水稻锚蛋白基因OsBIHN-N22和酯酰辅酶A合成酶基因OsBNHN-N7的克隆鉴定与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本实验室前期研究中,证明了苯并噻二唑(benzothiadiazole,BTH)能诱导水稻对稻瘟病、白叶枯病和纹枯病等病害的系统抗病性,并在此基础上运用抑制性差减杂交法分离鉴定了200多个与水稻抗病反应相关的差异表达cDNA。同源性搜索发现,其中一个差别表达克隆BIHN-n22含有623bp的插入片段,该插入片断编码的蛋白与植物中ankyrin(锚蛋白)类型蛋白具有高度相似性。进一步搜索发现GenBank数据库中的水稻cDNA序列发现有一个长度为1529 bp的差别表达cDNA克隆J023125M12,(GenBank accession NO.AK121370)和一个1475by的cDNA克隆J013000M21(GenBank accession NO.AK098858)(Kikuchi,S et al.,2003),它们与本序列的相似性都达到99%,与植物中ankyrin(锚蛋白)类型蛋白具有高度相似性。为研究探讨这个可能的锚蛋白基因的生物学功能以及在水稻抗病性中的作用,我们以这个已知序列设计引物,我们以前期构建好的水稻全长cDNA文库为模板克隆了这个基因,并命名为OsBIHN-N22。
     OsBIHN-N22基因编码蛋白由329个氨基酸组成,含有3个保守的ANK重复。这个蛋白属于ANK家族。细胞定位分析表明这个蛋白定位在细胞膜上。对其基因结构分析表明OsBIHN-N22基因包含八个外显子和七个内含子。Southern杂交表明OsBIHN-N22基因在水稻基因组中以单拷贝的形式存在于水稻的第九条染色体上。通过对OsBIHN-N22基因在水稻中的特异性表达分析发现,OsBIHN-N22能被苯并噻二唑(BTH)诱导表达,并且在BTH处理后的24h达到很高水平,在随后的60h内一直维持在相当高的水平上。而在水处理的对照中发现OsBIHN-N22的表达水平在整个实验检测时期都较低。在BTH处理的水稻幼苗中,OsBIHN-N22基因的表达在受到稻瘟病菌M.grisea侵染后被快速激活。稻瘟病菌接种后0h即可检测到OsBIHN-N22基因的激活表达,而且在随后的18h内强度增加,并在48h内维持在一个相当高的水平上。在没有BTH处理,只有稻瘟病菌接种的水稻叶片中直到6h才有诱导表达,然后在18h内可以检测到比较明显的表达水平,随后迅速降低。在水稻与稻瘟病菌的非亲和性互作中,OsBIHN-N22基因在接种后的6h就能检测到其快速表达,而在亲和性互作中则只有在36h才有微弱的表达。
     在与水稻抗病反应相关的差异表达cDNA中,另外一个长度为1897bp的差别表达克隆002-112-H10(GenBank accession NO.AK106615)。这个克隆与植物中的AMPBP(AMP-binding protein)蛋白家族中的酯酰辅酶A合成酶类(acyl-CoA Synthetases)有高度的相似性。我们以该cDNA克隆的已知序列设计了一对特异性引物,从水稻的cDNA文库中通过PCR扩增到这个序列,并把这个基因命名为OsBNHN-N7。
     OsBNHN-N7基因编码一个含有558个氨基酸的蛋白,分子量为60.4kD,等电点为7.87,含有一个Caic(Acyl-CoA synthetases(AMP-forming)/AMP-acid ligasesⅡ)结构域。Southern杂交显示OsBNHN-N7基因以多拷贝的形式存在于水稻基因组内。通过细胞定位实验也证明OsBNHN-N7编码蛋白定位在细胞质膜上。
     Northern杂交表明OsBNHN-N7基因在BTH处理后的24小时后有一个很高的表达水平;而在水处理的对照中只有较低的本底表达水平。另外我们在研究中发现在BTH处理的水稻幼苗在受到M.grisea侵染后,OsBNHN-N7基因在接种后的6小时就被快速的激活表达,其后表达水平继续增强并持续稳定一个高水平上。在水处理的对照中,稻瘟病菌接种后36小时内只有很微弱的低水平诱导表达。在利用水稻的一对近等位基因系H8R和H8S研究与稻瘟病菌的亲和与非亲和性互作中发现,与H8R的非亲和性互作中,OsBNHN-N7基因能被快速激活表达,而与H8S的亲和性互作中,只有极微弱的表达。
Benzothiadiadiazole (BTH) which could induce rice resistance against blast, bacterial leaf blight and sheath blight has been demonstrated in the previous studies of our lab. And based on these studies over 200 differential expressed cDNAs associated with the BTH-induction through suppression subtractive hybridization were cloned and identified. Among them, two cDNA clones J023125M12 of 1529 bp and J013000M2 of 11475 bp were both inferred to be a full-length sequence of rice gene encoding ankyrin-repeat proteins based on the similarity search against the GeneBank database. This study cloned and identified a full-length cDNA of a rice gene, OsBIHN-N22, encoding an ankyrin-repeat protein.
     To obtain the full-length sequence of OsBIHN-N22 for analysis, we designed a pair of specific primers according to the sequence of J023125M12 for PCR amplifying, using phage DNA prepared from a rice cDNA library as a template. The full-length cDNA of the OsBIHN-N22 gene is 1574 bp with a predicted 990 bp open reading frame (ORF). OsBIHN-N22 gene encodes a protein of 329 amino acid , the deduced OsBIHN-N22 protein contains three conserved ankyrin-repeat domains. The OsBIHN-N22 gene located on chromosome 9 of the rice genome as a more-copy gene and consisted of eight exons and seven introns. Subcellular localization analysis revealed that the OsBIHN-N22 protein was localized in the cytoplasma membrane in the plant cells. Take together, we concluded that OsBIHN-N22 gene encodes an ankyrin repeat protein belongs to the ankyrin protein family.
     To illuminate the function of OsBIHN-N22 gene in rice disease resistance, the expression patterns of OsBIHN-N22 gene in BTH-induced disease resistance response and in the compatible/incompatible interactions between rice and the blast fungus Magnaporthe grisea were analyzed. Northern blotting analysis showed that the OsBIHN-N22 gene has a relatively low level of basal expression in rice leaf tissue. However, expression of OsBIHN-N22 gene was activated upon induction of BTH treatment, which is capable of inducing disease resistance. The expression of OsBIHN-N22 gene was up-regulated in BTH-pretreated rice seedling at Oh after inoculation with M.grisea, and which was also in the incompatible interaction between M.grisea and a resistant genotype H8R during the first 6h after inoculation. These results suggested that tile inducible expression of OsBIHN-N22 was associated with disease resistance response in rice.
     Among the differential expressed cDNA, another clone 002-112-H10 contained 1897 bp showed high level of similarity to genes encoding known plant AMP-binding proteins. So in order to obtain the full-length sequence for studying this AMP-binding protein gene, a pair of specific primers according to the sequence of 002-112-H10 were designed to amplify this sequence by PCR using phage DNA prepared from a rice cDNA library. and so the full-length sequence was named OsBNHN-N7 gene after sequencing. The OsBNHN-N7 gene contained an open reading frame (ORF) of 1677 bp and encoded a protein of 558 amino acid which contained a Caic Acyl-CoA synthetases (AMP-fonning)/AMP-acid lignases II) domain. The OsBNHN-N7 gene was a single copy gene in rice genome.
     In the study of the possible involvement of OsBNHN-N7 gene in rice disease resistance responses, northern blot analysis showed that expression of OsBNHN-N7 gene was activated rapidly after BTH treated, and increased gradually until reached a peak at 24h. In the water-treated seedlings, only a weaker expression of OsBNHN-N7 was detected. Moreover, expression of OsBNHN-N7 gene was further induced by infected with M.grisea, the rice blast fungus, as compared with those in water-treated seedlings. The further study about the expression of OsBNHN-N7 in incompatible interaction between M.grisea and H8R showed that this expression was actived rapidly. The level of expression was much higher relative to that in compatible interaction between M.grisea and H8S (a genotype susceptible). The expression in H8S was hardly detected in the whole experiment time. All these results indicated that OsBNHN-N7 gene was involved in the rice disease resistance response.
引文
1. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE, 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Soil USA, 95: 10306-10311
    2. Abeles FB, Morgan PW and Saltvet ME Jr, 1992. Ethylene in Plant Biology 2nd ed. San Diego, CA: Academic Press Inc.
    3. Adachi J, Aizawa K, Akimura T, 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Journal Science, 301 (5631): 376-379
    4. Albert S, Despres B, Guilleminot J et al., 1999. The EMB 506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. The Plant J, 17: 169-179
    5. Alexander M, Rubtsov, Olga D, Lopina, 2000. Ankyrins. FEBS Letters, 482: 1-5
    6. Altschul SF, Madden FL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25: 3389-3402
    7. Andrews J, and Keegstra K, 1983. Acyl-CoA synthetases is located in the outer membrane and Acyl-CoA thioesterase in the inner membrane of pea chloroplast envolopes. Plant Physiol, 72: 735-740;
    8. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Leftrt P, 2002. The RAR1 interactor SGT1, an essential compenent of R genee-triggered disease resistance. Science, 295: 2073-2076
    9. Becerra C, Jahrmann T, Puigdome'nech P et al., 2004. Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene, 340: 111-121
    10. Bennett V and Chert L, 2001. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr Opin in Cell Biol, 13: 61-67
    11. Bennett V and Davis J, 1981. Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain. Proc Natl Acad Sci USA, 78: 7550-7554
    12. Bennett V and Gilligan DM, 1993. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol, 9: 27-66.
    13. Bennett V, 1992. Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem, 267: 8703-8706
    14. Birkenmeier CS, White RA, Peters LL, Lux SE, and Barker JE, 1993. Complex patterns of sequence variation and multiple 5' and 3' ends are found among transcripts of the erythroid ankyrin gene. J Biol Chem, 268: 9533-9540
    15. Bork P, 1993. Hundreds of ankyrin-like repeats in functionally diverse proteins: Mobile modules that cross phyla horizaontally? Proteins, 17: 363-374
    16. Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X, 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9: 1573-1584
    17. Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X, 1994. A mutation in Arabidopeis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6: 1845-1857.
    18. Breeden L, and Nasmyth K, 1987. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature, 329: 651-654
    19. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X, 1997. The Arabidopsis NPRI gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88: 57-63
    20. Can H, Bowling SA, Gordon AS, Dong X, 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 6: 1583-1592
    21. Cao Y, Song F, Goodman RM, and Zheng Z, 2005. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. Journal of Plant Physiology.
    22. Century KS, Holub EB, Staskawicz BJ, 1995. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both bacterial and fungal pathogen. Proc Natl Acad Sci USA, 92: 6597-6601
    23. Century KS, Lagman RA, Adkisson M, 1997. NDR1, a pathogen induced component required for Arabidopsis disease resistance. Science, 278: 1963-1965
    24. Chinchilla D, Merehan F, Megias M, et al., 2003. Ankyrin protein kinase: a novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Mol Biol, 51: 555-566
    25. Chiu WI, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J, 1996. Engineered GFP as a vital reporter in plants .Curr Biol, 6: 325-330
    26. Chye ML, Li HY, Yung MH, 2000. Singie amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. Plant Mol Biol, 44(6): 711-21
    27. Clarke JD, Liu Y, Klessig DF, Dong X, 1998. Uncoupling PR gene expression from NPRl and bacterial resistance: characterization of dominant Arabidopsis cpr6-1 mutant. Plant Cell, 10: 557-569
    28. Cohen Y, Gisi U, Niderman T, 1993. Local and systemic protection against phytophthora infestans induced in potato and tomato plants by jasmonie acid and jasmonic methylester. Phytopathology, 83: 1054-1062
    29. Conrath U, Pieterse CMJ, Mauch-Mani B, 2002. Priming in plant-pathogen interactions. Trends Plant Sci, 7: 210-216
    30. Davis J Q, Bennett V, 1990. The anion exchanger and Na+K(+}ATPase interact with distinct sites on ankyrin in vitro assays. J Biol Chem, 265: 17252-17256
    31. Davis L and Bennett V, I990. Mapping the binding sites of human erythroeyte ankyrin for the anion exchanger and speetrin. J Biol Chem, 265: 10589-10596
    32. Davis LH and Bennett V, 1990, Ankyrins and cellular targeting of diverse membrane proteins to physiological sites J Biol Chem, 265: 10589-10595
    33. Debra N, Rate, James V, Cuenea, Grant R, Bowman, David S, Guttman, and Jean T, Caeenberg, 1999. The gain-of-function arabidopsis acd6 mutant reveals novel regulation and function of the dalicylic acid signaling pathway in controlling cell edath, defense, and cell growth. The Plant Cell, 11: 1695-1708
    34. Delaney TP, 1997. Genetic dissection of acquired resistance to disease. Plant Physiol, 106: 5-12
    35. Delaney TP, Friedrich L, Ryals JA, 1995. Arabidopsis signal transduetion mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA, 92: 6602-6606
    36. Delaney TP, Uknes S, Vernooji B, Friedfich L, Weymann K, Negrotto D, Gaffney T, Gut-Relra M, Kessmann H, Ward E, Ryals J, 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247-1250
    37. DeLuca M, Adv. 1976. Enzymol, 44: 37-68
    38. Despres C, Delong C, Glaze S, Liu E, Fobert PR, 2000. The Arabidopsis NPR1/NIM1 protein enchances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant cell, 12: 279-240
    39. Dong X, 1998. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1: 316-323
    40. Dong X, Li X, Zhang Y, Fan W, Kinkema M, Clarke J, 2001. Regulation of systemic acquired resistance by NPR1 and its partners. Novartis found symp, 236: 165-73
    41. Durner J, Shan J, and Klessig DF, 1997. Salicylic acid and disease resistance in plants. Trents Plant Sei, 2: 266-274
    42. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB, 2003. Two MAPK cascades, NPR1, and TGA transcription factiors play a role in Pro-mediated disease resistance in tomato. Plant J, 36: 905-917
    43. Epple P, Apel K, Bohlamnn H, 1995. An Arabidopsis thaliana Thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol, 109: 813-820
    44. Ester Jonas-Straube, Claire Hutin, Neil E, Hoffman, and Danja Schunemann, 2001. Functional analysis of the protein-interacting domains of chloroplast SRP43. J Biol Chem, 276(27): 24654-24660
    45. Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE, 1999. EDS1, an essential componment of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases, Proc Natl Acad Sei USA, 96: 3292-3297
    46. Fan W, Dong X, 2002. In Vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 14: 1377-1389
    47. Feng Q, Zhang Y, Hao P et al., 2002. Sequence and analysis of rice chromosome 4. Journal Nature, 420 (6913): 316-320
    48. Feys B, Benedetti CE, Penfold CN, Turner JG, 1994. Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Rasistant to a Bacterial Pathogen. Plant Cell, 6: 751-759
    49. Feys BJ and Parker JE, 2000. Interplay of signaling pathways in plant disease resistance. Trends Genetics, 16: 449-455
    50. Feys BJ, Moisan LJ, Newman MA, Parker JE, 2001. Direct interaction between the arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J, 20(19): 5400-5411
    51. Fitzgerald HA, Chern MS, Navarre R, Ronald PC, 2004. Overexpression of (At) NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact, 17: 140-151
    52. Flor HH, 1971. Current status of the gene-for-gene concept. Annu Rev Phytopathol, 9: 275-296
    53. Fridborg I, Crainger J, Page A, Coleman M, Findlay K, and Angell S, 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol, Plant Microbe Interact, 16 (2): 132-140
    54. Friedrich L, Lawton K, Dincher S, Winter A, Staub T, Uknes S, Kessmann H, Ryals JA, 1996. Benzothiadiazole induces systemic acquired resistance in tobacoo. Plant J, 10: 61-70
    55. Fulda M, Heinz E and Wolter FP, 1997. Brassica napus cDNAs encoding fatty Acyl-CoA synthetase. Plant Mol Biol, 33: 911-922
    56. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes SJ, WardER, Kessmann H, Ryals JA, 1993. Requirment of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754-756
    57. Gallagher PG, Tse WT, Scarpa AL, Lux SE, and Forget BG, 1997. Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing. J Biol Chem 272: 19220-19228
    58. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucberez J, Michaux-Ferriere N, Thibaud JB, Sentenac H, 1998. Identification and disruption of a plant shaker-like outward channel involved in k+ release into the xylem sap. Cell, 94(5): 647-55
    59. Gerbling H, Axiotix S and Douce U, 1994. Plant Physiol, 143: 1539-1550
    60. Glazebrook J, 2001. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol, 4: 301-308
    61. Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM, 1997. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics, 146: 381-392
    62. Goodman RN, Novacky AJ, 1994. The hypersensitive reaction in plants to pathogens. St. Paul. MN: APS Press, 244
    63. Gorlach J, Volrach S, Koauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals JA, 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8: 629-643
    64. Greenberg JT, Guo A, Klessig DF, Ausubel FM, 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell, 77: 551-523
    65. Ha CM, Jun JH, Nam HG, and Fletcher JC, 2004. BLADE-ON-PETIOLERI encodes a BTB/POZ domain rotein required for leaf morphogenesis in arabidopsis thaliana. Plant Cell Physiol, 45(10): 1361-1370
    66. Hall T G and Bennett V, 1987. Regulatory domains of erythrocyte ankyrin. J Biol Chem, 262: 10537-10545
    67. Halterman D, Zhou F, Wei F, Wise RP, SchuLze-Lefert P, 2001. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp, hordei in barley and wheat. Plant J, 25: 335-348
    68. Hammond-Kosack KE and Parker JE, 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 14: 177-193
    69. Hammond-Kosack KE, Jones JDG, 1997. Plant disease resistance genes. Ann Rev Plant Physiol. Plant Mol Biol, 48: 575-607
    70. Helene Vanacker, Hua Lu, Debra N, Rate and Jean T, Greenberg, 2001. A role for salicylic acid and NPR1 in regulating cell growth in arabidopsis. The Plant Journal, 28(2): 209-216
    71. Hemsley PA, Kemp AC, Grierson CS, 2005. The TIP GROWTH DEFECTIVE 1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell, 17(9): 2554-63
    72. Hong Zhang, Danlel C, Schelrer, William H, Fowle, and Howard M, Goodman, 1992. Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiationin arabidiopsis. The Plant Cell, 4: 1575—1588
    73. Hoock TC, Peters LL, and Lux SE, 1998. Identification of a novel ankyrin isoform (Ank_G 190) in kidney and lung that associates with the plasma membrane and binds α-Na, K-ATPase. J Biol Chem, 273: 23952-23958
    74. Hoock TC, Peters LL, and Lux SE. 1997. Isoforms of Ankyrin-3 That Lack the NH_(2-)terminal Repeats Associate with Mouse Macrophage Lysosomes. J Cell Biol, 136: 1059-1070
    75. Hua Lu, Debra N, Rate, Jong Tae Song, and Jean T, Greenberg, 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the arabidopsis defense response. The Plant Cell, 15: 2408-2420
    76. Hua Lu, Yang Liu and Jean T, Greenberg, 2005. Structure-function analysis of the plasma membrane-localization arabidopsis defense comportment ACD6. The Plant Journal, 44: 798-809
    77. Huang J, Chen F, Del Casino C, Autino A, Shen M, Yuan S, Pens J, Shi H, Wang C, Cresti M, Li Y, 2006. An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol, 140: 1374-83.
    78. Hui Can, Glazebrook J, Joseph D, Clarke, Sigrid Volko, and Xinnian Dong, 1997. The arabidopsis N-PR1 gene that controls systemic acquied resistance encodes a novl protein containing ankyrin repeats. Cell, 88: 57-63
    79. Ichihara k, Nakagawa M and Tanaka K, 1993. Acyl-CoA synthetase in maturing safflower seeds. Plant Cell Physiol, 34: 557-566
    80. Jabs T, 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and ardmals. Biochem Pharmacol, 57: 231-245
    81. Jia Y, McAdams SA, Bryan GT, Hershey HP, and Valent B, 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 19: 4004-4014
    82. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J, 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA, 96: 13583-13588
    83. Joyard J and StumpfPK, 1981. Synthesis of long-chain Acyl-CoA in chloroplast envelope membrane. Plant Physiol, 67: 250-256
    84. Kachroo P, Yoshioka K, Shah J, Dooner H, & Klessig, DF, 2000. Resistance to turnip crinkle virus in arabidopsis is regulateded by two host genes and is salicylic acid dependent but NPKI, Ethylene, and Jasmonate independent. Plant Cell, 12, 677-690;
    85. Kawe W, Forrer P, Amstutz P, Pluchthun A, 2006. Isolation of intracellular proteinase inhibitors derived from designed ankyrin repeat proteins by genetic screening. J Biol Chem. Oct 18
    86. Keen NT, 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet, 24: 447-463
    87. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, and Ryals J, 1994. Induciton of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol, 32: 439-459
    88. Kikuchi S, Satoh K, Nagata T, Kawageshira N, 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 301 (5631): 376-379
    89. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, and Hieter P, 1999. SGT1 encods an essential component of the yeast kinotochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell, 4: 21-33
    90. Klimyuk Ⅵ, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JD, Hoffman NE, Nussaume L, 1999. A chromodomain protein encoded by the arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 11(1): 87-99
    91. Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Suqivama M, Fukuda H, 2005. VAN3 ARF-GAP-mediated vesicle transport in involved in leaf vascular network formation. Development, 132(7): 1699-711
    92. Kordeli E and Bennett V, 1991. Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using erykyrin-deficient mice. J Cell Biol, 114: 1243-1259
    93. Kuhlmann M, Horvay K, Strathmann A et al., 2003. The alpha-helical Dl domain of the tobacco Bzip transcription factor BZI-1 interacts with the ankyrin-repeat protein ANKI and is important for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem, 278(10): 8786—8794
    94. Kunimoto M, Otto E, and Bennett V, 1991. A new 440-kD isoform is the major anloyrin in neonatal rat brain. J Cell Biol, 115: 1319-1331
    95. Kuriyama H, Takano H, Suzui L, Uchida H, Kawano S, Kuroiwa H, Kuroiwa T, 1999. Characterization of Chlamydomonas reinhardtii zygote-specific cDNA that encode novel proteins containing ankyrin repeat and WW domains. Plant Physiol, 119: 873-884
    96. Lawton KA, Friedrich L, Hunt M, Weymann K, Stanb T, Kessrnann H, Ryals J, 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J, 10: 1-82
    97. Lee SJ, Suh MC, Kim S, Kwon JK, Kim M, Pack K, Choi D, and Kim BD, 2001. Molecular cloning of a novel pathogen-inducible cDNA encoding a putative acyl-CoA synthetase from Capsicum annuun L. Plant Mol Biol, 46: 661-671
    98. Li X, Zhang Y, Clarke DJ, Li Y, Dong X, 1999. Identification and cloning of a negative regulator fo systemic acquired resistance, SNI1, though a screen for suppressors of nprl-1. Cell, 98: 329—339
    99. Lilly YW, Bourguignon and Hengtao Jin, 1995. Identification of the Ankyrin-binding Domain of the Mouse T-lymphoma Cell Inositol 1, 4, 5-Trisphosph ate (IP3) Receptor and Its Role in the Regulation of IP3-mediated Internal Ca~(2+) Release. J Biol Chem. 270: 7257-7260.
    100. Lindermayr C, Mollers B, Fliegrnann J, Uhlamnn A, Lottspeich F, Ebel J, 2002.
    101. Luo H, Song F, Goodman RM, and Zheng Z, 2005. Up-regulation of OsBIHD1, a rice gone encoding BELL homeodomain transcriptional factor, in disease resistance response. Plant Biol, 7: 459-468
    102. Lux SE, John KM and Bennett V, 1990. Analysis of cDNA for human erythrocyte ankyrin indicates a repealed structure with homology to tissue-differentiation and cell-cycle control proteins. Nature, 344: 36-43
    103. Mackey D, Holt BF, Wiig A, Dang JL, 2002. PIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for. RPM1-mediated resistance in Arabidopsis. Cell, 112: 379-389
    104. Malamy J, Cart JP, Klessig DF, Raskin I, 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacoo to viral infection. Science, 250: 1002-1004
    105. Marts JA, Napolitano EW, Murphy-Erdosh V, Mays RW, Reichardt LF, and Nelson WJ, 1993. Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell-cell adhesion in generating different Na(+)K(+)ATPase distributions in polarized epithlia. J Cell Biol, 123: 149-164
    106. Marcotte EM, Pellegrini M, Yeates TO, and Eisenberg D, 1999. A census of protein repeats. J MoI Biol, 293: 151-160
    107. Matsurnoto T, Wu J, Kanamori He t al., 2005. The map-based sequence of the rice genome. Nature, 436 (7052): 793-800
    108. McConn M, Creelman RA, Bell E, Mullet JE, Browse J, 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA, 94(10): 5473-5477
    109. McElroy WD, DeLuca M, and Travis J, 1967. Science, 157: 150-160.
    110. McElroy WD, Seliger HH, and White EH, 1969. Photochem. Photobiol, 10: 153—170
    111. Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B, 1990. Increase in salicylicacid at the onset of systemic acquired resistance in cucumber. Science, 250: 1004-1006
    112. Michaely P and Bennett V, 1995. Mechanism. for binding site diversity on ankyrin. J Biol Chem, 270: 31298-31302
    113. Michaely P and Bennett V. 1993. The membrane-binding domain of ankyrin contains four independently folded subdomalns, each comprised of six ankyrin repeats. J Biol Chem, 268: 22703-22709
    114. Mohler PJ, Gramolini AO, and Bennett V, 2002. Ankyrins. J Cell Sci, 115: 1565-1566
    115. Mosavi LAK, Cammett TJ, Desrosiers DC, and Peng ZY, 2004. The ankyrin repeat as a molecular architecture for protein recognition. Protein Sci, 13: 1435-1448
    116. Moscatelli G, Tiezzi A, Vignani 11, 1988. Presence of kinesin in tobacco pollen tube. In: sexual reproduction higher plants (M. Cresti, E. Pacini, P. Cori eds) Berlin: Springer Verlag, 205-209
    117. Mon Z, Fan W, Dong X, 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113: 935-944
    118. Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JD, Parker JE, 2002. Arabidopsis RAR1 exerts rote-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell, 14: 979-992
    119. Nekrep N, Geyer M, Jabrane-Ferrat N, and Peterlin BM, 2001. Analisis of ankyrin repeats reveals how a single point mutation in RFXANK results in bare lymphocyte syndrome. Mol Cell Biol, 21: 5566-5576
    120. Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H, 1999. Non-invasive quantitative detection and application of non-toxic, S65T-type green fluorescent protein in living plants. Plant J, 8: 455-463
    121. Nodzon LA, Xu WH, Wang Y, Pi LY, Chakrabarty PK, Song WY, 2004. The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. The Plant J, 40: 996-1006
    122. Norberg M, Holmlund M, Nilsson O, 2005. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132(9): 2203-13
    123. Nurnberger T, Scheel D, 2001. Signal transmission in the plant immune response. Trends Plant Sci, 6: 372-379
    124. Ohlrogge J and Browse J, 1995. Lipid biosynthesis. Plant Cell, 7: 957-970
    125. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, and Sasaki T, 2006. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res, 34: 741-744
    126. Olsen JA and Huang AHC, 1988. Glyoxysomal acyl-CoA synthetase and oxidase from germinating elm, rape and maize seed. Phytochemistry, 27: 1601-1603;
    127. Palek J and Lambert S, 1990. Genetics of the red cell membrane skeleton. Semin. Hematol, 27(4): 290-332
    128. Parker JE, Holub EB, Frost LN, 1996. Characterization fo eds I, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell, 8: 2033-2046
    129. Peck SC, Nuhse TS, Hess D, Iglesias A, Mein F, Boller T, 2001. Directed proteomics identifies a plant-specific protein rapidly phosphorilated in response to bactrerial and fungal elicitors. Plant Cell, 13: 1467-1475;
    130. Peng J B, Brown E M, Hediger M A. 2001. Structural conservation of the genes encoding Carl, CaT2 and related cation channels. Genomics, 76: 99}-109
    131. Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF, 1996. Pathogen-induced systemic activation of a plant defension gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 8: 2309-2323
    132. Peters LL, Birkenmeier CS, Bronson RT, White RA, et al., 1991. Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol, 114: 1233-1241
    133. Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC, 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant cell, 10: 1571-1580
    134. Pratelli R, Lacombe B, Torreqrnsa L, Gavmard F, Romieu C, Thiband JB, Sentenac H, 2002. A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry. Plant Physiol, 128(2): 564-77
    135. Ralrdan GJ and Delaney TP, 2002. Role of salicylic acid and NIM1/NPR1 in race-specific resistance in atabidopsis. Genentics, 161: 803-811
    136. Rance Ⅱ, Fournier J, Esquerre-Tugaye MT, 1998. The incompatible interaction between phytophthora parasitica vat. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA, 95(11): 6554-9.
    137. Rate DN, Cuenca JV, Bowman GR, Guttman DS, & Greenberg JT, 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signal pathway in controlling cell death, defense, and cell growth. Plant Cell, 11: 1695-1708
    138. Rhode K and Bork P, 1993. A fast, sensitive pattern-matching approach for protein sequences. Cabios, 9: 183-189
    139. Romisch K, Webb J, Lingelbach K, Gausepohl H, and Dobberstein B, 1990. The 54-kD protein of signal recognition particle contains a methionine- rich RNA binding domain. J Cell Biol, 111: 1793-1802
    140. Ryals J, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, and Hunt MD, 1996. Systemic acquired resistance. Plant cell, 8: 1809-1819
    141. Sasaki T, Matsumoto T, and Yamamoto K, 2001. Oryza sativa nipponbare(GA3) genomic DNA, chromosome 8, PAC clone: P0666G10. Journal Published Only in Database
    142. Sate S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, and Tabata S, 2000. Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4504864 bp covered by sixty P1 and TAC clones. DNA Res, 7 (2): 131-135
    143. Schmurr JA, Shockey JM, Boer GJ, and Browse JA, 2002. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiology, 129: 1700-1709
    144. Sedgwick SG, and Smerdon SG, 1999. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci, 24: 311-316
    145. Shah J, Kachroo P, and Klessig DF, 1999. The arabidopsis ssil mutant restores pathogenesis-regulated gene expression in nprl plants and renders defensin gene expression salicylic acid dependent. Plant Cell, 11: 191-206;
    146. Shah J, Tsul F, and Klessig DF, 1997. Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tmsz gene. Mol. Plant-Microbe Interact, 10: 69-78:
    147. Shockey J, Schnurr J, and Browse J, 2000. Characterization of an acyl-CoA synthetase from Arabidopsis thaliana. Biochemical Society Transactions, 28: 957-958
    148. Shockey JM, Fulda MS, and Browse JA, 2002. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol, 129 (4): 1710-1722:
    149. Song F, and Goodman RM, 2002a. OsBIMKl, a rice MAP kinase gene involved in disease resistance responses. Planta, 215: 997-1005;
    150. Song F, and Goodman RM, 2002b. Molecular cloning and characterization of a rice phosphoinositide-specific phospholipase C gene, OsPI-PLCl that is activated in systemic acquired resistance, physiol. mol. Plant pathol, 61: 31-40
    151. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD, 1995. Molecular genetics of plant disease resistance. Science, 268: 661-667
    152. Staswick PE, Su W, Howell SH, 1992. Methyl jasmonate inhibition of root growth and induction of a leat protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA, 89: 6837-40
    153. Sticher L, Mauch-Mani B, and Metraux JP, 1997. Systemic acquired resistance. Annu. Rev. Phytopathol, 35: 235-270
    154. Stiefel V, Becerra EL, Roca R, et al. 1999. TM20, a gene coding for a new class of transmembrane proteins expressed in the meristematic tissues of maize. J. Biol. Chem, 274: 27734-27739
    155. Stone JM, Liang X, Nekl ER, Stiers JJ, 2005. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonsin B1. Plant J, 41(5)744-54
    156. Story GM, Peier AM, Reeve AJ, et al. 2003. AnkTMl, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112: 819-829
    157. Sudha G, and Ravishankar GA, 2002. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue and Organ Culture, 71: 181-212
    158. Tan X, Volbeda A, Fontecilla-Camps JC, Lindahl PA, 2006. Function of the tunnel in acetylcoenzyme A synthase/carbon monoxide dehydrogenase. J Biol Inorg Chem, 11(3): 371-8.
    159. Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTALW: inproving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22: 4673-4680
    160. Tnag X, frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB, 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 274: 2060-2063
    161. Torp J, Jorgensen JH, 1986. Modification of powdery mildew resistance gene Mla 12 by induced mutation. Can J Genet Cytol, 28: 725-731
    162. Torri KU, 2000. Receptor kinase activation and signal transduction in plants: an emerging picture. Curr Opin Plant Biol, 3: 361-367
    163. Uknes S, Mauch Mb, Moyer M, Potter S, Williams S, Dinchers S, Chandler D, Slusarenko A, Ward E, and Ryals J, 1992. Acquired resistance in Arabidopsis. Plant Cell, 4: 645-656
    164. Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E, Ryals J, 1993. Regulation of pathogenosis-related protein-la gene expression in tobacoo. Plant Cell, 5: 159-169
    165. Van der Biezen EA, Jones JD. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci, 12: 454-456
    166. Van Wees SC, Pieterse CM, Trijssenaar A, Van't Westende TA, Hartog F, Van Loon LC. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bateria. Mol. Plant-Microbe Interact, 10: 716-724
    167. Vanacker H, Lu H, Rate DN, and Greenberg JT. 2001. A role for salicylic acid and NPRl in regulating cell growth in arabidopsis. Plant J, 28: 209-216
    168. VanLoon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 36: 453-483
    169. Vernooij B, Friedrieh L, Ahl-Goy P, Staub T, Kessmann H, Ryals JA. 1995. 2, 6-dichloroisonicotinic acid-induced resistance to pathogens does not require the accumulation of salicylie acid. Mol Plant-Microbe Interact, 8: 228-234
    170. Wang J, Hocart CH, Wei KJ, and John PCL, 1998. Nucleotide sequence of a cDNA Clone containing tandem ankyrin repeats and a glyeosyl hydrolase family I signature from Arabidopsis thaliana (Accession No. AF034387). Plant Physiol, 117: 1526-1526
    171. Ward ER, Uknes S, Williams SC, Dineher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3: 1085-1094
    172. Warren RF, Merritt PM, Holub E, Innes RW. 1999. Identification of three putative signal transduetion genes involved in R gene-specified disease resistance in Arabidopsis. Genetics, 152: 401-412
    173. White EH, Rapaport E, Seliger HH, and Hopkins TA, 1971. Bioorg. Chem, 1: 92-122.
    174. White RF. 1979. Acetylsalicylic acid (aspirin) induces resistance to TMV in tobacoo, Virology, 99: 410-412
    175. Wirdnam C, Motoyama A, Arn-Bouldoires E, van Eeden S, Iglesias A, Meins F Jr. 2004. Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. Plant Mol Biol, 56: 717-30.
    176. Wood KV. 1995. Photochem. Photobiol. 62: 662-673.
    177. Wood SA., Park JE, Brown WJ. 1991. Brefeldin A causes amicrotubule-mediated fusion of the traps-Golgi network and earlyendosomes. Cell, 67: 591—600
    178. Xinnian Dong. 2004. The role of membrane-bound ankyrin-repeat protein ACD6 in programmed cell death and plant defense. Sci STKE, Review. pe6, 221: 1-3
    179. Xiong L, Lee MW, Qi M, Yang Y. 2001. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact, 14(5): 685-92
    180. Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressari RA, 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 6: 1077-1085
    181. Yalpani N, Silverman P, Wilson TM, Kleier DA, and Raskin 1. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacoo. Plant Cell, 3: 809-818
    182. Yan J, Wang J, ZhangH, 2002. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J, 29: 193-202
    183. Ye L, Buck LM, Schaeffer HJ, and F R, 1997. Leach. Biochim. Biophys. Acta, 1339: 39-52.
    184. Yu D, Chen C, Chen Z. 2001: Evidence for an important role of WRKY DNA binding proteins in the regulation of NPRl gene expression. Plant Cell, 13: 1527-1540
    185. Yu J, Fischman DA, Steck TL. 1973. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct, 1: 233-248
    186. Zhang H, Scheirer DC, Fowle WH, and Goodman HM. 1992. Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in arabidopsis. The Plant Cell, 4: 1575-1588.
    187. Zhang X and Bennett V. 1998. Restriction of 480/270kD ankyrin-G to axon proximal segments requires multiple ankyrin-G-specific domains. J Cell Biol, 142: 1571-1581
    188. Zhang Y, Fan W, Kinkema M, Li X, Dong X. 1999. Interaction of NPRl with basic leucine zipper protein transcription factors that bind sequence required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA, 96: 6523-6528
    189. Zhou F, Kurth J, Wei F, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, and Schulze-Lefert P. 2001. Cell-autonomous expression of barley mlal confers race-specific resistance to the powdery mildew fungus via a rarl-independent signaling pathway. Plant Cell, 13: 337-350
    190. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF. 2000. NPRl differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact, 13: 191-202
    191. Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 10(6): 1021-1030
    192. Zimmermann S and Sentenac H. 1999. Plant ion channels: from molecular structures to physiological functions. Curr. Opin. Plant Biol, 12(6): 477-82
    193. Zopf D, Bernstein HD, Johnson AE, and Walter P. 1990. EMBO J, 9: 4511-4517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700