复杂性状遗传分析方法研究及其软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明复杂性状的遗传机理是动植物遗传改良以及人类复杂疾病致病机理研究的重要基础。复杂性状遗传研究的本质是定位控制复杂性状遗传的QTL(数量性状基因座),检测QTL之间相互作用(上位性)并检测QTL以及上位性在不同环境条件下的效应差异,进而鉴别相应的候选基因及其调控网络。基于混合线性模型方法,本研究提出了适用于各种试验群体的全QTL模型和二步法的定位策略,将复杂性状的多基因遗传体系剖解为QTL的主效应,成对QTL位点的上位性效应,以及它们与环境因子的互作效应;并通过计算机模拟,以及对水稻各种性状的实例分析,验证了模型和定位策略的有效性和可靠性。在此基础上,首次提出了整合宿主和病原菌遗传信息的QTL定位模型,能同时检测宿主和病原菌基因组上控制抗病性和致病性的QTL以及宿主和病原菌之间的QTL互作。此外,本研究还将上述方法应用于基于DArT标记技术的QTL分析,并提出了利用QTL定位得到的遗传信息预测最优基因型的方法。另外,结合基因芯片表达数据和分子标记基因型数据,还提出了eQTL定位的方法。最后,基于上述模型和方法,开发了两套界面友好的计算机软件。本研究的主要研究内容和结论如下:
     1)对于重组自交系(RI)和双单倍体(DH)群体,本研究提出了一个全QTL模型,包括了多个QTL的加性效应,QTL间的互作效应(加×加上位性效应)、以及它们与环境的互作效应,用于探究复杂性状在多环境条件下的多基因遗传体系。并进一步提出了一个新的定位策略,包括分子标记区间分析、分子标记区间的互作分析以及基因组扫描,用于定位遗传群体中的多QTL位点以及QTL之间的相互作用。另外,本研究利用基于Henderson方法Ⅲ的F统计量做假设检验,采用Permutation方法来控制基因组水平的假阳性率,并运用基于Gibbs采样的贝叶斯方法来估算全QTL模型中的各种遗传参数。此外,本研究通过蒙特卡洛模拟来检验该方法的可靠性和有效性,并用两组真实数据(一组是小鼠BXD群体的嗅球重量数据,另一组是水稻的产量数据)来验证方法。
     2)对于F_2和RIX(重组自交系随机交配,或称为IF_2)群体,本研究将上述的全QTL模型拓展到包括QTL的加性和显性效应,加×加、加×显、显×加和显×显上位性效应,以及它们与环境的互作效应。通过计算机模拟研究不同RIX设计检测QTL和上位性的功效和假发现率,并通过实例分析(水稻产量和小鼠脑重)来验证方法的有效性。结果表明大部分的QTL位点都表现出一因多效性,而QTL之间的互作则往往对于不同的性状而表现不同。对于不同的性状,环境变异占表现型变异的比例有很大的差异。
     3)基于芯片的高通量基因型检测方法的发展,如DArT(多态芯片技术)和SNP(单核苷酸多态),为大规模增加遗传定位群体提供了重要机遇。本研究提出了一种基于DArT基因型检测系统的QTL定位策略。利用一个DH群体构建了SSR标记(简单重复序列)的低密度连锁图谱,并利用该DH群体的一个子群体构建了结合DArT标记和SSR标记的高密度连锁图谱。分别利用低密度连锁图谱和全群体以及高密度连锁图谱和子群体对大麦网斑病进行QTL定位分析,两者都能定位到一对相互作用的主效QTL。结果表明,高密度连锁图谱、小群体以及精确的表现值度量可以提高主效QTL定位的精确度。因此,可以通过DArT分子标记来检测大量子群体的基因型,从而提高QTL定位试验的效率。
     4)基于上述方法得到的QTL效应信息,本项目把传统的仅包括加性和显性效应的育种值扩展到包括在各个环境下都稳定表现的遗传主效应和在特定环境有特殊表现的环境互作效应,并提出了一个逐步调整基因型的方法,可筛选集优良基因型于一体的最优基因型(最优纯系和最优杂交种),来预测群体的遗传改良潜力。对水稻单株粒重数据的分析结果表明,预测得到的最优纯系和最优杂交种都比双亲的F_1世代有明显的优势,而且这种优势很大程度上是由上位性效应以及QTL与环境互作效应贡献的。
     5)在基因组对基因组假设前提下,本研究提出了一个同时整合宿主和病原菌遗传信息的遗传模型,用于检测宿主和病原菌基因组上控制宿主抗病性状的QTL位点,以及宿主和病原菌之间的QTL互作。将候选的分子作为背景控制,通过一维基因组扫描方法同时检测宿主和病原菌基因组上的主效QTL位点,然后通过二维基因组扫描方法检测宿主和病原菌基因组内的上位性以及宿主和病原菌基因组间的QTL互作。在检测主效QTL和互作QTL的过程中,都采用Permutation技术来控制试验水平的假阳性率,并通过蒙特卡罗模拟验证模型和方法的有效性和可靠性。模拟结果表明,该方法能较好的估计模型中的各项遗传参数,并有足够的统计功效来检测主效QTL以及QTL间的互作。
     6)提出了鉴定差异表达基因的方法,该方法适用于包含单处理因素或双处理因素的基因芯片试验,同时也能分析非平衡数据。采用基于Henderson方法Ⅲ的F统计量来检验每个基因在不同处理水平下的表达差异,并通过调整P值的阈值来控制试验水平的假发现率。分析了人类急性白血病的表达谱数据(包含38个临床诊断的白血病人样),与SAM(significance analysis of microarray)和MAANOVA(microarray analysis of variance)的分析结果相比,对于单处理因素的数据,本研究提出的方法对与MAANOVA方法非常接近,但MAANOVA方法无非直接的处理缺失数据。另外,还分析了2个小鼠纯系6个脑区域(双处理因素)的表达谱数据,与比前人的分析结果相比,本研究提出的方法能够检测到更多的脑区域特异性表达模式。
     7)将基因芯片所获得的基因表达值作为一种特殊类型的复杂“性状”,本研究发展了一种定位eQTL和eEpistasis(控制基因表达的上位性)的新方法。该方法将事先筛选到的分子标记作为背景控制,通过一维基因组扫描检测主效eQTL,然后再进行基因组扫描,检测主效eQTL与基因组上其他任意位点的上位性互作,并通过调整P值的阈值控制上述两个检测过程的假发现率。此外,分析了一组由C57BL/6J和DBA/2J组合衍生的重组自交系数据来验证该方法。
     8)最后,本项目开发了两套计算机软件,QTLNetwork和QTModel,用于数据分析。QTLNetwork软件用于定位和图示化多环境下的复杂性状多基因遗传体系。该软件目前适用于F_2、BC(回交一代)、RI、RIX(或称为IF_2)以及BC_nF_n(多次回交和自交)等试验群体。QTModel软件分为三个模块:mixed、array和diallel。其中,mixed模块用于常规的包含随机因素的试验设计,如:随机区组设计、析因设计、多因素析因设计、巣式设计和相交巣式设计等;array模块用于分析包含单处理因素或双处理因素的基因芯片数据,检测差异表达基因;而diallel模块则用于经典的双列杂交设计。
Understanding the genetic basis of complex trait is of key importance for genetic improvements of crops and domestic animals, and helpful to elucidate the genetic aetiology of human complex diseases. The essential issues in genetic analysis of complex trait is to map quantitative trait loci (QTLs) that affect the inheritance of complex trait, detect the interaction among QTLs (epistasis) and the differences of the effects of QTLs and epistasis in different environmental conditions, and consequently to identify the candidate genes underlying complex trait and their genetic regulatory network. Based on mixed linear model approaches, a full-QTL model and a two-step mapping strategy were proposed for linkage analysis of segregating populations to dissect the genetic architecture of complex trait into the effects of individual QTLs and epistatic interaction between pair-wise loci, and the interaction effects between QTLs (or epistasis) and environmental factors. Simulation study and analysis of rice and mice data were performed to validate reliability and efficiency of the proposed method. Subsequently, a novel genetic model that integrates the genetic information of both host and parasite was proposed to map disease-related QTLs on host and parasite genome simultaneously, as well as to investigate the interaction among these QTLs. In addition, the aforementioned method was extended for QTL analysis based on high-throughout genotyping technology (e.g. DArT), and an approach was developed to predict superior gentoypes utilizing the genetic information obtained from QTL analysis. Furthermore, combined with the gene expression and genotyping data of segregating population, a new approach was proposed for mapping expression QTLs (eQTLs) and detecting the epistatic interaction between a main-effect eQTL and any other loci. Finally, two software packages were develop to implement the aforementioned methodologies. The main features of the proposed methods and results are summarized as follows:
     1) For homogenous mapping panels, such as recombinant inbred (RI) and double-haploid (DH) populations, a full-QTL model was proposed to explore the genetic architecture of complex trait in multiple environments, which includes the additive effects of multiple QTLs, additive x additive epistatic effects, and their interaction effects with environments. A mapping strategy, including marker interval selection, detection of marker interval interactions, and genome scans, was used to evaluate the putative locations of multiple QTLs and their interactions. An F-statistic based on Henderson method III was used for hypothesis test. In each of the mapping procedures, permutation testing was exploited to control for genome-wide false positive rate, and model selection was used to reduce the ghost peaks in F-statistic profile. Parameters of the full-QTL model were estimated using a Bayesian method via Gibbs sampling. Monte Carlo simulations were conducted to illustrate the reliability and efficiency of the method. Two real datasets (BXD mouse olfactory bulb weight and rice yield), were used as worked examples to demonstrate the proposed methods.
     2) For heterogeneous mapping panels, such as F_2 and recombinant inbred intercross (RIX, or say IF_2) populations, the aforementioned full-QTL was extended to include the additive and dominance effects of QTLs, epistatic effects (additive x additive, additive x dominance, and dominance x dominance), and their interaction with environments. A series of simulations were conducted to investigate the powers and false discovery rates of QTL and epistasis with different RIX designs. Two real datasets, one from mouse and the other one from rice, were analyzed to illustrate the validity of the proposed method. Results revealed that more than a half number of QTLs show pleiotropic effects, while epistasis seems to be independent for different traits. The proportion of phenotype variation attributed by environmental effects differed considerably for different traits.
     3) The development of array-based high throughput genotyping methods (e.g. diversity arrays technology DArT and single nucleotide polymorphism SNP) created significant opportunities to increase the number of genetic populations for genetic linkage analysis. A strategy was proposed for mapping of QTLs based on the DArT genotyping system. A procedure was illustrated for constructing a consensus linkage map consisting of both DArT and SSR markers by utilizing a sub-group DH population, and a second linkage map constructed with SSR markers alone and a more extensive full DH population. Resistance to barley net type net blotch disease was analyzed using the sub-population data with the high-density consensus linkage map and the full-population data with the low-density SSR linkage map, respectively. Two interactive QTLs were detected either by the sub- or full-population. The results indicated that high density molecular markers, small population size and precise phenotyping could improve the precision of mapping major-effect QTLs and the efficiency of conducting QTL mapping experiment.
     4) In addition, methods were developed for predicting two kinds of superiorgenotypes (superior line and superior hybrid) based on QTL effects including epistatic and QTL x environment interaction effects. Mathematical formulae were derived for predicting the total genetic effect of any individual with known QTL genotype derived from the mapping population in a specific environment. Two algorithms, enumeration algorithm and stepwise tuning algorithm, were used to select the best multi-locus combination of all the putative QTLs. Grain weight per plant (GW) in rice was analyzed as a worked example to demonstrate the proposed methods. Results showed that the predicted superior lines and superior hybrids had great superiorities over the F_1 hybrid, indicating large breeding potential remained for further improvement on GW. Results also indicated that epistatic effects and their interaction with environments largely contributed to the superiorities of the predicted superior lines and superior hybrids.
     5) Under a hypothesis that the host-parasite interaction system was governed by genome-for-genome interaction, we proposed a genetic model that integrates genetic information from both of the host and parasite genomes. The model could be used for mapping quantitative trait loci (QTLs) conferring the interaction between host and parasite and detecting interactions among these QTLs. A one-dimensional (1D) genome scan strategy was used to map QTLs in both of the host and parasite genomes simultaneously conditioned on selected pairs of markers controlling the background genetic variation; a two-dimensional genome scan procedure was conducted to search for epistasis within the host and parasite genomes and interspecific QTL×QTL interactions between the host and parasite genomes. Permutation test was adopted to calculate the empirical threshold for controling the experimental-wise false positive rate of detected QTLs and QTL×QTL interactions. Monte Carlo simulations were conducted to examine the reliability and efficiency of the proposed models and methods. Simulation results illustrated that our methods could provide reasonable estimates of the parameters and adequate powers for detecting QTLs and QTL×QTL interactions.
     6) A statistical procedure was proposed to identify the differentially expressed genes (DEGs) for gene expression data with or without missing observations from microarray experiment with one- or two-treatment factors. An F-statistic based Henderson method III was constructed to test the significance of differential expression for each gene under different treatment(s) levels. The cutoff P-value was adjusted to control the experimental-wise false discovery rate. A human acute leukemia dataset corrected from 38 Leukemia patients was re-analyzed by the present method. In comparison to the results from SAM (significant analysis of microarray) and MAANOVA (microarray analysis of variance), it was indicated that the present method has similar performance with MAANOVA for data with one-treatment factor, but MAANOVA can not directly handle missing data. A mouse brain dataset collected from six brain regions of two inbred strains (two-treatment factors) was re-analyzed to identify genes with distinct regional-specific expression patterns. The results showed that the proposed method could identify more distinct regional-specific expression patterns than the previous analysis of the same dataset.
     7) Considering the gene expression values as a special kind of complex "trait", a novel method was proposed to identify genetic polymorphisms (or say eQTLs) and their interaction that affect gene expression. The method started with a 1D genome scan procedure to search for eQTLs with individual effects conditioning on previously selected candidate markers to control the background genetic variation. After that, each main-effect eQTL was tested for the interaction effect with any other loci with or without individual effects. In the procedure of detecting main-effect eQTL or of detecting genetic interaction, the cutoff P-value was adjusted to control the experimental-wise false discovery rate. A mouse dataset collected from a group of RI strains derived from two ancestor parents, C57BL/6J and DBA/2J, was analyzed to illustrate the utility of the proposed method.
     8) Two software packages, QTLNetwork and QTModel, were developed by C++ programming language for implementation of the aforementioned methodologies. QTLNetwork was developed for mapping and visualizing the genetic architecture underlying complex traits for experimental populations in multiple environments. It can handle data from F_2, backcross, recombinant inbred lines and double-haploid populations, RIX (or say IF_2) and BC_nF_n populations. QTModel has three modules, mixed, array and diallel. The mixed module was developed for analyzing data from experimental designs with random factors, such as randomized block design, factorial design, multi-factor factorial design, nested design, and cross nested design etc. The array module has the capability of analyzing microarray expression data with one- or two- treatment factors for differentially expressed genes. The diallel module was developed for analyzing the data from classical diallel cross designs.
引文
Agrawal AF, Lively CM. 2001. Parasites and the evolution of self-fertilization. Evolution Int J Org Evolution 55:869-879.
    Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409-1420.
    Allard R. 1996. Genetic basis of the evolution of adaptedness in plants. Euphytica 92:1-11.
    Becker J, Heun M. 1995. Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome 38:991-998.
    Benkman CW. 1999. The selection mosaic and diversifying coevolution between crossbills and lodgepole pine. Amer Natur 153:75-91.
    Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314-331.
    Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:752-755.
    Broman KW, Wu H, Sen S, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890.
    Brown HK, Prescott RJ. 1999. Applied mixed models in medicine. New York: John Wiley & Sons Inc.
    Brown PO, Botstein D. 1999. Exploring the new world of the genome with DNA microarrays. Nat Genet 21(Suppl.):33-37.
    Burdon JJ, Thrall PH. 1999. Spatial and temporal patterns in coevolving plant and pathogen association. Amer Natur 153:15-33.
    Carlborg O, Haley CS. 2004. Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618-625.
    Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP. 1996. Accessing genetic information with high-density DNA arrays. Science 274:610-614.
    Chen Y, Kamat V, Dougherty ER, Bittner ML, Meltzer PS, Trent JM. 2002. Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18:1207-1215.
    Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW. 2005. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233-242.
    Churchill GA, Doerge RW. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.
    Comstock RE, Robinson HE 1952. Estimation of average dominance of genes. Iowa: Iowa State University Press,
    de Belle JS, Heisenberg M. 1996. Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm). Proc Natl Acad Sci U S A 93:9875-9880.
    DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM. 1996. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457-460.
    DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genornic scale. Science 278:680-686.
    Doerge RW, Churchill GA. 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285-294.
    Dudoit S, Yang Y, Matthew J, Speed TP. 2002. tatistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12:111-139.
    Dux A, Muhlbock O, Bailey DW. 1978. Genetic analyses of differences in incidence of mammary tumors and reticulum cell neoplasms with the use of recombinant inbred lines of mice. J Natl Cancer Inst 61:1125-1129.
    Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863-14868.
    Fijneman RJ, de Vries SS, Jansen RC, Demant P. 1996. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet 14:465-467.
    Flor HH. 1971. The current status of the gene for gene concept. Annu Rev Phytopathol 9:275-296.
    Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL. 1993. Multiplexed biochemical assays with biological chips. Nature 364:555-556.
    Gao YM, Zhu J, Song YS, He CX, Shi CH, Xing YZ. 2004. Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice. J Zhejiang Univ SCI 5:371-377.
    Gardner CO, Eberhart AS. 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439-452.
    Gerlai R. 1996. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177-181.
    Giesbrecht FG 1983. An efficient procedure for computing MINQUE of variance components and generalized least squares estimates of fixed effects. Commun. Statist.-Theor. Meth. 12:2169-2177.
    Giesbrecht FG, Burns JC. 1985. Two-stage analysis based on mixed model: Large sample asymptotic theory and small-sample simulation results. Biometrics 41:477-486.
    Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537.
    Goring HH, Terwilliger JD, Blangero J. 2001. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69:1357-1369.
    Greenspan RJ. 2001. The flexible genome. Nat Rev Genet 2:383-387.
    Griffing B. 1956. Concept of general and combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9:463-493.
    Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L, Oliphant A, Fan JB, Barnard S, Chee MS. 2004. Decoding randomly ordered DNA arrays. Genome Res 14:870-877.
    Gupta S, Li CD, Loughman R, Cakir M, Platz G, Westcott S, Bradley J, Broughton S, Appels R, Lance R. 2008. Gene identification and epistatic interactions in barley conferring resistance to net type net blotch (Pyrenophora teres f. teres) pathotypes. Phytopathology (summitted).
    Gurganus MC, Nuzhdin SV, Leips JW, Mackay TF. 1999. High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152:1585-1604.
    
    Haldane JB, Waddington CH. 1931. Inbreeding and Linkage. Genetics 16:357-374.
    Haley CS, Knott SA. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315-324.
    Hallauer AR, Miranda JB. 1981. Quantitative genetics in maize breeding. Iowa: Iowa State University Press.
    
    Hamilton WD. 1980. Sex versus no-sex versus parasite. Oikos 35:282-290.
    Hartley HD, Rao JNK. 1967. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54:93-108.
    Hayat Y, Yang J, Xu HM, Zhu J. 2008. Influence of outliers on QTL mapping of complex traits. J Zhejiang Univ Sci B (accepted).
    Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ. 2007. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat Molecular Breeding.
    Henderson CR. 1963. Selection index and expected genetic advance. In: Statistical Genetics and Plant Breeding. Hanson, W. D., and Robinson, H. F, (eds.). Washington DC. National Academy of Science, National Research Council Publication 982:141-163.
    Henderson CR. 1988. Progress in statistical methods applied to quantitative genetics since 1976. In: Proceedings of the Second International Conference on Quantitative Genetics. Weir, B. S., Eisen, E. J., Goodman, M. M., et al., (eds.), Sinouer Assoc, Sunderland, MA.
    Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF. 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 100:2574-2579.
    Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang Q. 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885-1895.
    Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu JC, Subudhi P, Angeles ER, Khush GS. 1997. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105-113.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249-264.
    Jaccoud D, Peng K, Feinstein D, Kilian A. 2001. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25.
    Jannink JL, Jansen R. 2001. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445-454.
    Jansen R, Van Ooijen J, Stam P, Lister C, Dean C. 1995a. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91.
    Jansen RC. 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871-881.
    Jansen RC, Nap JP. 2001. Genetical genomics: the added value from segregation. Trends Genet 17:388-391.
    Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C. 1995b. Genotype-by-environment interaction in. genetic mapping of multiple quantitative trait loci. Theor. Apply. Genet.
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EmboJ 19:4004-4014.
    Jiang C, Zeng ZB. 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111-1127.
    Jiang CJ, Zeng ZB. 1997. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101:47-58.
    Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G 2001. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 29:389-395.
    Kao CH, Zeng ZB, Teasdale RD. 1999. Multiple interval mapping for quantitative trait loci. Genetics 152:1203-1216.
    Kerr MK, Churchill GA. 2001. Experimental design for gene expression microarrays. Biostatistics 2:183-201.
    Kerr MK, Martin M, Churchill GA. 2000. Analysis of variance for gene expression microarray data. J Comput Biol 7:819-837.
    Kover PX, Caicedo AL. 2001. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1-16.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. 2006. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929-1935.
    
    Lander ES, Botstein D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181.
    Lark KG, Chase K, Adler F, Mansur LM, Orf JH. 1995. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci U S A 92:4656-4660.
    Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737-1753.
    Liu RH, Meng JL. 2003. MapDraw: A Microsoft Excel macro for drawing geneitc linkage maps based on given genetic linkage data. HEREDITAS (Beijing) 25:317-321.
    Liu ZW, Biyashev RM, Maroof MA. 1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869-876.
    Ljungberg K, Holmgren S, Carlborg O. 2004. Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20:1887-1895.
    Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675-1680.
    Long AD, Mullaney SL, Reid LA, Fry JD, Langley CH, Mackay TF. 1995. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139:1273-1291.
    Lu Y, Zhu J, Liu P. 2005. A two-step strategy for detecting differential gene expression in cDNA microarray data. Curr Genet 47:121-131.
    Lukens LN, Doebley J. 1999. Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74:291-302.
    Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sunderlad, Massachusetts, USA: Sinauer Associates, Inc. Publishers.
    Mackay TF. 2001. The genetic architecture of quantitative traits. Annu Rev Genet 35:303-339.
    Manly KF. 1993. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome 4:303-313.
    Manly KF, Cudmore RH, Jr., Meer JM. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930-932.
    Martin GB, Bogdanove AJ, Sessa G. 2003. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23-61.
    Miller RG. 1974. The Jackknife: a review. Biometrika 61:1-15.
    Montooth KL, Marden JH, Clark AG 2003. Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165:623-635.
    Patterson AH, Thompson R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58:545-554.
    Pavlidis P, Noble WS. 2001. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol 2:RESEARCH0042.
    Peirce JL, Lu L, Gu J, Silver LM, Williams RW. 2004. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7.
    Peters AD, Lively CM. 1999. The Red Queen and Fluctuating Epistasis: A Population Genetic Analysis of Antagonistic Coevolution. Am Nat 154:393-405.
    Piepho HP. 2000. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043-2050.
    Piepho HP, Gauch HG, Jr. 2001. Marker pair selection for mapping quantitative trait loci. Genetics 157:433-444.
    Putt M, Chinchilli VM. 1999. A mixed effects model for the analysis of repeated measures cross-over studies. Stat Med 18:3037-3058.
    Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardie L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N,
    Sjakste T, Ganal M, Powell W, Waugh R. 2000. A simple sequence repeat-based linkage map of barley. Genetics 156:1997-2005.
    Rao CR. 1971. Estimation of variance and covariance components MINQUE theory. J. Multivar. Anal. 1:257-275.
    Rashid MM. 2003. Rank-based tests for non-inferiority and equivalence hypotheses in multi-centre clinical trials using mixed models. Stat Med 22:291-311.
    Rausher MD. 2001. Co-evolution and plant resistance to natural enemies. Nature 411:857-864.
    Rogowsky PM, Guidett FLY, P. L, Shepherd KW, Koebner RMD. 1991. Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet 82:537-544.
    Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardie L, Marshall DF, Waugh R. 2005. Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54.
    Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C. 2000. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 97:1103 8-11043.
    Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH. 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297-302.
    Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. 1996. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science 274:2063-2065.
    Searle SR, Casella G, McCulloch CE. 1992. Variance components. New York: John Wiley & Sons Inc.
    Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339-340.
    
    Sen S, Churchill GA. 2001. A statistical framework for quantitative trait mapping. Genetics 159:371-387.
    Storey JD, Akey JM, Kruglyak L. 2005. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol 3:e267.
    Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440-9445.
    Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. 1996. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science 274:2060-2063.
    Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ. 1999. Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm Genome 10:335-348.
    Tempelman RJ. 1998. Generalized linear mixed models in dairy cattle breeding. J Dairy Sci 81:1428-1444.
    Thompson JN. 1994. The coevolutionary process. Chicago: University of Chicago Press.
    Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevoltion. Amer Natur 153:1-14.
    Thompson JN, Burdon JJ. 1992. Gene-for-gene coevolution between plants and parasites. Nature 360:121-125.
    Threadgill DW, Hunter KW, Williams RW. 2002. Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 13:175-178.
    Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17:520-525.
    Tsaih SW, Lu L, Airey DC, Williams RW, Churchill GA. 2005. Quantitative trait mapping in a diallel cross of recombinant inbred lines. Mamm Genome 16:344-355.
    Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116-5121.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407-4414.
    
    Wang CS, Rutledge JJ, Gianola D. 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet Sel Evol 26:91-115.
    
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077-1082.
    
    Wang DL, Zhu J, Li ZK, Paterson AH. 1999. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255-1264.
    
    Wang SC, Basten CJ, Zeng ZB. 2006. Windows QTL Cartographer 2.5. In. Raleigh, NC, USA: Department of Statistics, North Carolina State University (http://statgen.ncsu.edu/qtlcart/WOTLCart.htm').
    
    Weber JL, May PE. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388-396.
    
    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. 2004. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci U S A 101:9915-9920.
    
    Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A. 2006. A high-density consensus map of barley linking DArT markers to SSR, RFLPand STS loci and agricultural traits. BMC Genomics 7:206.
    
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531-6535.
    Williams RW, Airey DC, Kulkarni A, Zhou G, Lu L. 2001. Genetic dissection of the olfactory bulbs of mice: QTLs on four chromosomes modulate bulb size. Behav Genet 31:61-77.
    Wittenberg AH, van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ. 2005. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30-39.
    Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. 1999. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297-303.
    Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A. 2005. DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092-1098.
    Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761-767.
    Yang J, Zhu J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268-1274.
    Yang J, Zhu J, Williams RW. 2007. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527-1536.
    Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A. 2006. Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585-595.
    Yi N, Xu S, Allison DB. 2003. Bayesian model choice and search strategies for mapping interacting quantitative trait Loci. Genetics 165:867-883.
    Zeng Z, Kao C, Basten C. 1999. Estimating the genetic architecture of quantitative traits. Genet Res 74:279-289.
    Zeng ZB. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972-10976.
    Zeng ZB. 1994. Precision mapping of quantitative trait loci. Genetics 136:1457-1468.
    Zhu J. 1989. Estimation of genetic variance components in the general mixed model. In: Department of Statistics. Raleigh, NC, USA: North Carolina State Univ. Raleigh, N. C.
    Zhu J, Weir BS. 1994. Analysis of cytoplasmic and maternal effects: I. a genetic model for diploid plant seeds and animals. Theor. Appl. Genet. 89:153-159.
    Zhu J, Weir BS. 1996. Mixed model approaches for diallel analysis based on a bio-model. Genet Res 68:233-240.
    Zou F, Gelfond JA, Airey DC, Lu L, Manly KF, Williams RW, Threadgill DW. 2005. Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations. Genetics 170:1299-1311.
    Zou YY, Yang J, Zhu J. 2006. A robust statistical procedure to discover expression biomarkers using microarray genomic expression data. J Zhejiang Univ Sci B 7:603-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700