太阳电池阵中央桁架热-结构耦合动力学分析.强度与环境. 2005, 32(3):8~13
    34朱敏波,何恩,曹峰云.星载天线热分析系统研究与开发.计算机工程与设计. 2004, 25(12):2251~2252
    35安翔,冯刚,张铎.大型空间桁架结构热分析的有限元方法.强度与环境. 2000, (2):18~23
    36范含林.神舟号飞船热设计.航天器工程. 2002, 11(1):21~22
    37刘四清,刘静,师立勤,薛炳森.神舟五号的空间环境保障.物理. 2004, 33(5):360~362
    38 L. James. Finite Element Large-Deflation Random Response of Thermally Bulked Beams. AIAA Journal. 1990, 28(12):2125~2131
    39 M. Rao, P. K. Simha. Finite Element Coupled Thermo-Structural Analysis of Composite Beams. Computers. 1997, 63(6):539~549
    40 Y. Wang, K. Vafai. An Experimental Investigation of the Thermal Performance of an Asymmetrical at Plate Heat Pipe. International Journal of Heat and Mass Transfer. 2000, (43):2657~2668
    41张建锋,王翠玲,吴玉萍,顾明. ANSYS有限元分析软件在热分析中的应用.冶金能源. 2004, 23(5):9~12
    42张朝晖,范群波. ANSYS 8.0热分析教程与实例解析.中国铁道出版社. 2005:10~12, 14~15
    43 P. S. Ming, J. S. Xiao and J. Liu. Finite Element Analysis of Thermal Stresses in Ceramic/Metal Gradient Thermal Barrier Coatings. Journal of Wuhan University of Technology. 2005, (3):44~47
    44孔祥谦.热应力有限元法分析.上海交通大学出版社. 1999:66~71
    45王国强.数值模拟技术及其在ANSYS上的实践.西北工业大学出版社. 1999:138~166
    46 ANSYS, Inc.. Theory Reference. Release 9.0. SAS IP, Inc.. 2004:2.1~2.3, 14.152
    47钱惠华,李海,程滔,张锦.涡轮导向叶片热疲劳分析.航空动力学报. 2003, 18(2):186~190
    48小飒工作室.最新经典ANSYS及Workbench教程.北京电子工业出版社. 2004, (6):386, 387
    49朱光武,李保全.空间环境对航天器的影响及其对策研究.上海航天. 2002, (4):1~2
    50闵桂荣,郭舜.航天器热控制.第二版.科学出版社. 1998:283, 284, 289~290
    51徐向华,任建勋,梁新刚.近地倾斜轨道航天器在轨热辐射分析.太阳能学报. 2004, 25(5):718~721
    52王建设.空间光学遥感器轨道外热流的计算与软件设计.光学精密工程. 1999, 7(6):30~35
    53黄冬梅,童水光,蔡巧言.空间环境下某电子产品的热设计.导弹与航天运载技术. 2005, (5):48~50
    54符致勇,范绪箕,黄春生.航天器突起物热防护结构的瞬态温度场有限元分析.导弹与航天运载技术. 2004, (3):48~50
    55张朝晖. ANSYS 8.0结构分析及实例解析. 2005:453~456
    56 ANSYS, Inc.. Thermal Analysis Guide. Release 9.0. SAS IP, Inc.. 2004:4.1~4.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700