蛇葡萄素、白芍总苷减轻大鼠实验性结肠炎的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症性肠病(inflammatory bowel disease, IBD),是指一组病因不明的慢性非特异性的肠道炎症性疾病,包括克罗恩病(Crohn's disease)和溃疡性结肠炎(ulcerative colitis)两个独立的疾病。炎症性肠病病因目前尚未完全阐明,可能与多种因素有关,目前认为该病的发病与宿主遗传易感性、胃肠道益生菌和致病菌失衡、肠上皮黏膜完整性受损及机体免疫功能失调等综合因素的相互作用有关。炎症性肠病是世界范围的疾病,其分布具有显著的地理特点,在欧美等西方国家如斯堪的那维亚、西欧和北美国家多见,而亚洲国家的发病率与患病率相对较低,但近年来我国的患病率呈明显上升趋势。正因炎症性肠病病因尚不完全明确,故而其治疗也颇为困难,目前治疗炎症性肠病的主要药物包括水杨酸类、糖皮质激素、免疫抑制剂及生物制剂如抗肿瘤坏死因子(抗-TNF)单克隆抗体等,用于调节异常的免疫反应。然而,这些药物对炎症性肠病的疗效有限且副作用明显,对部分炎症性肠病患者联合使用上述药物仍不能有效控制疾病的进展。因此,开发新的有效的、副作用少的药物用于炎症性肠病的治疗显得非常迫切和必要。
     第一部分蛇葡萄素减轻大鼠实验性结肠炎的作用及机制研究
     蛇葡萄素(Ampelopsin)是一种多酚羟基双氢黄酮醇,化学名称:(2R,3R)-3,5,7-三羟基-2-(3,4,5-三羟基苯基)苯并二氢吡喃-4-酮,分子式:C15H12O8,分子量:320.25,又名二氢杨梅素。近年来国内外学者对蛇葡萄素进行了大量的研究,证实了蛇葡萄素除有下调TNF-α、IL-6和IL-1p促炎性细胞因子调节免疫、抗炎、抑菌、抗病毒、护肝的生物活性外,在降糖、降脂、抗肿瘤、抗自由基等多方面也有显著的效果,而且毒性低微。本文假设蛇葡萄素对炎症性肠病也有治疗作用,我们初步以蛇葡萄素进行的预试验表明:蛇葡萄素明显改善实验性结肠炎大鼠的症状和结肠病理改变。本研究以三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid, TNBS)/乙醇保留灌肠诱导大鼠实验性结肠炎,观察蛇葡萄素灌胃给药对大鼠实验性结肠炎的干预作用,并对其分子机制进行初步探讨。
     目的:观察蛇葡萄素灌胃给药对TNBS/乙醇诱导的大鼠实验性结肠炎的干预作用及机制探讨。
     方法:乙醚轻度麻醉下,给予雄性Sprague-Dawley (SD)大鼠0.25ml TNBS的50%乙醇溶液(含TNBS30mg)灌肠,诱导大鼠实验性结肠炎的发生。60只大鼠随机分为6组,每组10只,分别为正常对照组(A组)、模型对照组(B组)、柳氮磺吡啶(SASP)对照组(C组)、蛇葡萄素(Ampelopsin)低剂量组(D组)、蛇葡萄素中剂量组(E组)、蛇葡萄素高剂量组(F组)。TNBS/乙醇灌肠造模24小时后,蛇葡萄素低、中、高剂量组大鼠分别给予125、250、500mg/kg/day的蛇葡萄素进行灌胃给药:柳氮磺吡啶对照组大鼠给予柳氮磺吡啶100mg/kg/day灌胃给药;正常对照组和模型对照组大鼠以生理盐水(2.0ml/只)灌胃,每天3次,持续给药7天。试验期间每天观察大鼠的饮食、饮水、体重、大便、毛色、活动、精神状态等情况,进行疾病活动指数(disease activity index,DAI)评分;灌胃给药7天后处死全部大鼠,打开腹腔,分离结肠,对大鼠结肠组织炎症作大体评分(colon macroscopic damage index, CMDI);取距肛门端8cm处结肠用福尔马林固定,制作病理切片,对大鼠结肠炎症进行病理组织学评分(histopathological score,HPS);以免疫组化S-P法检测大鼠结肠组织NF-κB p65蛋白的表达;另取大鼠结肠组织以分光光度法进行髓过氧化物酶(myeloperoxidase, MPO)活性测定;以酶联免疫法(ELISA)检测大鼠血清和结肠组织TNF-α、IL-1β和IL-10的蛋白含量,逆转录-聚合酶链式反应(RT-PCR)检测大鼠结肠组织TNF-α、IL-1β和IL-10mRNA的表达。
     结果:①给予含30mg TNBS原液的乙醇溶液灌肠后第2天,模型对照组大鼠开始出现大便次数增多、血便、体重逐渐下降,造模后第8天,模型对照组大鼠表现为拱背、竖毛、毛发失去光泽甚至明显脱毛、蜷卧懒动、饮食明显减少、体重明显减轻,可见明显脓血便,大鼠DAI明显高于正常对照组(3.17±0.31vs0.10±0.16,P<0.01)。蛇葡萄素中、高剂量组、柳氮磺吡啶对照组大鼠也出现腹泻、血便和体重减轻,但程度较轻,灌胃给药后期逐渐改善。造模后第8天蛇葡萄素中、高剂量组、柳氮磺吡啶对照组DAI明显低于模型对照组(1.07±0.26、1.00±0.22、1.13±0.17vs3.17±0.31,P<0.01,respectively),蛇葡萄素中、高剂量组、柳氮磺吡啶对照组组间DAI比较无显著差异(1.07±0.26,1.00±0.22vs1.13±0.17, P>0.05, respectively)。蛇葡萄素低剂量组DAI明显低于模型对照组(2.04±0.39vs3.17±0.31,P<0.01),但明显高于柳氮磺吡啶对照组(1.74±0.32vs1.13±0.17, P<0.01).②TNBS溶液灌肠后8天处死所有大鼠,打开大鼠腹腔,分离结肠,沿肠系膜纵轴剖开,在冰上观察结肠充血水肿、炎症、溃疡等变化。模型对照组大鼠结肠可见与周围组织如肝脏、脾脏、输尿管及小肠等周围组织脏器严重粘连,局部肠管明显扩张,甚至可见巨结肠,大鼠结肠肠壁增厚、颜色灰暗,肠黏膜明显充血、水肿,糜烂、坏死明显,可见多发溃疡及较大溃疡病灶,溃疡呈线状或灶状,溃疡面可见灰黑色假膜样物覆盖,周围可见黏膜增厚,肠腔狭窄,CMDI评分明显高于正常对照组(4.38±0.74vs0.20±0.42,P<0.01)。柳氮磺吡啶对照组、蛇葡萄素中、高剂量组CMDI明显低于模型对照组(2.10±0.57、2.20±0.42、2.00±0.47vs4.38±0.74,P<0.01, respectively),蛇葡萄素中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(2.20±0.42,2.00±0.47vs2.10±0.57, P>0.05, respectively).蛇葡萄素低剂量组CMDI低于模型对照组(2.89±0.60vs4.38±0.74,P<0.01),但明显高于柳氮磺吡啶对照组(2.89±0.60vs2.10±0.57,P<0.01)。③显微镜下,正常对照组大鼠结肠组织未见或仅见极少中性粒细胞浸润,结肠黏膜完整,固有层内肠腺丰富,排列紧密。模型对照组大鼠结肠组织病理学表现为黏膜上皮大面积坏死脱落,腺体破坏且结构紊乱,杯状细胞减少,隐窝炎及隐窝脓肿形成,黏膜下层不同程度充血、水肿、毛细血管扩张,大量中性粒细胞、淋巴细胞浸润肠壁全层,肠壁水肿明显,黏膜、黏膜下层、甚至肌层可见大面积溃疡灶,溃疡底部伴有炎性肉芽组织增生,HPS明显高于正常对照组(4.13±0.64vs0.40±0.52,P<0.01)。与模型对照组相比,柳氮磺吡啶对照组、蛇葡萄素中、高剂量组大鼠结肠HPS明显低于模型对照组(1.90±0.57、2.00±0.47、1.80±0.63vs4.13±0.64,P<0.01, respectively),陀葡萄素中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(2.00Q0.47、1.80±0.63vs1.90±0.57,P>0.05,respectively)。蛇葡萄素低剂量组大鼠结肠HPS低于模型对照组(3.00±0.50vs4.13±0.64,P<0.01),但明显高于柳氮磺吡啶对照组(3.00±0.50vs1.90±0.57,P<0.01)。④正常对照组大鼠结肠组织仅见微弱的NF-κB p65表达,模型对照组大鼠NF-KB p65表达明显增高,阳性着色细胞主要为结肠黏膜上皮细胞、隐窝上皮细胞、结肠黏膜下层和固有层中性粒细胞和单核细胞,阳性细胞胞质和胞核都含有棕褐色颗粒,但以胞核表达为主,其阳性细胞吸光值明显高于正常对照组(0.64±0.06vs0.21±0.03,P<0.01)。柳氮磺吡啶对照组、蛇葡萄素中、高剂量组NF-KBp65表达明显低于模型对照组(0.41±0.06、0.39±0.06、0.38±0.06vs0.64±0.06,P<0.01,respectively);蛇葡萄素中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(0.39±0.06、0.38±0.06vs0.41±0.06,P>0.05,respectively)。蛇葡萄素低剂量组大鼠结肠组织NF-KB p65表达明显低于模型对照组(0.55±0.04vs0.64±0.06,P<0.01);但明显高于柳氮磺吡啶对照组(0.55±0.04vs0.41±0.06,P<0.01)。⑤与正常对照组比较,模型对照组大鼠结肠的髓过氧化物酶(MPO)活性增加约6倍,柳氮磺吡啶对照组、蛇葡萄素中、高剂量组大鼠结肠组织MPO活性较模型对照组降低50%,与模型对照组比较有显著性差异(17.90±2.51、18.50±2.80、16.70±2.45vs36.00±4.47,P<0.01,respectively);蛇葡萄素中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(18.50±2.80、16.70±2.45vs17.90±2.51,P>0.05respectively)。蛇葡萄素低剂量组大鼠结肠组织MPO活性低于模型对照组(24.67±3.12vs36.00±4.47,P<0.01);但明显高于柳氮磺吡啶对照组(24.67±3.12vs17.90±2.51,P<0.01)。⑥给予TNBS溶液灌肠后第八天,模型对照组血清TNF-α、IL-1p的蛋白含量明显高于正常对照组(80.29±5.95vs25.15±2.88、61.95±5.53vs23.85±2.95,P<0.01,1rspectively), IL-10的蛋白含量明显低于正常对照组(28.31±3.21vs39.60±4.42,P<0.01)。柳氮磺吡啶对照组、蛇葡萄素中、高剂量组TNF-α、IL-1p的蛋白含量明显低于模型对照组(44.09±4.71、46.15±4.78、43.18±4.16vs80.29±5.95,38.14±4.04、40.55±4.09、37.64±3.65vs61.95±5.53,P<0.01,respectively),IL-10的蛋白含量明显高于模型对照组(67.10±4.23、68.03±5.00、65.38±4.89vs28.31±3.21, P<0.01, respectively);蛇葡萄素中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(P>0.05)。蛇葡萄素低剂量组血清TNF-α、IL-1β的蛋白含量低于模型对照组(64.56±5.88vs80.29±5.95、49.00±4.66vs61.95±5.53,P<0.01,respectively),IL-10的蛋白含量高于模型对照组(33.61±3.77vs28.31±3.21,P<0.01):蛇葡萄素低剂量组血清TNF-α、IL-1β的蛋白含量明显高于柳氮磺吡啶对照组(64.56±5.88vs44.09±4.71,49.00±4.66vs38.14±4.04,P<0.01,respectively),IL-10的蛋白含量明显低于柳氮磺吡啶对照组(33.61±3.77vs67.10±4.23,P<0.01)。⑦模型对照组大鼠结肠TNF-α、IL-1βmRNA(1.35±0.27vs0.34±0.11、1.43±0.21vs O.38±0.10,P0.05)。蛇葡萄素低剂量组TNF-α、IL-1β mRNA(0.91±0.22vs1.35±0.27.1.07±0.20vs1.43±0.21,P<0.01, respectively)的表达和TNF-α、IL-1β蛋白的含量低于模型对照组(73.11±7.19vs88.16±8.19、69.36±9.75vs85.88±11.06,P<0.01,respectively),IL-10mRNA(0.50±0.15vs0.27±0.13,P<0.01)的表达和IL-10蛋白的含量高于模型对照组(36.08±3.83vs28.10±3.26,P<0.01);蛇葡萄素低剂量组TNF-α、IL-1β mRNA(0.91±0.22vs O.65±0.15.1.07±0.20vs0.68±0.17,P<0.01,respectively)的表达和TNF-α、IL-1β蛋白的含量明显高于柳氮磺吡啶对照组(73.11±7.19vs53.80±5.65、69.36±9.75vs52.35±7.34,P<0.01,respectively),IL-10mRNA(0.50±0.15vs1.42±0.19,P<0.01)的表达和IL-10蛋白的含量明显低于柳氮磺吡啶对照组(36.08±3.83vs83.21±7.43,P<0.01)。
     结论:早期以蛇葡萄素灌胃给药干预,能减轻TNBS诱导大鼠实验性结肠炎,其作用机制可能与蛇葡萄素下调结肠NF-κB p65表达、Th1促炎性细胞因子TNF-α、IL-1β和上调Th2抑炎性细胞因子IL-10有关。
     第二部分白芍总苷减轻大鼠实验性结肠炎的作用及机制研究
     白芍是中国传统中药植物,为毛莨科植物芍药(paeonia lactiflora)的干燥根,是中医学用于治疗风湿类疾病、自身免疫性疾病、肝炎及肝硬化等疾病的重要组方之一,引起了医药学界的广泛重视与开发研究。国内外学者通过多年的研究,已成功提取出白芍的药效成分单体,主要为一组糖苷类物质,包括芍药甙(paeoniflorin).芍药花甙(paeonin)、芍药内酯甙(albiflorin)、羟基芍药甙(hydroxy-paeoniflorin)、苯甲酰芍药甙(benzoylpaeoniflorin),统称为白芍总苷(total glucosides of paeony, TGP),其中芍药苷占总苷量的90%以上,是白芍的主要有效成分。对白芍总苷的药理及临床进行研究发现,白芍总苷可有效抑制炎症局部前列腺素E的合成,抑制淋巴细胞增殖及巨噬细胞产生促炎性细胞因子,如TNF-α、IL-1β、IL-8及IL-6等,纠正CD4+/CD8+T淋巴细胞比例失衡,从而多途径调节自身免疫紊乱,以及具有抗炎、止痛、保肝的作用。白芍总苷对类风湿性关节炎(RA)有确切疗效,已在临床上广泛应用,并显示出对系统性红斑狼疮、强直性脊柱炎等多种自身免疫性疾病治疗的良好应用前景。
     本文假设白芍总苷对炎症性肠病也有治疗作用,本研究以TNBS/乙醇灌肠诱导复制大鼠实验性结肠炎模型,观察白芍总苷灌胃给药对大鼠实验性结肠炎的干预作用,并对其分子机制进行初步探讨。
     目的:观察白芍总苷灌胃给药对TNBS/乙醇诱导的大鼠实验性结肠炎的干预作用及机制探讨。
     方法:乙醚轻度麻醉下,给予雄性Sprague-Dawley (SD)大鼠0.25ml TNBS的50%乙醇溶液(含TNBS30mg)灌肠,诱导大鼠实验性结肠炎的发生。60只大鼠随机分为6组,每组10只,分别为正常对照组(A组)、模型对照组(B组)、柳氮磺吡啶(SASP)对照组(C组)、白芍总苷(TGP)低剂量组(D组)、白芍总苷中剂量组(E组)、白芍总苷高剂量组(F组)。TNBS/乙醇灌肠造模24小时后,白芍总苷低、中、高剂量组大鼠分别给予25、50、100mg/kg/day的白芍总苷进行灌胃给药:柳氮磺吡啶对照组大鼠给予柳氮磺吡啶100mg/kg/day灌胃给药;正常对照组和模型对照组以生理盐水(2.0ml/只)灌胃,每天3次,持续给药7天。试验期间每天观察大鼠的饮食、饮水、体重、大便、毛色、活动、精神状态等情况,进行疾病活动指数(disease activity index, DAI)评分;灌胃给药7天后处死全部大鼠,打开腹腔,分离结肠,对大鼠结肠组织炎症作大体评分(colon macroscopic damage index, CMDI);取距肛门端8cm处结肠用福尔马林固定,制作病理切片,对大鼠结肠炎症进行病理组织学评分(histopathological score, HPS);另取大鼠结肠组织以分光光度法进行髓过氧化物酶(myeloperoxidase, MPO)活性测定,同时以酶联免疫法(ELISA)检测大鼠血清TNF-α、IL-1β和IL-10的蛋白含量,逆转录-聚合酶链式反应(RT-PCR)检测大鼠结肠组织TNF-α、IL-1β和IL-10mRNA的表达,Western blot检测大鼠结肠组织TNF-α、IL-1β和IL-10蛋白的表达。
     结果:①给予含30mg TNBS原液的乙醇溶液灌肠后第2天,模型对照组大鼠开始出现大便次数增多、血便,体重逐渐下降,造模后第8天,可见明显脓血便、饮食明显减少、体重减轻、毛发失去光泽甚至明显脱毛、喜扎堆,反应迟缓、懒动,DAI明显高于正常对照组(2.74±0.49vs0.07±0.14,P<0.01)。柳氮磺吡啶对照组、白芍总苷中、高剂量组大鼠给予TNBS溶液灌肠后出现腹泻、血便和体重减轻,但程度较轻,灌胃给药后期逐渐改善。造模后第8天白芍总苷低剂量组DAI低于模型对照组(2.22±0.29vs2.74±0.49,P<0.05),柳氮磺吡啶对照组、白芍总苷中、高剂量组DAI明显低于模型对照组(1.10±0.22、1.00±0.16、0.97±0.11vs2.74±0.49,P<0.01,respectively).白芍总苷低剂量组DAI明显高于柳氮磺吡啶对照组(2.22±0.29vs1.10±0.22,P<0.01);白芍总苷中、高剂量组、柳氮磺吡啶对照组组间DAI比较无显著差异(1.00±0.16、0.97±0.1l vs1.10±0.22,P>0.05,respectively).②TNBS溶液灌肠后8天处死所有大鼠,打开大鼠腹腔,分离结肠,沿肠系膜纵轴剖开,在冰上观察结肠充血水肿、炎症、溃疡等变化。模型对照组大鼠结肠与周围组织如输尿管、小肠及脾脏等脏器严重粘连,局部结肠肠管扩张,肠壁增厚、颜色灰暗,肠黏膜明显充血、水肿,可见较大溃疡病灶,病灶处有灰黑色假膜样物覆盖,CMDI明显高于正常对照组(3.67±0.71vs0.10±0.32,P<0.01)。TNBS溶液灌肠后给予柳氮磺吡啶、白芍总苷低、中、高剂量干预后,大鼠结肠病变有不同程度减轻,白芍总苷低剂量组CMDI低于模型对照组(2.89±0.60vs3.67±0.71,P<0.05);柳氮磺吡啶对照组、白芍总苷中、高剂量组CMD)I明显低于模型对照组(1.60±0.52.1.80±0.42.1.70±0.67vs3.67±0.71,P<0.01,respectively).与柳氮磺吡啶对照组比较,白芍总苷低剂量组CMDI明显高于柳氮磺吡啶对照组(2.89±0.60vs1.60±0.52,P<0.01),白芍总苷中、高剂组、柳氮磺吡啶对照组组间比较无显著差异(1.80±0.42,1.70±0.67vs1.60±0.52,P>0.05,respectively)。③显微镜下,正常对照组大鼠结肠组织未见或仅见极少中性粒细胞浸润,结肠黏膜完整,固有层内肠腺丰富,排列紧密。模型对照组大鼠结肠组织病理学表现为固有层充血水肿,大量中性粒细胞、淋巴细胞浸润,广泛黏膜上皮坏死脱落,隐窝炎及脓肿形成,腺体破坏且结构紊乱,溃疡形成,肉芽肿、纤维组织增生,结肠HPS明显高于正常对照组(3.33±0.71vs0.30±0.48,P<0.01)。与模型对照组相比,白芍总苷低剂量组大鼠结肠HPS低于模型对照组(2.67±0.50vs3.33±0.71,P<0.05);柳氮磺吡啶对照组、白芍总苷中、高剂量组大鼠结肠HPS明显低于模型对照组(1.80±0.63、1.90±0.57、1.60±0.52vs3.33±0.71,P<0.01,respectively).与柳氮磺吡啶对照组比较,白芍总苷低剂量结肠HPS明显高于柳氮磺吡啶对照组(2.67±0.50vs1.80±0.63,P<0.01),白芍总苷中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(1.90±0.57、1.60±0.52vs1.80±0.63,P>0.05,respectively).④与正常对照组比较,模型对照组大鼠结肠的MPO活性增加约5倍,MPO活性明显高于正常对照组(31.11±3.55vs6.10±0.73,P<0.01)。白芍总苷低剂量组大鼠结肠MPO活性低于模型对照组(27.56±2.70vs31.11±3.55,P<0.05);柳氮磺吡啶对照组、白芍总苷中、高剂量组大鼠结肠MPO活性较模型对照组降低50%,明显低于模型对照组(15.80±1.69、16.10±1.37、14.90±1.66vs31.11±3.55,P<0.01,respectively).与柳氮磺吡啶对照组比较,白芍总苷低剂量组结肠MPO活性明显高于柳氮磺吡啶对照组(27.56±2.70vs15.80±1.69,P<0.01),白芍总苷中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(16.10±1.37、14.90±1.66vs15.80±1.69,P>0.05,respectively).⑤给予TNBS溶液灌肠八天后,模型对照组血清TNF-α、IL-1β的蛋白含量明显高于正常对照组(84.08±14.32vs21.98±3.66、66.13±9.99vs27.71±2.45,P<0.01,respectively),IL-10的蛋白含量明显低于正常对照组(26.87±4.00vs40.83±3.73,P<0.01)。白芍总苷低剂量组血清TNF-α、IL-1β的蛋白含量低于模型对照组(68.71±10.65vs84.08±14.32、54.51±7.82VS66.13±9.99,P<0.05,respectively),IL-10的蛋白含量高于模型对照组(31.61±3.22vs26.87±4.00,P<0.05);柳氮磺吡啶对照组、白芍总苷中、高剂量组血清TNF-α、IL-1β的蛋白含量明显低于模型对照组(47.69±7.45、49.26±6.34、45.99±7.15vs84.08±14.32,40.39±6.45、40.86±5.14、38.99±6.54vs66.13±9.99,P<0.01,respectively),IL-10的蛋白含量明显高于模型对照组(73.78±8.15、71.39±8.35、75.75±8.28vs26.87±4.00,P<0.01,respectively)。与柳氮磺吡啶对照组比较,白芍总苷低剂量组血清TNF-α、IL-1β的蛋白含量明显高于柳氮磺吡啶对照组(68.71±10.65vs47.69±7.45,54.51±7.82vs40.39±6.45,P<0.01,respectively),IL-10的蛋白含量明显低于柳氮磺吡啶对照组(31.61±3.22vs73.78±8.15,P<0.01);白芍总苷中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(49.26±6.34、45.99±7.15vs47.69±7.45,40.86±5.14、38.99±6.54vs40.39±6.45,71.39±8.35、75.75±8.28vs73.78±8.15,P>0.05,respectively).⑥模型对照组大鼠结肠TNF-α、IL-1β mRNA(1.35±0.44vs0.36±0.12.1.57±0.40vs0.42±0.21,P<0.01,respectively)和TNF-α、IL-1β蛋白的表达明显高于正常对照组(1.18±0.36vs0.23±0.08、1.27±0.31vs0.32±0.07,P<0.01,respectively), IL.10mRNA(0.25±0.12vs0.9l±0.11,P<0.01)和IL-10蛋白的表达明显低于正常对照组((0.37±0.14vs1.09±0.08,P<0.01))。白芍总苷低剂量组TNF-α、IL-1β mRNA(0.97±0.21vs1.35±0.44、1.19±0.28vs1.57±0.40,P<0.05,Fespectively)和TNF-α、IL-1β蛋白的表达低于模型对照组((0.81±0.19vs1.18±0.36、0.97±0.24vs1.27±0.31,P<0.05,respectively),IL-10mRNA(0.41±0.13vs0.25±0.12,P<0.05)和IL-10蛋白的表达高于模型对照组((0.53±0.12vs0.37±0.14,P<0.05);柳氮磺吡啶对照组、白芍总苷中、高剂量组TNF-α、IL-1β mRNA(0.60±0.19.0.61±0.18.0.58±0.20vs1.35±0.44,0.74±O.23.0.72±0.24.O.70±0.25vs1.57±0.40,P<0.01,respectively)和TNF-α、IL-1β蛋白的表达明显低于模型对照组(0.51±0.14、0.50±0.13、0.48±0.15vs1.18±0.36;0.63±0.15.0.62±O.16.0.60±0.15vs1.27±0.31,P<0.01,respectively),IL-10mRNA(1.23±0.23.1.19±0.21.1.27±0.24vs0.25±0.12,P<0.01,respectively)和IL-10蛋白的表达明显高于模型对照组(1.37±0.16、1.35±0.17、1.39±0.18vs0.37±0.14,P<0.01,respectively).与柳氮磺吡啶对照组比较,白芍总苷低剂量组TNF-α、IL-1β mRNA(0.97±0.21vs0.60±0.19.1.19±0.28vs0.74±0.23,P<0.01,repectively)和TNF-α、IL-1β蛋白的表达明显高于柳氮磺吡啶对照组(0.81±0.19vs0.51±0.14、0.97±0.24vs0.63±0.15, P<0.01, respectively), IL-10mRNA(0.41±0.13vs1.23±0.23, P<0.01)和IL-10蛋白的表达明显低于柳氮磺吡啶对照组(0.53±0.12vs1.37±0.16,P<0.01);白芍总苷中、高剂量组、柳氮磺吡啶对照组组间比较无显著差异(P>0.05)。
     结论:早期以白芍总苷灌胃给药干预,能减轻TNBS诱导大鼠实验性结肠炎,其作用机制可能与白芍总苷下调Thl促炎性细胞因子TNF-α、IL-1β和上调Th2抑炎性细胞因子IL-10有关。
Introduction Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is an idiopathic, non-specific inflammatory disorder of the intestinal tract with unknown causes. It is currently believed that genetic susceptibility, dysfunction of immune regulation in intestinal mucosa and intestinal bacteria are involved in the pathogenesis of IBD. Immune regulation dysfunction might be the direct cause for onset of IBD. It is now well accepted that abnormal immune response mediated by proinflammatory cytokines such as TNF-α,IL-1β, IL-6and IL-8, and antiinflammatory cytokines IL-10plays an important role in balance of Thl and Th2as well as inflammatory severity and activity in IBD. Currently, there is a lack of an effective therapy to cure the diseases since causes and mechanisms of IBD are not totally understood. Aminosalicylates, corticosteroids, immunomodulating and immunosuppressive drugs are used for treatment of IBD by controlling active inflammation and regulating abnormal immune response. However, such treatments have multiple adverse effects, particularly for long-term administration, and relapse is high upon drug discontinuance. Biological agents such as anti-TNF-a monoclonal antibody can induce the alleviation of IBD, but at a high cost and put the patients at risk to develop treatment-related cancers, and surgical resection of the colon and ileostomy is the ultimate alternative in many cases. Therefore, there is an urgent for the development of new and specific therapies for IBD with few side effects.
     Part I:Ampelopsin attenuates2,4,6-trinitrobenzene sulfonic acid/ethanol-induced colitis in rats
     Ampelopsin is a flavonoids extracted from Rattan tea which is a traditional Chinese herbal remedy prepared from the stems and leaves of the plant ampelopsis grossedentata. Ampelopsin was reported as a major bioactive component in ampelopsis grossedentata and first isolated from ampelopsis meliaefolia by Kotake and Kubota in1940.Recent studies have shown that ampelopsin has a broad range of biological functions including inhibition of apoptosis, hypoglycemic, anti-hypertension, anti-bacterial, anti-inflammatory, antioxidant, anti-tumor, hepatoprotective, and neuroprotective effects. These findings support the hypothesis that ampelopsin is also effective against IBD. Therefore, ampelopsin may be a bright potential candidate Chinese drug for treatment of IBD.
     Objective The present study is to investigate therapeutic effects of ampelopsin on2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of ampelopsin for treatment of inflammatory bowel disease (IBD).
     Methods Sixty Sprague-Dawley (SD) rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100mg/kg/day), and low, medium and high-dose ampelopsin groups (125,250and500mg/kg/day, respectively).24hours following colonic instillation of TNBS, ampelopsin and SASP were given by gastric gavage three times a day for7days.Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS) and myeloperoxidase (MPO) activity were evaluated. Levels of serum and colon TNF-α,IL-1β and IL-10were measured by enzyme-linked immunosorbent assay (ELISA), expression of TNF-α,IL-1β and IL-10mRNA in colonic tissues was detected by reverse transcription-polymerase chain reaction (RT-PCR), and expression of NF-κB p65protein in colonic tissues was detected by immunohistochemical methods, respectively.
     Results①Normal control rats treated with ethanol enema gained body weight and defecated normally. In the model control group, pasty to liquid gross bloody stool and weight loss were observed in all rats. When ampelopsin (250or500mg/kg/day) or SASP (100mg//kg/day) was administered on day7, bloody stools were not evident, stools were better formed, and weight loss was lessened. The colons from rats in the model control group were seriously adherent to small intestines and spleen, and showed marked hyperemia, inflammation, necrosis, ulcer, whereas the colons from rats in the normal control group showed no or a slight inflammation. Treatment with ampelopsin (250or500mg/kg/day) or SASP markedly decreased both hyperemia and inflammation in the colons. Administration of ampelopsin (250or500mg/kg/day) significantly improved the DAI and CMDI8days after TNBS instillation. And there was no significant difference compared with administration of SASP (P>0.05).②Ulcerations, massive transmural infiltration of inflammatory cells, thickening of the colon wall, goblet cell depletion, and extensive fibrosis found throughout colons in the model control group. Administration of ampelopsin (250or500mg/kg/day) improved these signs and the HPS significantly. And there was no significant difference compared with administration of SASP (P>0.05).③Rectal instillation of TNBS led to the marked enhancement of NF-κB p65protein expression in colonic tissues. Compared with the normal group, administration of ampelopsin (250or500mg/kg/day) significantly reduced the enhancement of NF-κB p65protein expression in colonic tissues. The difference was not significant when compared with administration of SASP (P>0.05).④MPO activity was very low in the normal control group, and increased significantly nearly6-fold in rats after TNBS enema in the model control group. In contrast, this increase was significantly blunted by about50%by administration of ampelopsin (250or500mg/kg/day). And there was no significant difference compared with administration of SASP (P>0.05).⑤ectal instillation of TNBS led to the marked enhancement of levels of serum TNF-α and IL-1β, and the marked decrease of levels of serum IL-10. Administration of ampelopsin (250or500mg/kg/day) significantly reduced the enhancement of levels of serum TNF-α and IL-1β and at the same time increased the decrease of levels of serum IL-10. And there was no significant difference when compared with administration of SASP(P>0.05).⑥Rectal instillation of TNBS led to the marked enhancement of mRNA expression of TNF-α and IL-1β, and the marked decrease of that of IL-10in colonic tissues. Administration of ampelopsin (250or500mg/kg/day) significantly reduced the enhancement of mRNA expression of TNF-α and IL-1β and at the same time significantly increased the decrease of that of IL-10. And there was no significant difference when compared with administration of SASP (P>0.05).⑦Protein expression of TNF-α and IL-1β was markedly elevated and that of IL-10was markedly decreased in the colons after rectal TNBS instillation, which was consistent with results of the mRNA expression.250or500mg/kg/day ampelopsin treatment significantly abrogated the elevation in protein expression of TNF-α,IL-1β and at the same time significantly increased the decrease of protein expression of IL-1O.The difference was not significant when compared with administration of SASP (P>0.05). On the other hand, administration of ampelopsin at the dose of125mg/kg/day showed modest improvement on colonic inflammation and regulatory effects on expression of TNF-α,IL-1β and IL-10, but the values were lower than administration of SASP (P<0.01).
     Conclusion Ampelopsin attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the down-regulation the enhancement of NF-κB p65protein expression in colonic tissues and adjustment of Thl/Th2cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.
     Part II:Total glucosides of peony attenuates2,4,6-trinitrobenzene sulfonic acid/ethanol-induced colitis in rats
     Total glucosides of peony (TGP) is a group of glucosides extracted from peony, including paeoniflorin, hydroxy-paeoniflorin, paeonin, albiflorin and benzoylpaeoniflorin. Paeoniflorin is a monoterpene glucoside, the major active ingredient of TGP, accounting for over90%of total glucosides. Now TGP has been a common prescription drug used for the treatment of autoimmune diseases including rheumatoid arthritis, ankylosing spondylitis and systemic lupus erythematosus and shown significant efficacy in the clinic. Recent studies have shown that TGP has anti-inflammatory and immunoregulatory functions, by inhibiting Th1cytokines and enhancing Th2cytokines. These findings support the hypothesis that TGP is also effective against IBD. Therefore, TGP may be a bright potential candidate Chinese drug for treatment of IBD.
     Objective The present study is to investigate therapeutic effects of total glucosides of peony (TGP) on2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of TGP for treatment of inflammatory bowel disease (IBD).
     Methods Sixty Sprague-Dawley (SD) rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100mg/kg/day), and low, medium and high-dose TGP groups (25,50and100mg/kg/day, respectively).24hours following colonic instillation of TNBS, TGP and SASP were given by gastric gavage three times a day for7days.Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS) and myeloperoxidase (MPO) activity were evaluated. Levels of serum TNF-α,IL-1β and IL-10were measured by ELISA, and expression of TNF-α,IL-1β and IL-10mRNA and protein in colonic tissues was detected by RT-PCR and Western blot, respectively.
     Results①Normal control rats treated with ethanol enema gained body weight and defecated normally. In the model control group, pasty to liquid gross bloody stool and weight loss were observed in all rats. When TGP (50or100mg/kg/day) or SASP was administered on day7, bloody stools were not evident, stools were better formed, and weight loss was lessened. The colons from rats in the model control group were seriously adherent to small intestines and spleen, and showed marked hyperemia, inflammation, necrosis, ulcer, whereas the colons from rats in the normal control group showed no or a slight inflammation. Treatment with TGP (50or100mg/kg/day) or SASP markedly decreased both hyperemia and inflammation in the colons. Administration of TGP (50or100mg/kg/day) significantly improved the DAI and CMDI8days after TNBS instillation. And there was no significant difference compared with administration of SASP (P>0.05).②Ulcerations, massive transmural infiltration of inflammatory cells, thickening of the colon wall, goblet cell depletion, and extensive fibrosis found throughout colons in the model control group. Administration of TGP (50or100mg/kg/day) improved these signs and the HPS significantly.③MPO activity was very low in the normal control group, and increased significantly nearly5-fold in rats after TNBS enema in the model control group. In contrast, this increase was significantly blunted by about50%by administration of TGP (50or100mg/kg/day).④Rectal instillation of TNBS led to the marked enhancement of levels of serum TNF-α and IL-1β and the marked decrease of levels of serum IL-10. Administration of TGP (50or100mg/kg/day) significantly reduced the enhancement of levels of serum TNF-α and IL-1β and at the same time increased the decrease of levels of serum IL-10. And there was no significant difference when compared with administration of SASP (P>0.05).⑤Rectal instillation of TNBS led to the marked enhancement of mRNA expression of TNF-α and IL-1β, and the marked decrease of that of IL-10in colonic tissues. Administration of TGP (50or100mg/kg/day) significantly reduced the enhancement of mRNA expression of TNF-α and IL-1β and at the same time significantly increased the decrease of that of IL-10.⑥Protein expression of TNF-α and IL-1β was markedly elevated and that of IL-10was markedly decreased in the colons after rectal TNBS instillation, which was consistent with results of the mRNA expression.50or100mg/kg/day TGP treatment significantly abrogated the elevation in protein expression of TNF-α,IL-1β and at the same time significantly increased the decrease of protein expression of IL-10. The difference was not significant when compared with administration of SASP (P>0.05). On the other hand, administration of TGP at the dose of25mg/kg/day showed modest improvement on colonic inflammation and regulatory effects on expression of TNF-α,IL-1β and IL-10, but the values were lower than administration of SASP (P<0.01).
     Conclusion TGP attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the adjustment of Thl/Th2cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.
引文
[1]Abraham C, Cho J H. Inflammatory bowel disease. New England Journal of Medicine,2009,361, 2066-2078.
    [2]邓长生,夏冰主编.炎症性肠病[M].第二版.北京:人民卫生出版社.2006.13-14.
    [3]中国炎症性肠病协作组,王玉芳,欧阳钦.3100例溃疡性结肠炎住院病例回顾分析.中华消化杂志[J].2006,26:368-372.
    [4]Podolsky D K. Inflammatory bowel disease. New England Journal of Medicine,1991,325:928-937.
    [5]Del Prete G The concept of type-1 and type-2 helper T cells and their cytokines in humans. International Reviews of Immunology,1998,16:427-455.
    [6]Romagnani, S. T-cell subsets (Th1 versus Th2). Annals of Allergy, Asthma & Immunology,2000,85: 9-18.
    [7]Stevens C, Walz G, Singaram C, et al. Tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in inflammatory bowel disease[J]. Digestive Disease and Sciences,1992,37:818-826.
    [8]Warren Strober, Ivan J Fuss. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases[J]. Gastroenterology,2011,140:1756-1767.
    [9]Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease[J]. Annu Rev Med,2000,51:289-298.
    [10]Akazawa A, Sakaida I, Higaki S, et al. Increased expression of tumor necrosis factor-alpha messenger RNA in the intestinal mucosa of inflammatory bowel disease, Particularly in patients with disease in the inactive phase[J]. Gastroenterol,2002,37:345-353.
    [11]Niessner M, Volk B A. Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clinical and Experimental Immunology,1995,101:428-435.
    [12]Neurath M F, Finotto S, Glimcher L H. The role of Thl/Th2 polarization in mucosal immunity. Nature Medicine,2002,8:567-573.
    [13]Hirohata S, Ohshima N, Yanagida T, Aramaki K. Regulation of human B cell function by sulfasalazine and its metabolites[J]. Int Immunophar macol,2002,2(5):631-640.
    [14]Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD)[J]. Pharmacol Rep,2011,63(3): 629-642.
    [15]Daniel C, Baumgart. The diagnosis and treatment of Crohn's disease and ulcerative colitis[J].Dtsch Arztebl Int,2009,106(8):123-133.
    [16]Taylor KM, Irving PM. Optimization of conventional therapy in patients with IBD[J], Nat Rev Gastroenterol Hepatol, 2011,8:646-656.
    [17]Hanauer SB. Review artiele:the long-term management of ulcerative colitis[J]. Aliment Pharmaeol Ther,2004,20 (Suppl 4):97-101.
    [18]Baars JE, Vogelaar L, Wolfhagen FH, et al. A short course of corticosteroids prior to surveillance colonoscopy to decrease mucosal inflammation in inflammatory bowel disease patients:results from a randomized controlled trial[J]. J Crohns Colitis,2010,4:661-668.
    [19]Cyrus P. Tamboli, MD, FRCPC. Current medical therapy for chronic inflammatory bowel diseases[J]. Surg Clin N Am,2007,87:695-725.
    [20]Colombel JF, Rutgeerts P, Reinisch W, et al. Early mucosal healing with infliximab is associated with improved long-term clinical outcomes in ulcerative colitis[J].Gastroenterology,2011,141:1194-1201.
    [21]Caviglia R, Ribolsi M, Rizzi M, Emerenziani S, Annunziata M, Cicala M. Maintenance of remission with infliximab in inflammatory bowel disease:efficacy and safety long-term follow-up[J]. World J Gastroenterol,2007,13(39):5238-5244.
    [22]Oussalah A, Laclotte C, Chevaux JB, et al. Long-term outcome of adalimumab therapy for ulcerative colitis with intolerance or lost response to infliximab:a single-centre experience[J]. Aliment Pharmacol Ther,2008,28(8):966-972.
    [23]Avila Alvarez A, Garcia-Alonso L, Solar Boga. A. Garcia-Silva J. Flexural psoriasis induced by infliximab and adalimumab in a patient with Crohn's disease[J]. An Pediatr (Bare),2009,70(3):278-281.
    [24]Lozeron P, Denier C, Lacroix C, Adams D. Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-alpha-blocker therapy[J]. Arch Neurol,2009,66(4):490-497.
    [25]Mariette X, Matucci-Cerinic M, Pavelka K et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies:a systematic review and meta-analysis[J]. Ann Rheum Dis,2011,70:1895-1904.
    [26]Rizzello F, Gionchetti P, Venturi A, Morselli C, Campieri M. Review article:the management of refractory Crohn's disease[J]. Aliment Pharmacol Ther,2002,16(Supp1.4):40-47.
    [27]Cima RR, Pemberton JH. Medical and surgical management of chronic ulcerative colitis[J]. Arch Surg, 2005,140:300-310.
    [28]Jiang XL, Cui HF. An analysis of 10218 ulcerative colitis cases in China.World J Gastroenterol[J]. 2002,8(1):158-161.
    [29]郭洁文,杨振淮,潘竞锵,李关宁.蛇葡萄属植物抗病毒、抑菌和抗炎镇痛作用的研究概况[J].中医研究,2004,17(5):57-60.
    [30]杨振淮,郭洁文,潘竞锵,等.蛇葡萄属植物抗肿瘤、抗氧化、护肝和调血脂的药理作用研究[J].中医研究,2004,17(4):57-58.
    [31]周天达,周雪仙.藤茶中双氢黄酮醇的分离、结构鉴定及其药理活性[J].中国药学杂志,1996,31(8):458-461.
    [32]Qi S, Xin Y, Guo Y, et al. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways[J]. Int Immunopharmacol,2012,12(1):278-287.
    [33]Xianjuan Kou,Ning Chen. Pharmacological potential of ampelopsin in Rattan tea[J]. Food Science and Human Wellness,2012,1 (1):14-18.
    [34]刘吉华,高山林,朱丹妮,等.蛇葡萄素的抑菌作用研究[J].中国药科大学学报,2002,33(5):439-441.
    [35]MATSUMOTO TAKESHI, TAHARA SATOSHI. Ampelopsin, a Major Antifungal Constituent from Salix sachalinensis, and its Methyl Ethers[J]. Nippon Nogeikagaku Kaishi,2001,75 (6):659-667.
    [36]LIU De-yu, YE Jian-tao, YANG Wen-hui, et al. Ampelopsin, a small molecule inhibitor of HIV-1 infection targeting HIV entry[J]. Biomed Environ Sci,2004,17:153-164.
    [37]Oshima, Yoshiteru, Ueno, Yuji. Ampelopsins D, F, H and cis-ampelopsin E, oligostilbenes from Ampelopsis brevipedunculata var. hancei roots[J]. Phytochemistry (Oxford),1993,33(1):179-182.
    [38]Hase K, Ohsugi M, Xiong Q, Basnet P, Kadota S, Namba T. Hepatoprotective effect of Hovenia dulcis THUNB. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide[J]. Biol Pharm Bull,1997,20(4):381-385.
    [39]郑成,陈静,郭丽娜.二氢杨梅素的降血糖及保护肾脏损伤效果研究[J].精细化工,2008,25(10):768-790.
    [40]钟正贤,覃洁萍,周桂芬,等.广西瑶族藤茶中双氢杨梅树皮素的药理研究[J].中国民族医药杂志,1998,4(3):42-44.
    [41]尹梅梅,潘振伟,蔡本志.二氢杨梅素诱导人肺腺癌细胞系AGZY2832a凋亡的实验研究[J].中国药理学通报,2008,24(5):626-630.
    [42]郑宏强,刘德育.蛇葡萄素抗黑色素瘤侵袭和转移的作用[J].癌症,2003,22(4):363-367.
    [43]徐静娟,姚茂君,许钢.二氢杨梅素抗氧化功能的研究[J].食品科学,2007,28(9):43-45.
    [44]张有胜,宁正祥,胡闫勇.黄酮类化合物二氢杨梅素的研究利用现状[J].中成药,2002,24(12):970-972.
    [45]张亚兵,李之清,张赤志.蛇葡萄根对Con A诱导小鼠肝损伤的防护作用[J].中西医结合肝病杂志,2000,10(1):26-27.
    [46]张赤志,李之清,张亚兵.蛇葡萄根对ConA诱导小鼠肝损伤模型Fas抗原表达的影响[J].中国中西医结合消化杂志,2001,9(2):67-68.
    [47]Strober W, Ludviksson BR, Fuss IJ. The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease[J]. Ann Intern Med,1998,128:848-856.
    [48]Torres MI, Garcia-Martin M, Fernandez MI, Nieto N, Gil A, Rios A. Experimental colitis induced by trinitrobenzenesulfonic acid:an ultrastructural and histochemical study[J]. Dig Dis Sci,1999,44: 2523-2529.
    [49]Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon[J]. Gastroenterology,1989,96:795-803.
    [50]Murthy SN, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin [J]. Dig Dis Sci,1993,38:1722-1734.
    [51]Wallace JL, Keenan CM. An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis[J]. Am. J.Physiol, 1990,258:G527-534.
    [52]Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice[J]. J Exp Med,1995,182:1281-1290.
    [53]Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker[J]. J Invest Dermatol,1982,78:206-209.
    [54]Mizoguchi A. Animal models of inflammatory bowel disease[J]. Prog Mol Biol Transl Sci,2012,105: 263-320.
    [55]Rachmilewitz D, Simon PL, Schwarts LW. Inflammatory mediators of experimental colitis in rats[J]. Gastroenterology,1989,97:326-337.
    [56]Bidere N, Ngo VN, Lee J, et al. Casein kinase 1 alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival[J]. Nature,2009,458(7234):92-96.
    [57]Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system[J]. Annu Rev Immunol, 2009,27:693-733.
    [58]Liu YP, Li YQ. Role of nuclear factor-kappa B expression in steroid-resistant ulcerative colitis[J]. World Chinese J Digestol,2006,14:238-241.
    [59]Karin M, Lin A. NF-kappaB at the crossroads of life and death[J]. Nat Immunol,2002,3(3):221-227.
    [60]Li Q, Verma IM. NF-kappaB regulation in the immune system[J]. Nat Rev Immunol,2002,2(10): 725-734.
    [61]Xu MQ, Suo YP, Gong JP, Zhang MM, Yan LN. Augmented regeneration of partial liver allograft induced by nuclear factor-kappaB decoy oligodeoxynucleotides-modified dendritic cells[J]. World J Gastroenterol,2004,10(4):573-578.
    [62]Zhang XP, Zhang L, Chen LJ, et al. Influence of dexamethasone on inflammatory mediators and NF-kappaB expression in multiple organs of rats with severe acute pancreatitis[J]. World J Gastroenterol, 2007,13(4):548-556.
    [63]Siddiguel, Khan I. Mechanism of regulation of Na-H exchanger in inflammatory bowel disease:role of TLR-4 signaling mechanism[J]. DigDisSci,2011,56(6):1656-1662.
    [64]Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease[J]. J Intern Med,2008, 263(6):591-596.
    [65]Takashi Mizushima, Makoto Sasaki, Tomoaki Ando, et al. Blockage of angiotensin Ⅱ type 1 receptor regulates TNF-a-induced MAdCAM-1 expression via inhibition of NF-KB translocation to the nucleus and ameliorates colitis[J]. Am J Physiol Gastrointest Liver Physiol,2010,298:G255-266.
    [66]Bemdt u, Bansch s, Philipsen L, et al. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in crohn's disease and ulcerative colitis[J]. J Immunol,2007,179(1): 295-304.
    [67]Visekruna A, Joeris T, Seidel D, et al. Proteasome-mediated degradation of IkappaBalpha and processing of p105 in crohn's disease and ulcerative colitis[J]. J Clin Invest,2006,116(12):3195-3203.
    [68]Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice[J]. Nat Med,1996,2(9):998-1004.
    [69]S Schreiber, S Nikolaus, J Hampe. Activation of nuclear factor κB in inflammatory bowel disease[J]. Gut,1998,42:477-484.
    [70]Andresen L, Jorrgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis[J]. Gut,2005,54(4): 503-509.
    [71]甘华田,欧阳钦,贾道全,夏庆杰.溃疡性结肠炎患者核因子-KB活化与细胞因子基因表达[J].中华内科杂志,2002.41(4):252-255.
    [72]Venkataranganna MV, Rafiq M, Gopumadhavan S, Peer G, Babu UV, Mitra SK. NCB-02 (standardized Curcumin preparation) protects dinitrochlorobenzene-induced colitis through down-regulation of NFkappa-B and iNOS[J]. World J Gastroenterol,2007,13(7):1103-1107.
    [73]cuidi L, costanzo M, ciamiello M, et al. Increased levels of NF-kappaB inhihitors in the intestinal mucosa of crohn's disease patients during infliximab treatment[J]. Int J Immunopathol Phamacol,2005, 18(1):155-164.
    [74]Shimamoto M, Ueno Y, Tanaka S, Onitake T, Hanaoka R, Yoshioka K, Hatakeyama T, Chayama K. Selective decrease in colonic CD56(+) T and CD161(+) T cells in the inflamed mucosa of patients with ulcerative colitis[J]. World J Gastroenterol,2007,13(45):5995-6002.
    [75]刘一品,李延青.核因子-κB的表达在溃疡性结肠炎发病机制中的意义[J].胃肠病学,2006,11(2):103-106.
    [76]Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking DcappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells[J]. Immunology,2005,115(3):375-387.
    [77]Gan HT, Chen YQ, Ouyang Q. Sulfasalazine inhibits activation of nuclear factor-kappaB in patients with ulcerative colitis[J]. J Gastroenterol Hepatol,2005,20(7):1016-1024.
    [78]Zhi Li, De Kui Zhang, Wen Quan Yi, et al. NF-κB p65 Antisense Oligonucleotides May Serve as a Novel Molecular Approach for the Treatment of Patients with Ulcerative Colitis[J]. Archives of Medical Research,2008,39(8):729-734.
    [79]Hegazy SK, El-Bedewy MM. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis[J]. World J Gastroenterol,2010,16(33):4145-4151.
    [80]Cheng LN, Huang XL, Gan HT. Effects of nuclear factor-kappaB siRNA upon dextran sulphate sodium-induced colitis murine model[J]. Zhonghua Yi Xue Za Zhi,2009, Sep; 89 (34):2416-2419.
    [81]Peluso I, Pallone F, Monteleone G Interleukin-12 and Thl immune response in Crohn's disease: pathogenetic relevance and therapeutic implication[J]. World J Gastroenterol,2006,12:5606-5610.
    [82]Hart AL, Kamm MA, Knight SC, et al. Quantitative and functional characteristica of intestinal hominy memory T cells:analysisof Crohn's disease patients and healthy controls[J]. Clue Exp immunol,2004,135: 137-145.
    [83]Imada A, et al.Coordinate upregulation of interleukin-8 and growth-related gene product alpha is present in the colonic mucosa of inflammatory bowel[J]. Scand J Gastroenterol,2001,36:854-864.
    [84]Van Deventer SJ. Tumour necrosis factor and Crohn's disease[J]. Gut,1997,40:443-448.
    [85]Hehlgans T, Mannel DN. The TNF-TNF receptor system[J]. Biol Chem,2002,383:1581-1585.
    [86]Berkes J, Viswanathan V, Savkovic S, et al. Intestinal epithelial responses to enteric pathogens:effects on the tight junction barrier intransport and inflammation[J]. Gut,2003,52:439-451.
    [87]Stallmach A, Giese T, SchmidtC, et al. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease[J]. Int J ColorectalDis,2004,19:308-315.
    [88]Raddatz D, Bockemuh 1M, Ramadori GQuantitative measurement of cytokine mRNA in inflammatory bowel disease:relation to clinical an endoscopic activity and outcome[J]. Eur J Gastroenterol Hepatol, 2005,17:547-557.
    [89]Nielsen OH, Vainer B, Madsen SM, et al. Estadblished and emerging biological actibity markers of inflammatory bowel disease[J]. Am J Gastroenterol,2000,95:359-367.
    [90]Neurath MF, Fuss I, PasparakisM, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis inmice[J]. Eur J Immunol,1997,27:1743-1750.
    [91]Sands BE, Kaplan GG The role of TNF-alpha In ulcerative colitis[J]. J Clin Pharmacol,2007,47: 930-941.
    [92]Ford AC, Sandborn WJ, Khan KJ, Hanauer SB, Talley NJ, Moayyedi P. Efficacy of biological therapies in inflammatory bowel disease:systematic review and meta-analysis[J]. Am J Gastroenterol,2011, 106:644-659.
    [93]A. K. Akobeng. Review Article:The evidence base for interventions used to maintain remission in Crohn's Disease[J]. Alimentary Pharmacology & Therapeutics,2008,27:11-18.
    [94]Radema SA, van Deventer SJ, Cerami A. Interleukin 1 beta is expressed predominantly by enterocytes in experimental colitis[J]. Gastroenterology,1991,100:1180-1186.
    [95]Dionne S, D'Agata ID, Hiscott J, Vanounou T, Seidman EG Colonic explant production of IL-1 and its receptor antagonist is imbalanced in inflammatory bowel disease[J]. Clin Exp Immunol,1998,112:435-442
    [96]Nassif A, Longo WE, Mazuski JE, Vemava AM, Kaminski DL. Role of cytokines and platelet-activating factor in inflammatory bowel disease[J]. Diseases of the Colon & Rectum,1996,39: 217-223.
    [97]Dinarello CA. The IL-1 family and inflammatory diseases[J]. Clin Exp Rheumatol,2002,20:S1-S13.
    [98]Dionne S, Hiscott J, D'Agata I, et al. Quantitative PCR analysis of TNF-alpha and IL-1 beta mRNA levels in pediatric IBD mucosal biopsies[J]. Dig Dis Sci,1997,42:1557-1566.
    [99]Blam ME, Stein RB, Lichtenstein GR. Integrating anti-tumor necrosis factor therapy in inflammatory bowel disease:current and future perspectives[J]. Am J Gastroenterol, 2001,96:1977-1997.
    [100]Van Heel DA, Udalova IA, De Silva AP, et al. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF-kappaB transcription factors[J]. Hum Mol Genet,2002,11:1281-1286.
    [101]Almawi WY, Lipman ML, Stevens AC, et al.Abrogation of glucocorticosterid mediated Inhibition of T cell proliferation by the synergistic action of IL-1,IL-6 and TNF-α[J]. J Immunol,1991,146:3523-3527.
    [102]Rolger G, Andus T. Cytokines in inflammatory bowel disease[J]. World J Surg,1998,22:382-389.
    [103]Stefan Schreiber, Thomas Heinig, Heinz-Gunther Thiele, Andreas Raedler. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease[J]. Gastroenterology,1995,108:1434-1444.
    [104]Autschbach F, Braunstein J, Helmke B, et al. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease[J]. Am J Pathol,1998,153:121-130.
    [105]Ebert EC, Panja A, Das KM, et al. Patients with inflammatory bowel disease may have a transforming growth factor-beta, interleukin (IL)-2 or IL-10 deficient state induced by intrinsic neutralizing antibodies[J]. Clin Exp Immunol,2009,155:65-71.
    [106]Lindsay JO, Ciesielski CJ, Scheinin T, Brennan FM, Hodgson HJ. Local delivery of adenoviral vectors encoding murine interleukin 10 induces colonic interleukin 10 production and is therapeutic for murine colitis[J]. Gut,2003,52(7):981-987.
    [107]Lugering N, Kucharzik T, Stain H, et al. IL-10 synergizes with IL-4 and IL-13 in inhibiting lysosomal enzyme secretion by human monocytes and lamina propria mononuclear cells from patients with inflammatory bowel disease[J]. Dig Dis Sci,1998,43:706-714.
    [108]Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease[J]. World Journal of Gastroenterology,2004,10:620-625.
    [109]Kuhn R, LShler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell,1993,75:263-274.
    [110]Rennick DM, Fort MM. Lessons from genetically engineered animal models IL-10-deficient mice and intestinal inflammation[J]. Am J Physiol Gastrointest Liver Physiol,2000,278:G829-833.
    [111]Ribbons KA, Thompson JH, Liu X, Pennline K, Clark DA, Miller MJ. Anti-inflammatory properties of interleukin 10 administration in hapten-induced colitis[J]. Eur J Pharmacol,1997,323:245-254.
    [112]马丽,李作孝.白芍总苷的免疫调节功能及其临床应用[J].中国实验方剂学杂志,2010,16:244-246.
    [113]王燕,邢华燕.白芍总苷联合甲氨蝶呤治疗类风湿关节炎临床分析[J].中国中西医结合杂志,2007,27:839-840.
    [114]王锁良.白芍总苷联合柳氮磺吡啶治疗强直性脊柱炎临床观察[J].中国中西医结合杂志,2007,3:217-219.
    [115]Zhang HF, Xiao WG, Hou P. Clinical study of total glucosides of paeony in patients with systemic lupus erythematosus[J]. Chin J Integrated Tradit Chin West Med,2011,31:476-479.
    [116]Chen Q, Wei W. Effects and mechanisms of glucosides of chaenomeles speciosa on collagen-induced arthritis in rats[J]. Int Immunopharmacol,2003,3:593-608.
    [117]Dong-Yi He, Sheng-Ming Dai. Anti-Inflammatory and Immunomodulatory Effects of Paeonia Lactiflora Pall., a Traditional Chinese Herbal Medicine[J]. Frontiers in Pharmacology,2011,2:1-5.
    [118]王希民,刘维.白芍总苷联合维生素D3对类风湿关节炎患者血清中IFN-γ和IL-10的影响[J].中国中医药信息杂志,2008,15:15-17.
    [119]粱小红.白芍总苷对系统性红斑狼疮患者IL-8, TNF-α和INF-α表达的影响[J].中国现代药物应用,2008,2:64-66.
    [120]王洪志,刘朝东,韦超.白芍总苷对慢性非细菌性前列腺炎大鼠IFN-α, TNF-α和IL-10表达影响的试验研究[J].重庆医科大学学报,2010,35:231-234.
    [121]周强,栗占国.白芍总苷的药理作用及其在自身免疫性疾病中的应用[J].中国新药与临床杂志,2003,22:687-691.
    [1]Hirohata S, Ohshima N, Yanagida T, Aramaki K. Regulation of human B cell function by sulfasalazine and its metabolites[J]. Int Immunophar macol,2002,2(5):631-640.
    [2]Kamm, MA. Review artiele:Maintenance of remission in ulcerative colitis[J]. Aliment Pharmacol Ther, 2002,16(Suppl4):21-24.
    [3]Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD)[J]. Pharmacol Rep,2011,63(3): 629-642.
    [4]Daniel C, Baumgart. The diagnosis and treatment of Crohn's disease and ulcerative colitis[J].Dtsch Arztebl Int,2009,106(8):123-133.
    [5]Taylor KM, Irving PM. Optimization of conventional therapy in patients with IBD[J]. Nat Rev Gastroenterol Hepatol,2011,8:646-656.
    [6]Hanauer SB. Review artiele:the long-term management of ulcerative colitis[J]. Aliment Pharmaeol Ther,2004,20 (Suppl 4):97-101.
    [7]冉志华,童锦禄(译).炎症性肠病的癌变预防及氨基水杨酸制剂的潜在化学预防作用[J].中华消化杂志,2008,28:802-806.
    [8]Malchow H, Gertz B, CLAFOAM Study group. A new mesalazine foam enema(Claversal Foam) compared with a standard liquid enema in patients with active distal ulcerative colitis[J]. Alimentary Pharmacology and Therapeutics,2002,16(3):415-423.
    [9]Baars JE, Vogelaar L, Wolfhagen FH, et al. A short course of corticosteroids prior to surveillance colonoscopy to decrease mucosal inflammation in inflammatory bowel disease patients:results from a randomized controlled trial[J]. J Crohns Colitis,2010,4:661-668.
    [10]Mantzaris GJ, Christidou A, Sfakianakis M, et al. Azathioprine is superior to budesonide in achieving and maintaining mucosal healing and histologic remission in steroid-dependent Crohn's disease[J]. Tnflamm Bowel Dis,2009,15:375-382.
    [11]Laharie D, Reffet A, Belleannee G, et al. Mucosal healing with methotrexate in Crohn's disease:a prospective comparative study with azathioprine and infliximab[J]. Aliment Pharmacol Ther,2011,33: 714-721.
    [12]Reinecker HC, Steffen M, Witthoeft T, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease[J]. Clin. Exp. Immunol,1993,94:174-181.
    [13]Colombel JF, Rutgeerts P, Reinisch W, et al. Early mucosal healing with infliximab is associated with improved long-term clinical outcomes in ulcerative colitis[J].Gastroenterology,2011,141:1194-1201.
    [14]Caviglia R, Ribolsi M, Rizzi M, Emerenziani S, Annunziata M, Cicala M. Maintenance of remission with infliximab in inflammatory bowel disease:efficacy and safety long-term follow-up[J]. World J Gastroenterol,2007,13(39):5238-5244.
    [15]Moss AC, Kim KJ, Fernandez-Becker N, Cury D, Cheifetz AS. Impact of concomitant immunomodulator use on long-term outcomes in patients receiving scheduled maintenance infliximab[J]. Dig Dis Sci,2010,55(5):1413-1420.
    [16]Oussalah A, Laclotte C, Chevaux JB, et al. Long-term outcome of adalimumab therapy for ulcerative colitis with intolerance or lost response to infliximab:a single-centre experience[J]. Aliment Pharmacol Ther,2008,28(8):966-972.
    [17]Colombol JF. Efficacy and safety of adalimumab for the treatment of Crohn'S disease in adults[J]. Expert Rev Gastroenteml Hepaml,2008,2(2):163-176.
    [18]Avila Alvarez A, Garcia-Alonso L, Solar Boga. A. Garcia-Silva J. Flexural psoriasis induced by infliximab and adalimumab in a patient with Crohn's disease[J]. An Pediatr (Bare),2009,70(3):278-281.
    [19]Lozeron P, Denier C, Lacroix C, Adams D. Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-alpha-blocker therapy [J]. Arch Neurol,2009,66(4):490-497.
    [20]Asarch A, Gottlieb AB, Lee J, et al. Lichen planus-like eruptions:an emerging side effect of tumor necrosis factor-alpha antagonists[J]. J Am Acad Dermatol,2009,61(1):104-111.
    [21]Schmidt C, Marth T, Wittig BM, et al. Interleukin-12 antagonists as new therapeutics agents in inflammatory bowel disease[J]. Pathobiology,2002,70(3):177-183.
    [22]Musch E, Andus T, Malek M. Induction and maintenance of clinical remission by interferon-beta in patients with steroid-refractory active ulcerative colitis-an open long-term pilot trial[J]. Alimentary Pharmacology and Therapeutics,2002,16(7):1233-1239.
    [23]Madsen SM, Schlichting P, Davidsen B, et al. An open-labeled randomized study comparing systemic interferon-alpha-2a and prednisolone enemas in the treatment of left-sided ulcerative colitis[J]. The American Journal of Gastroenterology,2001,96(6):1807-1815.
    [24]Subrata Ghosh, Remo Panaccione. Anti-adhesion molecule therapy for inflammatory bowel disease[J]. Therap Adv Gastroenterol,2010,3(4):239-258.
    [25]Kane SV, Horst S, Sandborn WJ, et al. Natalizumab for moderate to severe Crohn's disease in clinical practice:the Mayo Clinic Rochester experience[J]. Inflamm Bowel Dis,2012,18(12):2203-2208.
    [26]Mantzaris GJ, Archavlis E, Christoforidis P, et al. A prospective randomized controlled trial of oral ciprofioxacin in acute ulcerative colitis[J]. AM J gastroenteral,1997,92(3):454-456.
    [27]Dotan I, Hallak A, Arber N, et al. Low-dose low molecular weight heparin(enoxaparin) is effective as adjuvant treatment in active ulcerative colitisran open trial[J]. DigestiveDiseases and Sciences,2001, 46(10):2239-2244.
    [28]Sang LX, Chang B, Zhang WL. Remission induction and maintenance effect of probiotics on ulcerative colitis:a meta-analysis[J]. World J Gastroenterol,2010,16(15):1908-1915.
    [29]刘揆亮,吕愈敏,顾芳.益生菌在炎症性肠病中的应用[J].世界华人消化杂志,2010,18(36):5224-5231.
    [30]陈新君.辨证论治溃疡性结肠炎128例[J].陕西中医,2011,32(7):863-864.
    [31]赵亚萍,李佃贵.从浊毒辨治溃疡性结肠炎36例[J].四川中医,2011,29(4):64-65.
    [321吕锦辉.溃疡性结肠炎中医辩证治疗疗效观察[J].实用中医内科杂志,2012,26(8):41-42.
    [33]朱克春.中医辨证治疗溃疡性结肠炎的临床分析[J].中国医药指南,2012,23(10):284-285.
    [34]刘全红.溃疡性结肠炎中医辨证治疗的疗效观察[J].中外医疗,2012,22:114-116.
    [35]曹爱莲.中医辨证治疗溃疡性结肠炎80例的临床疗效分析[J].当代医学,2013,19(15):153-154.
    [36]张策红,查锦东.中医辨证治疗溃疡性结肠炎38例疗效观察[J].求医问药2011,11(9):590.
    [37]田俊清.中医辨证治疗慢性溃疡性结肠炎临床研究[J].中医学报,2012,27(11):1490-1491.
    [38]刘朝霞.谢晶日教授治疗溃疡性结肠炎经验初探[J].中医药学报,2010,38(3):65-66.
    [39]李雄.中医辩证治疗溃疡性结肠炎临床探析[J].当代医学,2012,18(12):157-158.
    [40]陈珊,韩树堂.克罗恩病的辨证论治[J].山东中医杂志,2012,31(5):331-332.
    [41]王贵明,朱文,朱杰,等.中西医结合治疗肛周克罗恩病36例临床研究[J].浙江中医药大学学报,2011,35(6):880-881.
    [42]樊淡.通腑愈疡汤治疗溃疡性结肠炎108例[J].湖南中医杂志,2009,25(4):64-65.
    [43]赵世新.中医治疗溃疡性结肠炎40例临床观察[J].基层医学论坛,2011,15(10):910.
    [44]朱伟宁,王丽媛,孙志宇.路广晁教授治疗溃疡性结肠炎经验[J].世界中西医结合杂志,2012,12(7):1025-1026.
    [45]向未,刘菊容,杨伟兴,肖国辉.治痢散治疗溃疡性结肠炎疗效分析[J].实用中医药杂志,2012,28(9):734-735.
    [46]仝战旗,杨波,童新元,龚琴,等.复方苦参结肠溶胶囊治疗湿热内蕴型溃疡性结肠炎多中心、随机、双盲、对照研究[J].中国中西医结合杂志,2011,31(2):172-176.
    [47]马旭慧.柴胡桂枝汤加减在克罗恩病治疗中的临床疗效分析[J].按摩与康复医学,2012,29(5):164-165.
    [48]张小琴.刘沈林教授运用寒温并用法治疗克罗恩病的经验[J].云南中医中药杂志,2011,32(7):3-4.
    [49]程生赋,程生林,马菊林,张彩霞,曾祥武.薏苡附子败酱散治疗克罗恩病案例介绍[J].中国中医药信息杂志,2011,18(4):87.
    [50]刘金涛,王丽贤,刘顺永.少腹逐瘀汤加减治疗克罗恩病1例[J].河北中医,2012,34(5):798.
    [51]马素云,李晶.榆白散保留灌肠治疗溃疡性结肠炎临床观察[J].山西中医,2011,27(4):14-15.
    [52]路世亮,李霞丽.中药灌肠治疗溃疡性结肠炎100例[J].中国医疗前沿,2009,21(4):25-26.
    [53]黄磊,朱莹.溃结汤灌肠治疗溃疡性结肠炎64例[J].中国中医急症,2012,21(3):486-487.
    [54]黄磊,蔡植,朱莹,万虎.溃结宁膏穴位贴敷治疗脾肾阳虚型溃疡性结肠炎随机对照研究[J].中国针灸,2013,33(7):577-581.
    [55]钟志刚,苏诺,刘毅华,等.隔姜灸神厥穴治疗溃疡性结肠炎62例[J].中国医药指南,2008,6(6):149-150.
    [56]李浩.中医综合疗法治疗溃疡性结肠炎82例临床观察[J].中国医院药学杂志,2009,29(8):667-669.
    [57]王继英,于淑英,孙昱,周长江.中医综合疗法治疗慢性溃疡性结肠炎[J].中国医疗前沿,2011,6(6):57-58.
    [58]董四海,汤翔,朱文,朱杰.分期从痈论治肛周克罗恩病36例[J].湖南中医杂志,2009,25(5):72-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700