鸭梨果实轮纹病寄主—病原菌互作机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨果实轮纹病是造成梨果实烂果的主要原因,由于轮纹病菌是在幼果期潜伏侵染,在果实成熟及贮运期间发病,控制和防范都有很大困难。目前对于轮纹病菌造成果实腐烂的机制以及果实对病原菌的抵抗机制并不十分明确。控制轮纹病害的首要任务是要认识轮纹病害的发病机理,这其中包括病原真菌对果实的致病性和果实对病原菌的抗病性。本研究从形态结构、生理状态、生化水平上研究轮纹病菌与梨果实的互作关系。探寻病原菌产生毒害物质的种类及产生条件;果实的主要抗病性物质及其在发育和贮藏期间的变化。为阐述梨轮纹病的发病机理提供理论依据,也为其它果实病害的研究提供可借鉴的研究方法。
     1.研究了不同发育期套袋处理、不同发育期解袋暴露处理、不同发育期涂抹和刺伤接种轮纹病菌分生孢子悬液处理的鸭梨果实采后不同时期的发病规律。结果表明,鸭梨轮纹病菌主要侵染期为盛花期后50~90d,但盛花期110d以后仍然可以侵染,而盛花期后53d内不易感染轮纹病菌;轮纹病病原菌更容易通过伤口侵染;在采后梯度降温贮藏条件下,鸭梨轮纹病的集中发病期为采后40~60d;接种孢子悬液使果实的发病期提前、发病率提高。
     2.梨皮组织具有荧光性物质,采用组织切片和荧光显微镜观察,皮孔特异荧光性孔底母细胞可能对防治轮纹病菌从皮孔进入有关,此外角质层、石细胞单宁细胞为鸭梨果实的抗病原菌结构。刺伤果肉的扫描电镜观察结果显示,孢子以果肉为生长基质快速萌发并在果肉细胞间隙生长繁殖,48h菌丝已经产生大量菌丝缠绕在果肉细胞表面。透射电镜结果表明,孢子接种24~36h后菌丝已进入果肉细胞内部,被侵染果肉出现质壁分离、细胞质降解等现象。利用β-1,3-葡聚糖免疫标记单克隆抗体进行的免疫细胞化学的研究结果表明,胞壁沉积物还有β-1,3-葡聚糖,侵入果肉细胞的菌丝壁也存在β-1,3-葡聚糖。
     3.利用HPLC测定果实生长期、贮藏期和发病前后果实中有机酸的含量和种类,在离体条件下测定不同有机酸对轮纹病菌生长的抑制作用。成熟鸭梨中主要含有柠檬酸、苹果酸、莽草酸。50mg/100g以上的苹果酸和柠檬酸、60mg/100g以上的乳酸,10mg/100g以上琥珀酸、8mg/100g的奎宁酸均能显著抑制病原菌的生长,且抑菌培养基pH值多在5.0以下。病原菌侵染诱导乳酸和琥珀酸的产生。
     4.鸭梨在幼果期与抗病性相关的酚类物质主要有没食子酸、绿原酸、咖啡酸,随成果实发育成熟这些酚类含量逐渐下降。果实在不同时期对病原菌的抵抗能力与果实中酚类物质变化关系密切。贮藏期酚类物质含量随着果实生理代谢总体呈下降趋势,对抵抗病原菌扩展能力减弱。10mg/100g的没食子酸、1mg/100g的绿原酸、5mg/100g的单宁酸、0.05mg/100g的香豆酸添加到PSA培养基能够显著抑制病原菌菌落生长;添加浓度高于7 mg/100g没食子酸,40mg/100g绿原酸,0.5mg/100g单宁酸,1mg/100g儿茶酸和1mg/100g的香豆酸的能够显著抑制菌丝的生长。
     5.本文研究了鸭梨果实受轮纹病原菌侵染后及其在不同的生长期、贮藏期防御酶活性的变化。结果表明,对鸭梨健康果实接种轮纹病菌后过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性均显著高于对照,说明这些酶对鸭梨果实抵抗轮纹病密切相关。鸭梨果实在幼果期活性较高的酶主要是POD、CAT;在近成熟期与果实抗病性相关酶主要是SOD,SOD活性在盛花后75d快速升高,果实成熟时达到最大值;而鸭梨果实在贮藏期间与抗病性相关的这3种酶活性总体呈下降趋势,对抵抗病原扩展能力减弱。果实在不同时期对病原菌的抵抗能力与果实中防御酶活性变化密切相关。
     6.低温和病原菌的胁迫下,ATP含量显著降低,抵御逆境条件下生理变化。在病原菌侵染过程中为了保持细胞内pH稳定,调节酸的种类,接种病原菌24h内H~+-ATPase活性显著上升,而后逐渐下降;而Ca~(2+)-ATPase在病原菌侵染过程中活性先升高后降低,细胞内Ca~(2+)浓度过高或维持时间过长,促进果肉细胞坏死。
     7.为了筛选鸭梨轮纹病最优毒素产生条件,从鸭梨轮纹病斑分离纯化的轮纹病菌,在不同条件下进行培养并进行生物测定,选择健康成熟的鸭梨果实,采用针刺法对粗毒素的致病力进行测试。最终确定有利于病菌产毒的温度为30℃、pH值为7.5、培养时间为10d、培养基为PS+少量的梨汁,黑暗及静置培养条件。粗毒素中蛋白含量很高,占69.1%,其次是糖27.2%。蛋白质为单链多肽蛋白。
Pear ring rot,caused by Botryosphaeria. berengeriana f. sp. piricola, is an economicallyimportant disease in China. Because pathogenic germs infect the host pear latently at growthstage, and induce rot during the postharvest period, it is difficult to control the disease. Up tonow, it is still not clearly that the mechanisms of fruit decay and defence reaction due to M.Kawatsukaii Hara. It is necessary to know the mechanisms of ring rot disease, which includedhow the pathogen developing in pear fruit and cause the decay, and how the fruit resistant todisease development. We are planning to study fruit-pathogenic fungus interactions frommorphological level, physiological level, and biochemical level. We expect that we could findthe compounds and there producing condition of pathogenic fungus toxins; that the resistantsubstance and its role and content change during growth and storage. This will provide theorybasis for pathogenesis of pear ring rot and feasible way to control the post-harvest disease.
     1. In order to make sure the latent infection and rotting stage of the ring rot disease causedby Physalospora piricola, the 'Ya' pear fruit were bagged and un-bagged at different days afterblossom, and the smearing and inoculation with P. piricola conidio-spores were also conductedregularly during the growth of fruit. The results showed that the main infection time of P.piricola to the pear fruit was from 50d to 90d after blossom, the infection was also occurredafter 110d of blossom, but it was not infected before 50d of blossom. The pathogen was easilyinfected the fruit through tiny wounds. The rotting fruit was mainly took place at the stage of40~60d after harvest at the step-cooling storage condition. The fruit inoculated with sporesolution at growth stage was more easily decayed than the control.
     2. As fluorescent substances exist in skin of pears, we successfully made a anatomicalobservation of pear fresh tissues under fluorescent microscope. Fluorescent mother cell atbottom of peel lenticel had function to defense agaist pathogen, in addition, cuticle, sclereid,tannin cells were defensive structure, also. Surface of the smearing and inoculation with P.piricola conidio-spores flesh were observed by scanning electron microscopy (SEM);Conidiospore germination and appressorium formation completed 24h after inoculation, themycelium developed more lushly and mass hyphae surround the pulp cells after 48h after inoculation. The ultrastructure of flesh were observed by transmission electron microscopy(TEM) showed the hyphae were invaded into pulp cell during 24~36h after inoculation. Usingimmunogold labeling with monoclonal antibody againstβ-1,3-glucan and secondary antibody,β-1,3-glucan were localized in cell wall appositions and fungal cell walls.
     3. The use of HPLC method enable us to successfully study the component and content oforganic acids. Citric acid, malic acid, shikimic acid were main composition of total acid. Thepathogen growth was inhibited with higher concentration of 50mg/100g Citric acid,50mg/100g malic acid, 60mg/100g lactic acid, 10mg/100g succinic acid, 8mg/100g quinic acid,pH level lower than 5.0. Pathogen invading the flesh induce some new kind of organic acids,such as lactic acid and succinic acid.
     4. The main defense phenolics with high content at the young stage of pear fruit werephenolics, chlorogenic acid,gallic acid and caffeic acid, which decreased at premature stage.Pear fruit disease resistance reduced with the content of these phenolics all declined duringstorage. The defense resistance of fruit at different stage was closely related to the change of itsphenolics. The pathogen growth was inhibited with higher concentration of 1mg/100gchlorgenic acid, 10mg/100g gallic acid, 5mg/100g gallotannic acid 0.05mg/100g coumaricacid in PSA culture medium,and 7mg/100g gallic acid, 40mg/100g chlorgenic acid,0.5mg/100g gallotannic acid, 1mg/100g catehin 1mg/100g coumaric acid.
     5. The activities of POD,SOD and CAT in 'Ya' pear fruit inoculated with Botryosphaeriaberengriana and sound pear fruit in growth and storage were studied. The results showed thatmetabolic defense induced by the pathogen including the activities of POD, SOD and CAT, andthe activities of these enzymes markedly increased, which suggested that those enzymes wereclosely-related to pear fruit against B. berengriana infection. The main defense enzymes withhigh activity at the young stage of pear fruit were POD and CAT, the activities of these enzymeat rapid growing stage and pre-mature stage of fruit decreased sharply, except PAL with peakactivity at premature stage of fruit. The main defense enzymes with high activity at thepre-mamre stage of pear fruit were SOD, The activity of SOD increased rapidly to highest levelafter 75 days after bolssom, and the activities of these enzymes all declined during storage.
     6. In order to defense low temperature and pathogen stress physiological effect, ATPcontents observably decreased. H~+-ATPase could modulate pulp cell pH level and organic acid concentration, thus 24 hours after inoculation the activity of H~+ -ATPase markedlyincrease, then decline constantly. Ca~(2+)-ATPase activity increase rapidly and then decreasedalong with time of inoculation. Higher content of Ca~(2+) resulted in fresh dead and decayed.
     7. The best conditions for phytotoxin production of pear ring rot pathogen were studied.The results showed that toxicity of toxin produced in condition such as, pH value 7.5, 30℃, 10days after duration of culturing, culture medium containing PS and a little pear juice, stillcultivation under darkness. The composition of the also be determined. The ratio of protein andsugar was 69.1% and 29.6% respectively. The species of protein was single chain andpolypeptide.
引文
[1] 方成泉,林盛华,李连文,马志强.我国梨生产现状及主要对策[J].中国果树,2003(1):47-52
    [2] 赵红霞.园艺业与“WTO”共舞.江苏农村经济[J].2002,6:20-23
    [3] 北岛博.果树病害各论.东京:养贤堂,1989:25;6-261
    [4] No se T. On the ring rot of pears and the causal organism, especially on its perfect generation Physalosp orapiricola n. sp[J]. Ann. Agric. Exp. Sta. Cho sen, 1933: 7: 156-163
    [5] 小金氵 尺硕城,佐久间勉.粗皮病及皮病病斑分离系状菌.(日本)果树试验场报告[J].1980,7:83-99
    [6] 陈策.苹果果实轮纹病研究进展[J].植物病理学报,1999,29(3):194-201
    [7] Kohn F C, Hendrix F F. Temperature. Free moisture, and inoculum concentration effects on the incidence and development of white rot of apples [J]. Phytopathology, 1982; 72: 313-316
    [8] Clements H F. Morphology and physiology of the pomelenticels ofPyrus malus[J]. Bo tanical Gazette, 1935; 97: 101-117
    [9] 加藤喜重郎.轮纹病关研究,发生生态防除(日本)爱知县农业综合试验场特别研究报告B(园艺)[J].1973:1-70
    [10] Horton D L, Pfeiffer D G, Hendrix F F. Southern apple integrated pest management. In: Board on A griculture,National Research Counciled. Sustainable agriculture research and education in field,Wash ington, D. C.: National Academy Press, 1991: 165-182
    [11] M cGlohon N E. B otry osp haeria d oth id ca- where will it stop?[J] Plant D is., 1982; 66: 1202-1203
    [12] 宋清,张贵胜等.梨树几种杀菌剂的防病试验[J].山西果树,2005,2:9-10
    [13] 高艳敏,李广旭等,苹果轮纹药剂筛选与药剂配方[J].果树学报,2006,23(3):401-405
    [14] 陈昭存,葛敏等,喷克在砀山酥梨上的药效试验[J],果农之友,2005,6:75-79
    [15] 张敬泽,胡东维,徐同.柿树炭疽菌侵染柿树叶柄的超微结构观察[J].植物病理学报,2005,35(5):434-441
    [16] Cooper R M. The mechanisms and significance of enzymatic degradation of host cell walls by parasites In. Callow J A. Biochemical Plant Pathology. New York: John Wiley & Sons Ltd.,1983, 101-135
    [17] Walton J D. Deconstructing the cell wall[J]. Plant Physiol., 1994, 104(4): 1113-1118
    [18] 王江柱,董金皋,王玉真.非寄主专化性植物病原真菌毒素致病机制研究现状[J].河北农业大学学报,1995,18(4):99-104.
    [19] 郑晓莲,董金皋.灰葡萄孢毒素组分分析和生物测定[J].植物病理学报,1998,28(3):269-271
    [20] 欧阳丰,谢丙炎,欧阳本友等.辣椒炭疽病菌毒素[J].1993,12(4):298-296
    [21] 董金皋,李正平.玉米大斑病菌毒素结构的确定及几种类似物的毒性比较[J].植物病理学报,1997,27(3):257-261
    [22] 石凤梅.植物病原菌真菌毒素的研究进展[J].黑龙江农业科学,2006,(2):70-73
    [23] Pring R J. A fine-structural study of the infection of leaves of Phaseolus vulgaris by uredosores of Uromyces phaseali[J]. Physiological Plant Pathology, 1980, 17:269-276
    [24] Ye X S, Deverall B J. Effects of heat treatment or mixed inoculation on the development of compatible and incompatible bean rust infections[J]. Physiological and Molecular Plant Pathology, 1989, 34:427-437
    [25] Helmut.kessmann. et. al., Induction of systemic acquired disease Resistance in plants by chemicals[J]. Annuval Review ofphytopathology, 1994, 32:439-459.
    [26] Vance C. P., Kirk T..K.,L ignification as a mechanism of disease resistance[J]. Annu. Rev. phytopathology, 1980, 18:259-288
    [27] 李洪连,王守正.黄瓜对炭疽病诱导抗性的初步研究.诱导抗病性机制[J].植物病理学报,1993,23(2):114—117
    [28] Ebel J, Grisebach H. Defense strategies of soybean against the funguds Phytophthora megasperma f. sp. glycinea: A molecular analysis[J].Trends Biochem Sci, 1998, (13): 23-27.
    [29] 章元寿.植物病理生理学[M].南京:江苏科学技术出版社,1996:245-263
    [30] Keen N T. The molecular biology of disease resistance[J]. Plant Mol Biol., 1992, 19(1):109-122.
    [31] Boss P K. An apple Polyphenol oxidase cDNA is up-regulated in wounded tissues[J]. Plant Mol Biol, 1995,27:429-433
    [32] Talieva M N, Runkova L V. Phenylalanine ammonia-lyase activity in onion leaves infected by Botrytis alliimunn[J]. Mikologiya Fitopathologiya, 1980, 14(6): 500-506
    [33] Scheffer R J. Mechanisms involved in biological control of dutch disease[J]. J.Phytopathol, 1990,130: 265-276.
    [34] 刘志文,沙爱华,王英.活性氧物质在植物抗病中的作用[J].安徽农业科学,2005,33(9):1705-1707
    [35] 刘玲,李疆,覃伟铭.水杨酸对库尔勒香梨POD、PPO、PAL活性及其对果实品质的影响[J].新疆农业科学,2005,42(2):98-101
    [37] PengM, Kue J. Pemxidase-generated hydrogen peroxidase as a source of antifungal activityin vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82: 696-699.
    [38] Bolwell G P, Davies DR, Gerrish C, AuhC-K, MurphyTM. Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms[J]. PlantPhysiol, 1998, 116: 1379-1385
    [39] 董金皋,韩建民.植物与病原物互作中的活性氧代谢及其作用[J].沈阳农业大学学报,2000,31(5):427-431
    [40] Boiler T. Induction of hydrolase as a defense reaction against pathogens[M]. In: Key J. L., Kosuge T (eds), Cellar and Molecular Biology of Plant Stress. Alan R. liss, New york 1985, 247-262.
    [41] Wessels J GH, Sietsma J H. Fungal cell walls: A survey. In Tanner w, loewus FA (eds), Encyclopedia of plant physiol, New Series, Voll 3B. Springger-Verlag, New York, 1981, 352-394.
    [42] Boller T, Gehr A, Mauch F et al. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function[J]. Planta, 1983, 157:22
    [43] Schlumbaum A, Mauch F. Plant chitinases are potent inhibitors of fungal growth[J]. Nature, 1986, 324:365-367
    [44] Mauch, Felix, et al. Antifungal Hydralases in pea tissues[J]. Plant physiol., 1988, 88, 936-942
    [45] Molan J, Polacheck I, Duran A. An endochitinase from wheat germ[J]. J. Biochem., 1979, 254:4901-4907
    [46] Meins F Jr, et al. The biology of plants transformed with chimeric class Ⅰ chitinase and genes. Workshop on engeneering plants agaist pest and pathogens. 11-13 Jannuary 1993 Madrid, Spain. Edited by Bruening G, 1993.27
    [47] 刘国坤,陈启建,吴祖建等.几种植物提取物对4种植物病原真菌的抑制作用[J].2004,33(3):295-300
    [48] Prusky D, Fuchs Y, Yanko U. Assessment of latent infection as a basis for control of postharvest disease of Mango[J]. Plant Disease, 1987, 67(7):816-818
    [49] Prusky D, Plumbley R A, Kobiler I. The relationship between antifungal diene levels and fungal inhibition during quiescent infection of unripe avocado fruits by Colletotrichum gloeosporioides[J]. Plant pathology, 1991,40,45-52
    [50] Charles R Drake. Effect ofpH and carbon on growth of the apple rot fungus: Botryosphaeria ribis[J]. Phytopathol, 1966,56:8760
    [51] Heisteruber D. Soluble carbohydrates and invertase activity in stem rustinf ected resistant and susceptible near-isogenic wheat leaves[J]. Physiol MolPlant Pathol,1994,44:111-124
    [52] Hwang B K. Sugar composition and acid invertase activity in spring barley plants in relation to adult-plant resistance to powdery mildew[J]. Phytopathology, 1986,76:365-369
    [53] Horsfall J G,EB Conling.An advanced treatise[J]. Plant Disease,1980,5:351-359
    [54] Sitterly W R, Shay J R. Physiological factors affecting the onset of susceptibility of apple fruit to rotting by fungus pathogens[J]. Phytopathol, 1960, 50:91-92
    [55] 辛玉成、秦淑莲、李宝笃等.苹果品种霉心病发生与果实糖和酸含量的相关性研究初报[J].莱阳农学院报,1996,13(4):286~287
    [56] 张显,王鸣.西瓜枯萎病抗性及其与体内一些生化物质含量的关系[J].西北农业学报,2001,10(4):34~36
    [57] 黄京华,骆世明,曾任森。丛枝菌根诱导植物抗病的内在机制[J]。应用生态学报,2003.14(5):819~822
    [58] Salunkhe D K, Bolin H R, Reddy N R. Postharvest pathology[A]. Salunkhe D K. Storage, Processing and Nutritional Quality of Fruits and Vegetables[M]. CRC Press, 1991.217~236.
    [59] Sommer N F. Postharvest handing practices and postharvest disease of fruits[J]. Plant Dis., 1982,66: 357~236.
    [60] Droby S, Porat R, Cohen L, et al.. Suppressing green mold decay in grapefruit with postharvest jasmonate application[J]. Journal of the American Society for Horticultural Science, 1999,124: 184-188.
    [61] Meena B,Marimuthu T, Velazhahan R. Salicylic acid induces systemic resistance in groundnut against late leaf spot caused by Cercosporidium personatum[J]. J. Mycol. Plant Pathol., 2001,31:139-145
    [62] Murphy A M, Holcombe L J, Carr J R Characteristics of salicylic acidinduced delay in disease caused by a necrotrophic fungal pathogen in tobacco[J]. Physiol. Mol. Plant Pathol., 2000, 57:47-54
    [63] Creelman R A and Mullet J E. Jasmonic acid distribution and action in plants: regulation during development and response to bioticstress[J]. Proceedings of the National Acedemy of Sciences U.S.A 92,4114~4119
    [64] Yao H J and Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest disease of peach fruit and the possible mechanisms involved[J]. J. Appl. Microb., 2005,98, 941-950
    [65] Zainuri, J D C, Wearing A H and Coates L. Effects ofphosphonate and salicylic acid treatments on anthracnose disease development and ripening of 'Kensington Pride' mango fruit[J]. Australian J. Exper. Agri.,2001, 41:805-813
    [66] Sticher L, Mauch-Mani B and Metraux J P. Systemic acquired resistance[J]. Annual Review of Phytopathology, 1997, 35: 235-270
    [67] Yao H J, Tian S P. Effects of pre- and postharvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage[J]. Postharvest Biology and Technology, 2005, 35:253-262
    [68] Cohen Y, Gysi U, and Nieder Man. Local and systemic protection against Phytopthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methylester[J]. Phytopathology, 1993, 83:1054-1062
    [69] Tally A, Oostendorp M, Lawton K, et al.. Commercial development of elicitors of induced resistance to pathogens. In: Agrawal A A, Tuzun S, Bent E (Eds.), Induced plant defenses against pathogens and herbivores[M]. APS Press, St. Paul, MN, pp.357-369
    [70] Gorlach J, Volrath S, Knauf-Beiter G, et al.. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance inwheat[J]. Plant Cell, 1996,8:629-643
    [71] Katz V A, Yhulke O U and Conrath U. A Benzothiadiazole primes parsley cells for augmented elicitation of defense responses [J]. Plant Physiology, 1998, 117:1333-1339
    [72] Huang Y, Deverall B J, Tang W H, et al.. Foliar application of acibenzolar-S-methyl and protection ofpostharvest rock melons and Hami melons from disease[J]. Eur. J. Plant Pathol., 2000, 106:651-656
    [73] Liu H, Jiang W, Bi Y, et al.. Postharvest BHT treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J]. Postharvest Biology and Technology, 2005, 35: 263-269
    [74] Maxson-Stein K, He S Y. Hammerschmidt R, et al.. Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression ofpathogenesis-related protein genes[J]. Plant Disease, 2002, 86:785-790
    [75] Ishii H, Tomita Y, Horio T, et al.. Induced resistance of acibenzolar-S-methyl (CGA245704) to cucumber and Japanese pear diseases[J]. European Journal of Plant Pathology, 1999, 105:77-85
    [76] Porat R, Daus A, Weiss B, et al.. Reduction of postharvest decay in organic cirtrus fruit by a short hot water brushing treatment[J]. Postharvest Biol. Technol., 2000, 18:151-157
    [77] Tian S P, Fan Q, Xu Y, et al.. Effects of calcium on biocontrol activity of yeast antagonists the postharvest fungal pathogen Rhizopus stolonifer[J]. Plant Pathol., 2002, 51:352-358
    [78] Alcaraz-Lopez C, Botia M, Alcaraz C F, et al.. Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality[J]. J. Plant Physiol, 2003, 1-6
    [79] Carvajal M, Alcaraz C F. Why titanium is a beneficial element for plants[J]. J. Plant Nutr., 1998, 21:655-664
    [80] Yao H J, Tian S P, Wang Y S. Sodium bicarbonate enhances biocontrol efficacy Qfyeasts on fungal spoilage of pears. Internat[J]. J. Food Micro., 2004, 93:297-304
    [81] El-Ghaouth A. Manipulation of defense systems with elicitors to control postharvest diseases[A]. Wilson C L. Biological Control of Postharvest Disease-Theory to Practice[M] Boca Raton, FL:CRC Press, 1994. 153-167
    [82] Fajardo J E, McCollum T G, McDonald R E, et al.. Differential induction of proteins in orange feavedo by biologically based elicitors and challenged by Penicillium digitatum Sacc. Biol Control, 1998, 13:143-151
    [83] Sholbery P L, Shimizu B N. Use of natural plant product, hinokitiol, to extend shelf-life of peaches[J]. J Can Inst Food Sci Techol, 1991, (2):273-276
    [84] 孟昭礼,吴献忠,高庆霄,等.银杏提取液对四种植物病原菌得抑菌作用[J].植物病理学报,1995,25(4):357—360
    [85] 王连荣,吴桂发,吴桂余.银杏外种皮提取液防止苹果炭疽病得效应[J].中国果树,1995,(4):30—31
    [86] 席欤芳,瞿传清,郑永华.植物杀菌素抑制柑桔青绿霉菌的研究[J].浙江农业大学学报,1994,20(2):169—170
    [87] 毛琼,宋晓岗.中草药提取物保鲜水果的效果研究[J].食品科学,1999,20(5):54—56
    [88] 宋晓岗,陈敏.几种中草药及其复合保鲜纸对鸭梨保鲜效果的研究[J].食品科学,1996,17(2):67—69
    [89] 石晓琼,王在明.中草药煎制液配合真空脱气对金柑贮藏保鲜的研究[J].中国柑桔,1995,24(3):7—9
    [90] Schirra, M, D'hallewin G, Ben-Yehoshua S, et al.. Host-pathogen interactions modulated by heat treatment[J]. Postharvest Biology and Technology, 2000, 21:71-85
    [91] Garcia J M, Aguilera C, Albi M A. Postharvest heat treatment on Spanish strawberry[J]. J. Agric. Food Chem., 1995, 43: 1489-1492
    [92] Anthony B R, Phillips D J, Bard S, et al.. Decay control and quality maintenance after moist air heat treatment of individually plastic-wrapped nectarines[J]. Journal of American Society for Horticultural Science, 1989, 114:946-949
    [93] Lydakis D and Aked J. Vapour heat treatment of Sultanina table grapes. I. Control of Botrytis cinerea[J]. Postharvest Biology and Technology, 2003, 27:109-116
    [94] Fallik E, Grinberg S and Ziv O. Potassium bicarbonate reduces postharvest decay development on bell pepper fruits[J]. Journal of Horticultural Science and Biotechnology, 1997, 72:35-41
    [95] 李鹏霞,王贵禧,樊金拴.热水处理对冬枣货架期品质的影响[J].西北林学院学报,2004,19(2):119-121
    [96] Porat R, Daus A, Weiss B, et al.. Reduction of postharvest decay in organic cirtrus fruit by a short hot water brushing treatment[J]. Postharvest Biol. Technol., 2000, 18:151-157
    [97] Nafussi B, Ben-Yehoshua S, Rodov V, et al. Mode of action of hot water dip in reducing decay in lemon fruit. 2000, In: Proceedings of the international symposium on postharvest. Jerusalem, Isreal, pp8
    [98] Mercier J, Arul J, Julien C. Effect of food preparation on the ioscoumarin, 6-methoxymellein, content of UV-treated carrots[J]. Food Res. Internat., 1994, 27(4): 401-404
    [99] Stevens C, Khan V A, Lu J Y, et al. The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches[J]. Crop Prot., 1998, 17: 75-84
    [100] Boulet M, Arul J, Verret P, et al. Induced resistance of stored mango (Mangifera indica L.) fruits to mold infection by treatment with Colletotrichum gloeosporioides L. cell wall hydrolysate [J]. Can. Inst. Food Sci. Technol. J., 1989, 22:161-168
    [101] Nigro F, Ippolito A, Lattanzio V, et al. Effect of ultraviolet- C light on postharvest decay of strawberry [J]. J. Plant Pathol., 2000, 82:29-37
    [102] Nigro F, Ippolito A, Lima G. Use of UV-C light to reduce Botrytis storage rot of table grapes[J]. Postharvest. Biol. Technol., 1998, 13:171-181
    [103] Arras G, Cicco V D, Arm S, et al. Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J Hort Sci Biotechnol, 1997,73(3): 413~418
    [104] El-Ghaouth A, Wilson C L, Wisniewski M. Control of postharvesr decay of apple fruit with Candida saitoana and induction of defense responses [J]. Phytopathol., 2003, 93:344-348
    [105] Qin G Z, Tian S P, Xu Y, et al.. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiological and Molecular Plant Pathology, 2003, 62:147-154
    [106] Janisiewicz W J, Usall J, Bors B. Nutritional enhancement of biocontrol of blue mold on apple [J]. Appl Environ Microbiol, 1994, 60:2671-2676
    [107] Katz V A, Yhulke O U and Conrath U. A Benzothiadiazole primes parsley cells for augmented elicitation of defense responses[J]. Plant Physiology, 1998, 117: 1333-1339.
    [108] El-Ghaouth A, Smilanick J K, Wisniewski M, et al.. Improved control of apple and citrus fruit decay with a combination of Candida sainoana and 2-deoxy-D-glucose. Plant Disease, 2000, 84:249-253
    [109] 小金氵 尺硕城,佐久间勉粗皮病及皮病病斑分离系状菌.(日本)果树试验场报告C,1980;7:83-99
    [110] 李广旭,高艳敏,杨华等。轮纹病菌在苹果枝干上侵入途径的扫描电镜观察[J]。果树学报,2005,22(2):169-171
    [111] 陈修会,申为宝,张雷,等。套袋对苹果和梨果实病虫害的影响[J]。河北果树,2001(1):5-7
    [112] M cGlohon N E. trYsphaeria do the idea- where will it stop [J] Plant Dis, 1982; 66: 1202-1203
    [113] 李江华,王贵禧,梁丽松,宋振基.桐柏大枣气调贮藏期间几种酶活性变化[J].食品科学,2006,27(6):234-237
    [114] Lydakis D and Aked J. Vapour heat treatment of Sultanina table grapes. I. Control of Botrytis cinerea[J]. Postharvest Biology and Technology, 2003, 27:109-116.
    [115] Lassron C, Morre D J.The Plant Plasma Membrane[M]. 1990. Berlin Heidelberg: Spring-Verlag
    [116] 俞宏,贾湘汴.梨幼果表皮果点形成的组织解剖观察.果树学报,2002,19(1):62-63
    [117] Biggs A R. Detection of latent infection in apple fruit with paraguat. Plant Disease, 1995,79:1062-1067
    [118] Kohn F C,Hendrix F F. Temperatrue, free moisture,and incolum concentration effects on the incidence and development of white rot of apple. Phytopathology, 1982, 72:313-316
    [119] 丁耐克。食品风味化学[M]。 北京:中国轻工业出版社。1996,9
    [120] Terrier N, Sauvage FX, Ageorges A, et al. Changes in acidity and in proton transport at the tonoplast of grape berries during development[J]. Planta, 2001, 213:20-28
    [121] Friend J.Plant Phenolies. Lignification and Plant Disease, Prog Phytochem., 1981,7:197-261
    [122] Ralph L,Nicholson.Phenlic compounds and their role in disease resistance [J].Ann. Rev. Ph-ytopathol. 1992,30:369-368
    [123] Cole,R.A,Relationship between the concentration of chloregenic acid in carrotroots and the incidence of carrot fly larval damage Ann[J].Applied Biology, 1985,106(2):211-217
    [124] 杨辉,沈火林,朱鑫,程杰山,韩清霞.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系[J].中国农学通报,2006,22(5):369-372
    [125] 唐倩菲,杨媚,周而勋,敖世恩,姜子德,陈厚彬.香蕉受枯萎病菌侵染后酚类物质含量的变化[J].华南农业大学学报,2006,27(3):55-57
    [126] 刘海英,李川,范永山,侯保林.影响苹果果实轮纹病抗病性的寄主因素及相关性分析[J].河北农业大学学报,2003,26(1):56-60
    [127] 何晨阳.双核丝核菌诱导水稻增产广谱抗病性和防御酶活性[J].植物病理学报,2001,31(3):208-212
    [128] 郭红莲,程根武,陈捷等.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J].植物病理学报,2003,33(4):342-346
    [129] Peng M, Kue J. Peroxidase-generated hydrogen peroxidase as a source of antifungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82: 696—699.
    [130] Yoshida S. Low temperature-induced cytoplasmic acidosis in cultured mung ben(Vigna radiate(L) Wilczek) cells. Plant Physiol, 1994, 104:1131~1138
    [131] Palta J P, Jenson K G, Li P H. Cell membrane alterations following a slow freeze thaw cycle: ion leakage, injury and recovery. In: Li PH,Sakai A (ed). Plant Cold Hardiness and freezing stress[C]. New York: Academic Press, 1982,2:221-242
    [132] Carystonos G D, MacDonal H R, Monroy A F, et al. Vacuolar H~+-translocating pyrophosphase is induced by anoxia or chilling in seedlings of rice. Plant Physiol, 1995, 108:641~649
    [133] 蒋得安,翁晓燕,洪键,等。低钾营养条件下水稻源叶碳同化物输出得障碍。植物生理学报,1994,20(2):137—144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700