桥架结构快速求解器设计及动态可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥式起重机(简称“桥机”)是使用最多的起重设备之一,同时安全事故发生的概率也较多,发生事故的原因之一是桥机的主要组成部分的金属结构存在疲劳问题。因此,起重机金属结构评估对于保障起重机械安全运行十分重要。然而,起重机结构评估的重要依据就是应力-时间历程数据,该数据量的多少是影响可靠性评估或疲劳寿命预测准确性的重要依据。
     此外,可靠度是评价结构的重要指标之一。传统的结构可靠性模型是直接运用应力与强度干涉理论进行积分运算求得结构可靠度,没有考虑到材料强度随时间的变化因素(称“剩余强度”)。由于起重机服役时间比较长,在其服役期间所受到载荷的作用通常是随机的,在进行起重机结构的可靠性计算时,忽略载荷作用时间和材料强度因素的影响会对结构可靠度计算造成影响。由于随机载荷的作用次数以及材料的强度随时间而变化,起重机在服役期间其结构的可靠度和失效率也应当是随时间而变化的。
     本文研究的内容主要包括以下几个部分:
     第一、阐述了应力时间历程数据对可靠性评估的影响,以及强度随时间变化因素对结构可靠性影响。
     第二、针对采集的桥机实时载荷及运行数据,应用力法和有限单元法对桥式起重机结构进行简化分析和编程实现快速求解应力的功能。
     第三、利用应力与强度的干涉模型和剩余强度理论,建立桥式起重机金属结构的可靠度随载荷作用次变化的模型,即动态可靠度。
     本文可以把大量的桥式起重机运行数据转换成应力数据,能够解决应力数据缺乏的难题,并对桥式起重机金属结构进行了动态的可靠性分析,建立了动态可靠性模型,为起重机的寿命评估和动态监测奠定了一定的理论基础,具有重要的工程实用价值,为合理制定维修计划具有一定的指导意义。
Overhead travling crane is one of the most used lifting equipment, at the same time many safety misadventure has happen to it. One of the safty misadventure reason is the metal which is made up of crane exist fatigue. For this reason, it is very important to estimate the metal constructure of crane. To estimate the crane base on the data of stress, data volume is the basis which can impact accuracy of the satety evaluations.
     It is widely known that reliability is one of key indicators on safety evaluation. For crane metal structure, the traditional structural reliability calculation model is after the stress distribution and force distribution can be got. The Principle of Stress Strength Interference was directly used to calculate the reliability and obtain the structure reliability. But this method structural reliability of the stress cycle only can be calculated once or a specified number cycles. The reliability can’t be calculated at any time, and this method didn’t take into account the impacted by the strength degradation. So it will not essentially reflect the structural reliability are impacted by stress cycles and duration with stress increasing. However, the crane service time is always very long, and the structure often suffered a lot of repeated random stress cycles, and the affecting factors of the reliability such as stress cycles and the structure strength are often changing over time. In this case, when the reliability of the in service crane structure, it should also be changing over time. In the past, the force cycles time and the structural strength of metal degradation was ignored when the structure reliability had been calculated, it obviously affected the reliability of the crane. This text is based on the actual situation, considering the role of stress cycles and material strength changed over time to calculate the crane structure’s dynamic reliability.
     In this paper, the main component includes:
     First, it expounded the more data of stress is very important for satety evaluations, so as to the dynamic reliability.
     Second, according to the running data which has collected form overhead travling crane, use structure mechaniscs to analysis the structure of crane and coding the program to acculate the stress on the crane.
     Lastly, use of the model of Stress Streng Interference and strength degradation to set up of the dynamic reliability of crane.
     The plenty of running data of overhead travling crane can be translated to stress; the question of lacking stress data is being solved. A degradation model of dynamic reliability for the crane structures is established. A theoretical foundation on cranes dynamic monitoring and estimating the residual life for the structures have been laid. The research has a great practical in engineering and a significance for making certain maintenance and repairing plan on crane.
引文
[1]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [2]牟致忠,朱文于.机械可靠性设计[M].机械工业出版社,1990,5.
    [3]王正,谢里阳,李兵.机械零件动态可靠性模型及失效率研究[C].东北大学学报.第28卷第11期2007年11月.
    [4]王正,谢里阳,李兵.随机载荷作用下的零件动态可靠性模型[C].机械工程学报.第43卷第12期2007年12月.
    [5] Schaff J R, Davidson B D. Life prediction methodology for composite structures[J]. Part 1-Constant amplitude and two-stress level fatigue. Journal of Composite Materals, 1997, 31(2):128-157.
    [6]徐格宁.机械装备金属结构设计[M].机械工业出版社.2009年9月第二版.
    [7]徐克晋,曹俊杰.水平载荷作用下双梁桥架内力分析[C].太原重型机械学院学报,1992,13,(02),39-49.
    [8]翟甲昌,高崇仁.桥式起重机水平刚架结构的设计计算[C].太原重型机械学院学报,1991,12,(02),87-96.
    [9]徐格宁,智浩,徐刚.铸造起重机桥架空间结构分析与疲劳计算[C].太原重型机械学院学报,1993,第4期第14卷,41-53.
    [10]曾攀.有限元分析及应用.北京.清华大学出版社.2004.6.
    [11]李廉锟.结构力学(第三版)[M].[M].北京:高等教育出版社,2002,9.
    [12]徐克晋主编.金属结构(第2版)[M].北京.机械工业出版社.1993.
    [13]苏啸周成义王强.Visual Basic程序设计教程[M].高等教育出版社.2005年03月第1版.
    [14]龚沛曾,陆慰民,杨志强.Visual Basic程序设计教程[M].高等教育出版社.2000,7,第一版.
    [15]刘鸿文.材料力学I[M].高等教育出版社.2004年4月第四版.
    [16]刘鸿文.材料力学II[M].高等教育出版社.2004年4月第四版.
    [17]徐克晋.金属结构[M].北京:机械工业出版社,1995.
    [18]薛小锋,冯蕴雯,应中伟,冯元生.老龄飞机多部位损伤结构的剩余强度研究[C].机械科学与技术.2008年11月第27卷第11期.
    [19]赵建印,孙权,周经伦.周期性随机应力强度退化下的应力强度干涉可靠性模型研究[C].应用科学学报.2006年9月第24卷第5期.
    [20]王新刚,张义明,王宝艳.载荷作用次数和强度退化对应力强度干涉模型的影响[C].2008年12月第12期.
    [21]胡明敏,魏平,唐静静.由剩余强度全域测试建立的疲劳可靠性估算模型[C].机械强度2003.25(1);102-104.
    [22]吕文阁,谢里阳,徐灏.一个非线性强度退化模型[C].机械强度.1997年6月第19卷第2期.
    [23]谢里阳,林晨,平安.疲劳过程中强度退化与平均应力修正[C].机械强度.1996年9月第18卷第3期.
    [24]苏志霄,刘宏昭,王建平,曹惟庆.基于剩余强度退化规律的疲劳损伤非线性演化模型[C].机械强度.2000年9月第22卷第3期.
    [25]孙权,赵建印,周经伦.复合应力作用下强度退化的应力一强度干涉模型可靠性统计分析[C].计算力学学报.2007年6月第24卷第3期.
    [26]刘永寿,王文,冯震宙,王富生,岳珠峰.腐蚀管道的剩余强度与可靠性分析[C].强度与环境.2008年6月第35卷第3期.
    [27]李亚智,黄其青,傅祥炯,郑曼仲.含裂纹结构剩余强度的一种估算方法.机械强度[C].2003,25(1);071-075.
    [28]杨继运,张行.裂纹扩展阻力曲线与剩余强度关系的理论研究[C].机械强度.2003,25(3);334-339.
    [29]孙广先,冯元生.一种基于剩余强度衰减的疲劳寿命可靠性分析模型[C].机械强度.2000年6月第22卷第2期.
    [30]吕文阁,谢里阳,徐灏.随机强度退化过程[C].广东工业大学学报.2001年6月第18卷第2期.
    [31] Adnan OZEL, Sadri SEN. Effects of Residual Stresses Caused by Different Types of Loading on Silent Chain Strength[C]. Tr. J. of Engineering and Environmental Science 22 (1998), 461-470.
    [32] XIE Liyang, ZHOU Jinyu, HAO Changzhong.System—level load-strength interference based reliability modeling of k-out-of-n system [J]. Reliability Engineering and System Safety,2004,84:3ll-3l7.
    [33] LI Jianping, THOMPSON G. A method to take account of in—homogeneity in mechanical component reliability calculations[J].IEEE Transaction onReliability,2005,54(11:l59-l68.
    [34] Wang Zheng, Xie Liyang, Li Bing. Reliability model of failure—dependent system with frequency of Loading Taken into Account[J].Journal of Northeastern University(Natural Science), 2007, 28(5): 704—707.
    [35] HUANG w, RRONALD G A. A generalized应力强度干涉reliability model considering stochastic 1oading and strength aging degradation[J]. IEEE Trans. On Reliability, 2004, 53(1): 77-82.
    [36] KLUTKE G A, YANG Y J. The availability of inspected system subject to shocks and graceful degradation[J]. IEEE Trans. On Reliability, 2002, 51(3): 371-374.
    [37] Schaff J R, Davids B D. Life prediction methodology for composite Structures[J]. PartⅡS pectrum fatigue. Joumal of Composite Materials, 1997, 3l(2): 158-181.
    [38] Mehr C B, McFadden J A. Certain Properties of Gau应力强度干涉an Processes and their First Passage Time[J]. J. Roc. Statist. Sco(B). 1965, 27: 505-522.
    [39] Broek D. Artificial slow crack growth under constant stress-The R curve concept in plane stress[C]. Engineering Fracture Mechanics, 1973, 5: 45-53.
    [40]牛夏牧.工程软件技术基础[M].哈尔滨工业大学出版社.1997.8.
    [41]颜庆津.数值分析[M].北京航空航天大学出版社.2000年1月第一版.
    [42]郑人杰,殷人昆.软件工程概论[M].清华大学出版社.2001年1月.
    [43]樊朝锺,高崇仁.由塔式起重机运行数据载荷到结构应力点的计算方法[C].2009.10.
    [44]关正美.中文版Access 2003教程[M].中国宇航出版社.2004年6月第1版
    [45]樊朝锺.基于VB的塔机运行数据载荷快速处理方法研究[D].太原理工大学,2009.
    [46]于二青.限元分析程序的系统设计与算法优化[D].上海交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700