硅提高水稻对稻瘟病抗性的生理与分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管已有大量研究报道证明,硅对植物健康生长和发育是有益的,特别是在增强植物抗病性方面具有重要作用,但硅的抗病作用机制一直不清楚。传统观念认为,硅的抗病机制是其“机械或物理屏障”作用。但最近十多年的一些研究则显示,硅可能参与了植物的生理代谢过程,激活了植物的防卫机制,对硅的物理屏障作用这一假说提出了质疑。本文采用水培试验,研究了不同方式硅处理对稻瘟病的抗病效果以及对水稻生长的影响;硅对多种生理生化抗病机制的调控;利用荧光定量PCR技术,在水稻与稻瘟菌互作过程中硅对与有关防卫基因的调控;利用cDNA芯片技术分析在感病和未感病条件下硅调控的水稻基因表达图谱。从生理生化和基因水平对硅的抗病机制进行了系统而深入的研究,得到结果如下:
     (1)不加硅-加硅处理(Si-Si+)的植株与一直加硅处理(Si+Si+)具有同样高的抗性,防治效果分别为67.0%和69.3%;加硅-不加硅处理(Si+Si-)的植株失去部分抗性,只有47.7%的防治效果。硅作为“机械屏障”作用在提高水稻对稻瘟病的抗性中仍有一定作用,但非“机械屏障”作用具有更为重要的作用。硅在正常(非胁迫)条件下对水稻生长促进作用明显,也能缓解因稻瘟病菌胁迫所产生的对水稻生长的危害。无论接种与否,施硅处理的地上部和根部的硅含量显著高于不施硅处理;水稻地上部的硅含量明显高于根部。
     (2)施硅处理在水稻感染稻瘟病的初期(24 h)有个快速而短暂的H2O2积累,同时抑制过氧化氢酶(CAT)活性的反应。在水稻感染稻瘟病的后期(48 h以后),施硅能显著提高CAT活性,在72 h达到峰值,显著高于不施硅处理;而施硅处理水稻叶片中H2O2含量保持较低水平。在水稻感染稻瘟病的初期(48 h以前),施硅处理中的丙二醛(MDA)含量和质膜透性(相对电导率)快速升高,显著高于不施硅处理;但48 h以后,MDA含量和相对电导率快速下降,从96 h以后开始明显低于不施硅处理。施硅使脂氧合酶(LOX)活性的峰值出现得更早更快,其强度也显著高于不施硅处理。这些结果表明,在稻瘟病菌感染的初期,硅通过激发活性氧的爆发,提高膜脂过氧化水平和质膜透性,诱导过敏性反应的发生而增强水稻对稻瘟病的抗性;在稻瘟病菌感染的后期,硅能缓解因病菌侵染而产生的氧化伤害。
     (3)施硅处理的过氧化物酶(POD)活性显著低于不施硅处理,过氧化物酶活性与水稻对抗稻瘟病的抗性之间没有联系,甚至成负相关。水稻感染稻瘟病后,施硅能显著提高多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)的活性以及总可溶性酚和木质素的含量。结果表明,硅能够调控与抗病有关的酚类物质代谢过程,参与植物防卫反应而增强水稻对稻瘟病的抗性。
     (4)施硅能使受稻瘟病菌侵染的水稻叶片中几丁质内切酶和外切酶活性更高,且保持更长时间。在稻瘟病菌感染的初期,β-1,3-葡聚糖酶活性增长缓慢,施硅和不施硅处理之间差异不显著;在感染的后期,施硅处理的β-1,3-葡聚糖酶活性显著低于不施硅处理。结果表明,硅能够通过提高几丁质酶活性来增强水稻对稻瘟病的抗性,但对β-1,3-葡聚糖酶没有调控作用。
     (5)感染稻瘟病菌后,无论施硅与否,PAL、CatA、Rcht2和Pr1a基因的相对表达量均上升;但在感病初期硅明显能更早更快提高这些基因的相对表达量,增长幅度也显著高于不施硅处理。施硅和接种稻瘟菌在感病初期对转录阻遏物OsCTBP-A基因有所抑制,但调控作用不明显。硅能更早更快激活转录因子OsBTF3基因的表达,相对表达量也显著高于不施硅处理。说明在稻瘟菌与水稻的互作过程中,硅积极参与对相关防卫基因的激活和调控,从而产生一系列生理生化抗病机制,这是硅抗稻瘟病的主要机制。
     (6)硅在正常(非胁迫)条件下能使36926个水稻基因中的1210个基因出现差异表达,其中126个基因表达上调,另外1084个基因表达下调。稻瘟菌接种12 h后,能诱导670个基因出现差异表达,其中346个基因表达上调,另外324个基因表达下调。在水稻感染稻瘟菌的情况下,硅使483个基因出现差异表达,其中27个基因表达上调,另外456个基因表达下调。这些差异表达的基因涉及到信号转导、抗病防御过程、转录调控、细胞生长与分裂、细胞内转运、细胞结构的组成、蛋白质合成、基础代谢和次级代谢以及能量利用等过程。cDNA芯片的结果表明,硅在正常(非胁迫)条件下对植物生长代谢具有明显作用,至少对于水稻这类单子叶植物是必需的;当植物受到病原物胁迫时,硅能调控植物本身产生更高效或更同步的防卫反应并减轻病原物的伤害。
     综上所说,硅对植物生长是非常重要和有益的,对水稻类单子叶植物也可能是必需的。硅能激活和调控植物的防卫基因,参与生理代谢活动,产生一系列的防御机制来阻止病原物的侵入和扩展。硅在抗病中的作用类似于植物诱导抗性的调节器,是主动过程,而不是仅仅限于“机械屏障”作用。
Silicon (Si) has been proven to be beneficial for healthy growth and development of many plant species and plays an important role in enhancing plant resistance against fungal pathogens, however, the mechanisms involved are still unclear. Traditionally, it is thought that silicon acts as a mechanical or physical barrier in response to fungal attack. However, there have been increasing bodies of evidence showing that silicon is associated with host defense responses and plays an active and physiological role in enhancing resistance of the host plant. A series of hydroponics experiments were performed in a controlled rice-Magnaporthe grisea pathosystem to study the effects of silicon on rice growth, disease development and regulation of induced resistance. The effect of silicon on regulating defense-related genes in the rice-M. grisea interaction was conducted using real-time quantitative PCR approach. Using a cDNA chip containing 60727 rice cDNAs representing 36926 unique genes, we performed a comprehensive analysis of the influence of Si on gene expression of rice inoculated with or without M. grisea. The comprehensive and systematic study of mechanisms of silicon–enhanced resistance to rice blast was conducted. The results are presented as follows:
     (1) Rice plants that were switched from Si- (without Si added) to Si+ (with Si added) nutrient solution and simultaneously inoculated with M. grisea exhibited the same high resistance as the plants treated continuously with silicon, with control efficiencies of 67.0 % and 69.3%, respectively. However, rice plants switched from Si+ to Si- nutrient solution lost partial resistance to blast, with control efficiency of 47.7% only. It seems to suggest that there are still some roles that silicon plays as a physical barrier in controlling rice blast though these roles are very limited and not a major mechanism for Si-enhanced resistance to rice blast. Application of silicon was beneficial for rice growth and alleviated damage resulting from infection by M. grisea. Regardless of inoculation with M. grisea, Si concentration of shoots or roots in rice plants amended with 1.7 mM Si was significantly higher than that of the non-Si-amended plants. The Si concentrations in all treatments were significantly higher in rice shoots than in rice roots.
     (2) Silicon induced a rapid and transient burst of H2O2 at 24 h after inoculation. Catalase (CAT) activity in leaves of Si+ plants was lower at 24 h after inoculation compared with Si- plants, then rapidly increased and reached a peak at 72 h after inoculation, significantly higher than in Si- plants. Compared with Si- plants, malondialdehyde (MDA) concentration and membrane permeability in Si+ plants were significantly higher at 48 h after inoculation but lower from 96 h and onward. Two peaks of lipoxygenase (LOX) activity in Si+ plants were observed at 12 and 48 h after inoculation, respectively, and were earlier than in Si- plants which occurred at 24 and 72 h, respectively. The maximum LOX activity was significantly higher in Si+ plants than in Si- plants. In the early stages of infection by M. grisea, silicon induced a rapid and transient burst of H2O2, and consequently resulted in membrane lipid peroxidation and membrane damage, which may be closely correlated with HR. Silicon alleviated the oxidative damage during later periods of the rice-M. grisea interaction.
     (3) Silicon application significantly increased activities of polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL), as well as contents of total soluble phenolics and lignin. However, leaf peroxidase (POD) activity was significantly lower in Si+ plants than in Si- plants after inoculation and was not related directly to blast resistance. The results demonstrate that silicon actively participates in metabolism of phenolics to accelerate accumulation of antimicrobial compounds.
     (4) Exochitinase and endochitinase activities were significantly higher in Si+ plants than in Si- plants and maintained longer. However, silicon application decreasedβ-1, 3-glucanase activity in rice leaves infected by M. grisea. The results show that silicon improved chitinase activities to enhance resistance to rice blast. However, the influence of silicon onβ-1, 3-glucanase activity was not observed.
     (5) Regardless of silicon applied, the gene expression levels of PAL, CatA, Rcht2 and Pr1a all increased after inoculation with M. grisea. In the early stages of infection, increased expression of these genes in Si+ plants occurred earlier and faster with the extent of increment being also significantly higher than in Si- plants. Compared with Si- plants, expression of OsBTF3 in Si+ plants occurred earlier and faster, and its expression level was also significantly higher than in Si- plants. The results show that Si activated and regulated some defense-related genes in response to blast attack in rice.
     (6) We identified 1210 genes which were differentially expressed in the Si-amended plants without inoculation (Si/CK), with 126 genes being up-regulated and 1084 genes being down-regulated . Among 670 differentially-expressed genes in rice plants inoculated with M.grisea (M/ CK), 346 genes were up-regulated and 324 genes were down-regulated . After inoculation with M.grisea, 483 genes in Si+ plants were differentially expressed, compared with the Si- plants (Si+M/ M), with up-regulation of 27 genes and down-regulation of 456 genes. These genes included stress-related transcription factors, and genes involved in signal transduction, the biosynthesis of stress hormones (SA, JA, ethylene), the metabolism of reactive oxygen species, the biosynthesis of antimicrobial compound, primary and/or secondary metabolism, defense response, photosynthesis, and energy pathways, etc. On the basis of analyzing expression profile of rice genes, it can be concluded that silicon can exhibit obvious impacts on growth and development of plants, especially in rice plants, which were not infected by pathogens, but can regulate natural resistance mechanisms of plant to produce more efficient and timely defense response, and consequently alleviate damage caused by pathogens in plants subjected to pathogens stress.
     In conclusion, silicon is very important and beneficial for plant growth, and may be essential for gramineous plant species such as rice. Silicon can activate and regulate defense-related genes of plant, participate in physiological metabolism and induce a series of defense mechanisms to impede the invasion and cloning of pathogens. Silicon, acting as a regulator of induced resistance, is active in response to pathogens. The Si-enhanced plant resistance to pathogens is not solely limited to a mechanical barrier as previously proposed.
引文
1. 陈信波,卢向阳,赵肃清,等.水稻持久抗瘟性生化鉴定的研究.湖南农业大学学报,1996,22 (6):524-527.
    2. 董继新,董海涛,李德葆,等,水稻抗稻瘟性研究进展,农业生物技术学报,2000,8(1):99-102.
    3. 杜良成, 王钧. 稻瘟菌诱导的水稻几丁酶、β-1,3-葡聚糖酶活性及分布. 植物生理学报, 1992, 18 (1) :29-36.
    4. 杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125.
    5. 高桥英一,三宅靖人.日本土壤肥料科学杂志.农业出版社、北京,1976,47:296-306.
    6. 葛秀春,宋凤鸣,郑重. 稻瘟菌侵染后水稻幼苗活性氧的产生与抗病性的关系[J].植物生理学报,2000,26(3):227-231.
    7. 葛秀春,宋凤鸣,郑重. 膜脂过氧化与水稻对稻瘟病抗性的关系. 浙江大学学报(农业与生命科学版) ,2000,26 (3) :254-258.
    8. 葛银林,李德葆.植物抗病性的诱导、机制、分子生物学研究进展. 中国生物防治,1995, 11 ( 3 ):134-141.
    9. 何电源.土壤和植物中的硅.土壤学进展,1980(5):1-11.
    10. 何新建,陈建权,张志刚,等.通过 cDNA 微阵列鉴定水稻(Oryza saliva L.)盐胁迫应答基因.中国科学(C 辑),2002,32 (6): 488-493.
    11. 贾显禄, 王振中, 王平. 水稻与稻瘟病菌非亲和性互作中重要防御酶活性变化规律研究. 植物病理学报,2002,32(3):206-213.
    12. 蒋选利,李振歧,唐振生.过氧化物酶与植物抗病性研究进展.西北农林科技大学学报, 2001, 29(6):124-129.
    13. 金敏忠,陶心兰.浙江省稻瘟病菌生理小种分布及其变化动态的研究. 浙江农业科学,1986,5:222-226.
    14. 李东祥,王进科.基因芯片与植物基因差异表达分析.植物研究,2002,22 ( 3 ) :310-313.
    15. 李洪连,王守正,王金生,等.黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病机制的研究[J].植物病理学报,1993,23(4):327-331.
    16. 李云锋,王振中,贾显禄. 稻瘟菌激发子 CSBⅠ诱导水稻防御性相关酶的活性变化.作物学报,2004a,30(6):613-617.
    17. 李云锋,王振中,贾显禄. 稻瘟菌糖蛋白激发子诱导的水稻叶片膜脂过氧化及过敏性反应.植物生理与分子生物学学报,2004b,30(2):147-152.
    18. 李云锋,王振中. 稻瘟菌 G P66 激发子诱导的水稻膜脂过氧化及其保护酶活性变化.植物病理学报,2005,35(1):43-48.
    19. 刘会宁,朱建强.葡萄白粉病与霜霉病抗性机理分析与探讨.东北农业大学学,2001,32(3) :303-309.
    20. 罗敏,朱友林. 植物抗病基因的克隆及其结构与功能. 遗传,2000,22(6):429-433.
    21. 马国华,王铨茂. 水稻品种过氧化物酶活性和木质素含量与抗稻瘟病菌的关系. 植物生理学,1992,28(4):264-267.
    22. 彭云良,陈国华,曾德初,等. 杂交稻稻瘟菌致病菌系的组成及其变化. 植物保护学报,1995,22(3):247-250.
    23. 秦引萍,彭友良.脂氧合酶的侵染诱导在植物抗病反应中的可能作用.农业生物技术学报,1995, 3(4):1-9.
    24. 饶志明,董海涛,庄杰云, 等. 水稻抗稻瘟病近等基因系的 cDNA 微阵列分析 遗传学报,2002,29 (10):887-893 .
    25. 饶志明,董海涛,庄杰云,等.水稻稻瘟病菌胁迫应 cDNA 片断的表达及定位.中国水稻科学,2003,17(2):95-99.
    26. 沈瑛,朱培良,袁筱萍,等. 中国稻瘟病菌的遗传多样性. 植物病理学报,1993,23(4):309-313.
    27. 宋凤鸣,郑重. 绿原酸和阿魏酸与棉花对枯萎病抗性的关系. 浙江农业大学学报. 1996a,22(3):236-240.
    28. 宋凤鸣,郑重,葛秀春.活性氧及膜脂过氧化在植物-病原菌互作中的作用.植物生理学通讯,1996b, 32(5):377-385.
    29. 王关林,方宏筠主编. 植物基因工程原理与技术. 北京:科学出版社,1998.
    30. 王建飞,何新建,张红生,等. 太湖流域粳稻地方品种黑壳子粳稻对稻瘟病抗性的遗传分析. 遗传学报,2002,29(9):803-807.
    31. 王金生.分子植物病理学,中国农业出版社,1998.
    32. 王钧,金巧玲.植物系统获得性抗性的信号转导.生命科学,1998,10 (1) :6-12.
    33. 王荔军,郭中满,李铁津. 生物矿化纳米结果材料与植物硅营养.化学进展.1999, 11(2):119- 128.
    34. 王彦才,徐润色. 水稻抗瘟性与过氧化物同工酶的初步研究.植物保护学报,1991,18(4):289- 292.
    35. 王义琴,张利明,李文彬,孙勇如.植物病原相关蛋白研究进展.生物工程进展,2000,20(5):36-38.
    36. 王颖,景耀.植物诱导抗病机理的研究进展.西北林学院学报,1997,12(3):52-57.
    37. 肖拴锁,王钧.水稻中超氧诱导与稻瘟菌抗性及苯丙氨酸解氨酶、几丁酶、β-1,3-葡聚糖酶活性诱导的关系. 中国水稻科学,1997,11(2):93-102.
    38. 许勇,王永健,葛秀春,等. 枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系. 果树科学,,2000,17 (2):123-127.
    39. 杨民和.水稻-稻瘟菌(Magnaporthe grisea)相互作用的细胞生物学研究.植物病理学报,2002,32(4):371-372.
    40. 杨雅杰,黄楚玉,吴炳芝.粉煤灰硅肥对水稻抗病效果试验.黑龙江农业科学,1993(2):49-51.
    41. 杨艳芳,梁永超,娄运生,孙万春. 硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系. 中国农业科学,2003,36(7):813- 817.
    42. 叶钟音, 刘经芬. 水稻对白叶枯病菌(Xanthomonas campestris pv. Oryzae)的抗性与过氧化物酶和过氧化物同工酶活性的关系. 南京农学院学报,1984,2:39- 46.
    43. 于军,胡松年,王俊,等.籼稻(Oryza Sativa L.ssp. indica)全基因组框架序列.科学通报,2001,46(23):1937-1941.
    44. 余晓明,季本仁. 过氧化物酶与水稻抗瘟性. 云南农业大学学报,1991,6(4):218-222.
    45. 袁可能.植物营养的土壤化学.科学出版社,北京,1983.
    46. 臧惠林.土壤有效硅含量变化的初步研究.土壤,1987,l9(3):123-126.
    47. 张薇,李天林,曹连莆.小麦抗白粉病与酶活性的关系. 石河子大学学报,1997,1(1):43-46.
    48. 章元寿主编.植物病理生理学.江苏:江苏科学技术出版社,1993.
    49. 赵利辉.交链孢菌激活蛋白激发水稻的应答基因与抗病性分析.[博士学位论文].北京:中国农业科学院研究生院,2006.
    50. 赵世杰,李德全.丙二醛的测定.现代植物生理学实验指南.北京:科学出版社;1999:305.
    51. 郑爱珍,任雪平.硅在水稻生理中的作用. 农业与技术,2004,24(1):50-52.
    52. 周建明,朱群,白永延.高等植物防卫反应的信号传导. 植物学通报,1999,16(3):228-237.
    53. 朱国峰,瞿礼嘉,顾红雅,等.植物抗病基因的分子生物学研究进展.植物学报,1997,39(6):561-569.
    54. 庄晓峰.稻瘟病菌诱导水稻特异表达 EST 数据库的建立及相关基因的鉴定.杭州:浙江大学,2003.
    55. 邹志燕,王振中. 茉莉酸诱导水稻幼苗对稻瘟病抗性作用研究. 植物病理学报,2006,36 (5):432- 438.
    56. Adachi K, Nelson G H, Peoples K A, et al. Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO. Current Genetics, 2002, 42(2): 123-127.
    57. Alonso E, de Carvalho Niebel F, Obregon P, et al. Differential in vitro DNA binding activity to a promoter element of the gnl β-1,3-glucanase gene in hypersensitively reacting tobacco plants. Plant Journal, 1995, 7(5): 309-320.
    58. Alvarez M E, Pennell R I, Meijer P I, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 1998, 92: 773-784.
    59. Andrea P, Tilman O, Friederike S A. Poplastic peroxidases and linginfication in needles of Norway spruce. Plant Physiology, 1994, 106: 53-60.
    60. Baker C J, Oriandi E W. Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 1995, 33, 299-321.
    61. Balhadere P V, Talbot N J. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13(9):1987-2004.
    62. Banno S, Kimura M, Tokai T, et al. Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiology Letters, 2003, 222(2): 221-227.
    63. Baron C, Zambryski P C. The plant response in pathogenesis, symbiosis and wounding: variations on a common theme? Annual Review of Genetic, 1995, 29: 107-129.
    64. Beatwick C S, Brown I R, Bennett M H, et al. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae PV. phaseolicola. Plant Cell, 1997, 9(2): 209-216.
    65. Beckerman J L, Ebbole D J. MPG1,a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Molecular Plant Microbe Interactions, 1996, 9(6): 450-456.
    66. Bélanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 2003, 93(4): 402-412.
    67. Bieza K, Lois R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology, 2002, 126:1105-1115.
    68. Blanchard A P, Keiser R J, Hood LE. Synthetic DNA arrays. Biosens Bioelectron, 1998, 20(1): 111-123.
    69. Blee E&Schuber F. Biosynthesis of cutin monomers: involvement of a Lipoxygenase/peroxygenase pathway. The Plant Journal, 1993, 4: 113-123.
    70. Bol J E and Linthorst H J M. Plant pathogenesis-related proteins induced by virus infection. Annual Review Phytopathology, 1990, 28: 113-138.
    71. Boller T, Gehri A, Mauch F and V?geli U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983, 57: 22-31.
    72. Bowen P, Menzies J G, Ehret D, Samuels L, et al. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 1992, 117: 906-912.
    73. Bowles D. Defense-related proteins in higher plants. Annual Review Biochemistry, 1990, 59: 873- 907.
    74. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248- 254.
    75. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98: 1222-1227.
    76. Carver T L W, Zeyen R J, Ahlstrand G G. The relation between insoluble silicon and success or failure of attempted penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiological Plant Pathology, 1987, 31: 133-148.
    77. Carver T L W,Zeyen R J, Bushnell W R, Robbins M P. Inhibition of phenylalanine ammonialyase and cinnamyl-alcohol dehydrogenase increases quantitative susceptibility of barley to powdery mildew (Erysiphe graminis DC). Physiological and Molecular Plant Pathology, 1994, 44: 261-272.
    78. Chen D H, Zeigler R S, Hei L, Nelson R J. Population structure of Pryicularia grisea at two screening sites in the Philippines. Phytopathology, 1995, 85(1): 1011-1020.
    79. Cherif M, Asselin A, and Belanger R R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 1994, 84: 236-242.
    80. Chérif M, Bélanger R R. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on longer English cucumber. Plant Disease, 1992, 76: 1008-1011.
    81. Chow T P, Felsman R A, Lovett M, et al. Isolation and DNA sequence of a gene encoding α- trichhosanthin atype 1 ribssome-inactivating protein. Journal of Biological Chemistry, 2000, 265: 8670-8674.
    82. Christensen J H, Bauw G, Welinder K G, et al. Purirication and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology, 1998, 118:125-135.
    83. Creelman R A and Mullet J E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of. Sciences of the United States of America, 1995, 92: 4114-119.
    84. Croft K P C, Voisey C R, Slusarento A J. Mechanisms of hypersensitive cell collapse: correlation of increased lipeoxygenase activity with membrane damage in leaves of phaseolus vulgaris inoculated with an avirulent race of pseudomonas syringae pv.syringae. Physiological and Molecular Plant Pathology, 1990, 36: 49-62.
    85. Croft K P C, Juttner F, Slusarenko A J. Volatile products of the lipoxygenase pathway evolved from phaseolus vulgaris (L.) inoculated with Pseudomonas syringae pv. phaseolicala. Plant Physiology, 1993, 101:13-24.
    86. Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell, 1996, 8: 1793-1807.
    87. Datnoff L E, Snyder G H. Comparison of silicon and benomyl alone and in combination for reducing blast incidence. Biological and Cultural Tests for Control of Plant Diseases, 1994, 9, 113.
    88. Datnoff L E, Snyder G H. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Disease, 1991, 75: 729-732
    89. Datnoff L E, Deren C W and Snyder G H. Silicon fertilization for disease management of rice in Florida. Crop Protection, 1997, 16: 525-531.
    90. Datnoff L E, Victoria-Correa F J, Seebold K W, Snyder G H. Silicon management of blast in upland and irrigated rice ecosystems. Pages 180-187 in: Advances in Rice Blast Research. D. Tharreau, M. H. Lebrun, N. J. Talbot, and J. L. Notteghem, Eds., Kluwer Academic Publishers, The Netherlands, 2000.
    91. Datnoff L E, Seebold K W and Victoria-Correa F J. Use of silicon for integrated disease management: reducing fungicide applications and enhancing host plant resistance. IN: Silicon in Agriculture, L. E. Datnoff, G. H. Snyder, and G. H. Korndorfer, Eds., Elsevier Science, The Netherlands.2001, Pgs. 171-184.
    92. Devlin W, Gustine D L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction . Plant Physiology, 1992, 100: 1189-1195.
    93. Dixon R A, Harrison M J, Lamb C J. Early events in the activation of plant defense responses. Annual Review of Phytopathology, 1994, 32: 479-501.
    94. Doke N, Ohashi Y. Involvement of O2?. generating systems in the induction of necrotic lesions ontobacco leaves infected with TMV. Physiological and Molecular Plant Pathology, 1988, 32:163- 175.
    95. Epstein E. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11-17.
    96. Epstein, E. Silicon in plants: Facts vs. concepts. IN: Silicon in Agriculture, L. E. Datnoff, G. H. Snyder, and G. H. Korndorfer, Eds., Elsevier Science, The Netherlands, 2001, Pgs.1-15.
    97. Farmer E E and Ryan C A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell, 1992b, 4:129-134.
    98. Farmer E E and Ryan C A. Octadecanoid-derived signals in plants. Trands Cell Biology, 1992a, 2: 236-240
    99. Fauteux F, Chain F, Belzile F, Menzies J G, Bélanger R R. The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 17554-17559.
    100. Fawe A, Abou-Zaid M, Menzies J G, Bélanger R R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 1998, 88: 396–401.
    101. Fawe A, Menzies J G, Cherif M and Bélanger R R. Silicon and disease resistance in dicotyledons. IN: Silicon in Agriculture, L. E. Datnoff, G. H. Snyder, and G. H. Korndorfer, Eds., The Netherlands: Elsevier Science, 2001, Pgs.159-169.
    102. Fodor S P A, Rava R P, Huang X C, et al. Multiplexed biochemical assays with biological chips. Nature, 1993, 364(6437): 555-556.
    103. Fodor S P A, Read J L,Pirung M C, et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251(4995): 767-773.
    104. Foyer C H, Noctor G. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 2005, 28: 1066-1071.
    105. Gardner H W and Hamberg M. Oxygenation of 3(Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean(Vicia faba L.). Journal of Biological Chemistry, 1993, 268: 6971-6977.
    106. Gardner H W. Biological roles and biochemistry of the lipoxygenase pathway. Horticultural Science, 1995, 30:197-205.
    107. Germar B. Some function of silicic acid in cereals with special reference to mildew (in German). Pflanzenemahr Dung Bodenk, 1934, 35:102-115.
    108. Goodman R N. The hypersensitive reaction in tobacco: a reflection of changes in host cell permeability. Phytopathology, 1994, 58: 872-75.
    109. Grant J J, Loake G J. Role of reactive oxygen intermediates and cognate redox signal in disease resistance. Plant Physiology, 2000, 124: 21-30.
    110. Grein S, Pyerin W. BTF3 is a potential new substrate of protein kinase CK2. Molecular and Cellular Biochemistry, 1999, 191: 121-128.
    111. Hamer J E, Talbot N J. Infection-related development in the rice blast fungus Magnaporthe grisea.Current Opinion in Microbiology, 1998, 1(6): 693-697.
    112. Hammond-Kosack K E, Jones J D. Resistance gene dependent plant defence responses. Plant Cell, 1996, 8:1773-1791.
    113. Haroni A , Keizer LCP. Metabolic profiling: pathways in drug discovery. Plant Cell, 2000, 12: 647-661.
    114. Heldin C H. Dimerization of cell surface receptors in singnal transduction. Ce11, 1995, 80:213- 223.
    115. Hiraga S, Ito H, Yanakawa H, et al. An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate methyl jasmonate, and ethephon. Molecular Plant-Microbe Interactions, 2000, 13(2): 210-216.
    116. Houot V, Etienne P, Petitot A S, et al. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. Journal of Experimental Botany, 2001, 52: 1721-1730.
    117. International Human Sequencing Consortium. Analysis and sequencing of the human genome. Nature, 2001, 409(6822): 860-921.
    118. Ishiguro K. Review of research in Japan, the roles of silicon in conferring resistance against rice blast. In: Silicon in Agriculture. Datnoff L E, Snyder G H and Korndbrfer G H eds. Amsterdam: Elsevier Science, 2001, 277-291.
    119. Ito S, Hayashi H. On the relationship of silica supply to rice blast. Journal of Sapporo Society Agriculture Science, 1931, 103: 460-461.
    120. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology, 1999, 57: 231-245.
    121. Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research, 2001, 29(4): E25.
    122. Jaleel C A, Manivannan P, Sankar B, et al. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies, 2007, 330, 674-683
    123. Dangl J, Holub E. La Dolce Vita: A molecular feast in plant pathogen interactions. Cell, 1997, 91:17-24.
    124. Jones J D G. Plant disease resistance genes: structure, function and evolution. Current Opinion in Biotechnology, 1996, 7:155-160.
    125. Jones L H P and Handreck K A. Silica in soils, plants and animals. Advances in Agronomy, 1967, 19:107-149.
    126. Jong J C, McCormack B G,Smirnoff N,and Talbot N J. Generation of enormous turgor by accumulation of molar concentrations of glycerol in a plant pathogenic fungus. Nature, 1997, 389: 244-245.
    127. Joosten M H A J, De Wit P J G M. Identification of Several Pathogenesis-Related Proteins in Tomato Leaves Inoculated with Cladosporium fulvum (syn.Fulvia fulva) as 1,3-β-Glucanases and Chitinases. Plant Physiology, 1989, 89: 945-951.
    128. Kanno M, Chalut C, Egly JM. Genomic structure of the putative BTF3 transcription factor. Gene, 1992, 117: 219-228.
    129. Kato T, Yamaguchi Y, Abe N, et al. Unsaturated hydroxy fatty acids, the self defensive substances in rice plant against rice blast disease. Chemistry Letter, 1984, 25: 409-412.
    130. Kawasaki S, Borchert C, Deyholas M, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13(4): 889-905.
    131. Keen N T. Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics, 1990, 24: 447-463.
    132. Keppler L D, Novacky A.. The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiological and Molecular Plant Pathology, 1987, 30: 233-245.
    133. Kim S G, Kim K W, Park E W, Choi D. Silicon–induced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 2002, 92: 1095-1103.
    134. Kiyosawa S. Pathogenic variations of Pyricularia oryzae and their and their use in genetic and breeding studies. Society for the Advancement Breeding Researches in Asia and Oceania, 1976, 8: 53-57.
    135. Kiyosawa S. Identification of blast-resistance genes in some rice varieties. Japan Journal of Breeding. 1978, 28(4): 287-296.
    136. Kiyosawa S. In Rice breeding. IRRI.1972, 203-225.
    137. Kiyosawa S. Studies on the inheritance of resistance of rice varieties to blast.3.Inheritance of resistance of a rice varieties, PiNo.l to the blast fungus. Japan Journal of Breeding.1966, 16:243-250.
    138. Kiyosawa S. The inheritance of resistance of the Zenith type varieties of rice to the blast fungus. Japan Journal of Breeding, 1967, 17(2): 99-107.
    139. Klaus Maleck, Kay Lawton. Plant strategies for resistance to pathogens. Current Opinion in Biotechnology, 1998, 9: 208-213.
    140. Kozaka T. Recent advance in studies of horizontal resistance for the blast disease of rice in Japan. In: Procedings, seminar on horizontal resistance to the blast disease of rice. CIAT, Cali,Colombia. 1975, pp.101-116.
    141. Kuc J. Protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Physiological Plant Pathology, 1975, 7:195-199.
    142. Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Plant Cell, 2002, 14: 2627-2641.
    143. Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annual Review of Physiological and Molecular Plant Pathology, 1997, 48: 251-275.
    144. Latterell F M. Phenotypic stability of pathogenic races of Pyricularia oryzea and its implications for breeding of blast resistance rice varieties. In the Horizontal Resistance to the Blast Disease of Rice. Centro International Agricultral Tropical(CIAT) Series CE-9, 1975, pp.199-234.
    145. Leung H, Borromeo E S, Bernardo M A et al. Genetic analysis of virulence in the rice blast fungus (Magnaporthe grisea). Phytopathology, 1988, 78:1227-1233.
    146. Levine A, Tennaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79: 583-593
    147. Lewin J, Reinain B E F. Silicon and plant growth. Annual Review of Plant Physiology, 1969, 20: 289-304
    148. Li Q, Chen F, Sun LX et. al. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 2006, 68: 51–60.
    149. Liang Y C, Hua H X, Zhu Y G et al. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 2006, 172: 63–72.
    150. Liang Y C, Sun W C, Si J, R?mheld V. Effect of foliar- and root-applied silicon on the enhancement of induced resistance in Cucumis sativus to powdery mildew. Plant Pathology, 2005a, 54: 678-685.
    151. Linthorst H J M, van Loon L C, van Rossum C M A, et al. Analysis of acidic and basic chitinases from tobacco and Petunia and Their Constitutive Expression in Transgenic Tobacco. Molecular Plant- Microbe Interaction, 1990, 3: 252-258.
    152. Lu G, Jantasuriyarat C, Zhou B, et al. An intergrated approach to medicago functional genomics. Theoretical and Applied Genetics, 2003, 11: 207-212.
    153. Ma J F, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon up take by rice. Plant Physiology, 2001a, 127: 1773-1780.
    154. Ma J F, Higashitani A, Sato H, Takeda K. Genotypic variation in silicon concentration of barley grain. Plant and Soil, 2003, 249: 383–387.
    155. Ma J F, Miyake Y, Takahashi E. Silicon as a beneficial element for crop plants. In: Datnoff, L., Snyder, G., Korndorfer, G. (Eds.), Silicon in Agriculture. Elsevier Science, New York, 2001b, pp.
    17-39,.
    156. Marcel A K, Jansen R I A E,Van Den Noort, et al. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiology, 2001, 126:1012-1023.
    157. Marshall A and Hodgson J. DNA chips: an array of possibilities. Natural Biotechnology, 1998, 16(1): 27-31.
    158. Marshner H. Mineral nutrition of higher plants.Oxford-IBH, 1986, 269-342.
    159. Menzies J G, Ehret D L, Glass A D M, et al. Effect of soluble silicon on the parasitic fitness of spherotheca fuliginea on cucumis sativus. Phytopathology, 1991, 81:84-88.
    160. Menzies J G, Ehret D L, Glass A L, et al. The influence of silicon on cytological interactions between spherotheca fuliginea and cucumis sativus. Physiological and Molecular Plant Pathology, 1991, 39: 403-414.
    161. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7: 405–410.
    162. Moseyko N, Zhu T, Chang H S, et al. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiology, 2002, 130: 720-728.
    163. Nadimpalli R, Yalpani N, Johal GS, et al. Prohibitins, stomation, and plant disease response genes compose a protein superfamily that contrils cell proliferation, ion channel regulation, and death. Journal of Biological Chemistry, 2000, 275(38): 29579-29586.
    164. Negishi T, Nakanishi H, Yazaki J, et al. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Journal of Plant, 2002, 30(1): 83-94.
    165. Nurnberger T, Nennstiel D, Hahlbrock K, et al. Covalent Cross-Linking of the Phytophthora megasperma Oligopeptide Elicitor to its Receptor in Parsley Membranes. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 2338-2342.
    166. Ohta H, Shida K, Peng Y L, et al. Lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiology, 1991, 97: 94-98.
    167. Ohta H, Shida K, Peng Y-L, et al. cDNA cloning of rice lipoxygenase 1-2 and characterization using enzyime expressed from the cDNA in Escherichia coli. European Journal of Biochemistry, 1993, 206: 331-336.
    168. Okuda A,Takahashi E. The Mineral Nutrition of the Rice Plant. The Johns Hopkins Press, Baltimore, Md, 1964:123-146.
    169. Osuna-Canizales F J, De Datta S K, Bonman J M. Nitrogen form and silicon nutrition effects on resistance to blast disease of rice. Plant and Soil, 1991, 135: 223-231.
    170. Ou S H and Ayad M R. Pathogenic races of Pyricularia oryzae originating from single lasions and monoconidial cultures. Phytopathology, 1968, 58: 179-182.
    171. Ou S H. Pathogen Variability and Host Resistance in Rice Blast Disease. Annual Review of Phytopathology, 1980, 18: 167-187.
    172. Ou S H. Rice Diseases. 2nd ed. New, England: Commonwealth Agricultural Bureau. 1985, pp. 109-201
    173. Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal Mo1ecular Evolution, 2000, 50: 203-213.
    174. Peng YL, Shirano Y, Ohta H, et al. A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. Journal of Biological Chemistry, 1994, 5: 3755-3761.
    175. Punja Z K, Zhang Y Y. Plant chitinase and their roles in resistance to fungal diseases. Journal of Nematology, 1993, 25(4): 526-540.
    176. Qin G Z, Tian S P. Enhancement of Biocontrol Activity of Cryptococcus laurentii by Silicon and the Possible Mechanisms Involved. Phytopathology, 2005, 95(1): 69-75.
    177. Quamaruzzaman M and Ou S H. Monthly changes of pathogenic races of Pyricularia oryzae in a blast nusery. Phytopathology, 1970(60): 1266-1269.
    178. Rabindra B, Gowda S S, Gowda K T P, Rajappa H K. Blast disease as influenced by silicon in some rice varieties. Current Research, 1981, 10: 82-83.
    179. Ramsay R. DNA chips: state-of-the-art. Natural Biotechnology, 1998, 16(1):40-44.
    180. Raven J A. The transport and function of silicon in plants. Biological Review Cambridge Philosophical Society, 1983, 58: 179-207.
    181. Reilly T P, Bourdi M, Brady J N, et al. Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Biochemical and Biophysical Research Communications, 2001, 282(1): 321-328.
    182. Rémus-Borel W, Menzies J G, Bélanger R R. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 2005, 66: 108-115.
    183. Reymond P. DNA microarray and plant defense. Plant Physiology and Biochemistry, 2001, 39: 313- 324.
    184. Richard A, Dixon and Nancy L, Paiva. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995, 7: 1085-1097.
    185. Richard and Grisebach H. Enzymic controls in the biosynthesis of lignin and flavonoid. Annual Review of Plant Physiology, 1979, 30:105-130.
    186. Ricker K E and Bostock R M. Eicosanoids in the phytophthora infestans-potato interaction: lipoxygenase metabolism of arachidonic acid and biological activities of selected lipoxygenase products. Physiological and Molecular Plant Pathology, 1994, 44:65-80.
    187. Rodrigues F A, Francisco X R V, Datnoff L E. Effect of rice growth stage and silicon on sheath blight development. Phytopathology Journal, 2003, 93(3): 256-261.
    188. Rodrigues F A, Jurick W M, Datnoff L E, et al. Silicon influences cytological and molecular events in compatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005, 66: 144-159.
    189. Rodrigues F A, McNally D J, Datnoff L E, et al. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 2004, 94: 177- 183.
    190. Rogers K R, Albert F,Anderson A J. Lipid peroxidation is a consequence of elicitor activity. Plant Physiology, 1988, 86: 547-553.
    191. Romeis T, Tang S, Hammond-Kosack K, et al. Early signalling events in the Avr9/Cf-9-dependent plant defence response. Molecular Plant Pathology , 2000, 1:38-41.
    192. Rusterucci C, Montillet J L. Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. Journal of Bio1ogical Chemistry, 1999, 274(51): 36446-36455.
    193. Samuels A L, Glass A D M, Ehret D L, et al. The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Annals of Botany, 1993, 72: 433-440.
    194. Samuels A L, Glass A D M, Menzies J G, et al. Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea. Physiological and Molecular Plant Pathology, 1994,44:237-242.
    195. Samuels A L, Glass A D M. Mobility and deposition of silicon in cucumber plants. Plant, Cell and Environment, 1991, 14: 485-492.
    196. Schena M, Shalon D, Davis R, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270 (5235): 467-470.
    197. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proceeding of the national academy of sciences of the united states of America, 1996, 93 (20): 10614- 10619.
    198. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal- induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 2002, 53, 1351-1365.
    199. Seebold K W, Datnoff L E, Correa-Victoria F J, et al. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease, 2000, 84: 871-876.
    200. Seebold K W, Datnoff L E, Correa-Victoria F J, et al. Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Disease, 2004, 88: 253-258.
    201. Sekizawa Y, Hamyama T, Kano H, et al. Dependence on ethylene of the induction of poroxidase and lipoxygenase activity in rice leaf infected with blast fungus. Agricultural and Bio1ogical Chemistry, 1990, 54: 471-478.
    202. Seo S, Okamoto M, Iwai T, et al. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Ce11, 2000, 12(6): 917- 932.
    203. Shinji Kawasaki, Chris Borchert, Michael Deyholos, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13: 889-905.
    204. Shrestha C L, O?a I, Muthukrishnan S, Mew T W. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. European Journal of Plant Pathology, 2008, 120: 69–77.
    205. Siedow J N. Plant lipoxygenase structure and function. Annual Review of Plant Physiological and Plant Molecular Biology, 1991, 42: 145-188.
    206. Southern E M. Arrays of complementary oligonucleotides for analyzing the hybridization behaviour of nuclei acids. Nucleic Acid Research, 1994, 22(8):1368-1373.
    207. Stafford H A. The metabolism of arom atic. Annual Review of Plant Physiology, 1974, 25:459-486.
    208. Stotz H U, Koch T, Biedermann A, et al. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta, 2002, 214: 648- 652.
    209. Tharreau D, Lebrun M H, Talbot N J, Notteghem J L. New tools for resistance gene characterization in rice. In: Advances in Rice Blast Research. Proceedings of the International Rice Blast Conference, Montpellier, France, 1998, Kluwer Academic Publishers, Wageningen, The Netherlands, 2000: 54-62.
    210. The Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature, 2000, 408: 796-815.
    211. The C. Elegans sequencing consortium. Genome sequence of the nematode C. Elegans:A platfom for Investigating Biology. Science, 1998, 282: 2012-2018.
    212. Tiburzy R, Reisener H J. Resistance of wheat to Puccinia graminis f . sp. tritici: association of the hypersensitive reaction with the cellular accumulation of lignin-like material and callose. Physiological and Molecular Plant Pathology, 1990, 36: 109-120.
    213. Ton J, Van Pelt J A, Van Loon L C, Pieterse C M. Differential effectiveness of salicylate- dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Molecular Plant Microbe Interactions, 2002, 15: 27-34.
    214. Urban M, Bhargava T, Hamer J E. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. Embo Journal, 1999, 18(3): 512-521.
    215. Van Camp W, Van Montagu M, Inze D. H2O2 and NO: redox signals in disease resistance. Trends in Plant Science, 1998, 3: 330-334.
    216. Veerasingham S J, Sellers K W, Raizada M K, et al. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. Progress in Biophysics & Molecular Biology, 2004, 84:107-123
    217. Walbot V. Genes, Genomes, Genomics. What Can Plant Biologists Expect from the 1998 National Science Foundation Plant Genome Research Program? Plant Physiology, 1999, 119: 1151-1156.
    218. Watanabe S, Shimoi E, Ohkama N et al. Identification of Several Rice Genes Regulated by Si Nutrition. Soil Science and Plant Nutrition, 2004, 50: 1273–1276.
    219. Watson MA, Perry A, Budhjara V, et al. Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Research, 2001,61 (5): 1825-1829.
    220. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 1997, 322: 681-692.
    221. Wolski E A, Maldonado S, Daleo G R, Andreu A B. A novel a-1, 3-glucan elicits plant defense responses in potato and induces protection against Rhizoctonia solani AG-3 and Fusarium solani f. sp. Eumartii. Physiological and Molecular Plant Pathology, 2006, 69: 93–103
    222. Wu S H, Ramonell K, Gollub J, Somerville S. Plant gene expression profiling with DNA microarray. Plant Physiology and Biochemistry, 2001, 39: 917-926.
    223. Xu J R. Urban M, James A, et al. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular Plant-Microbe Interaction, 1997, 10:187-194.
    224. Yan B, Dai Q J, Liu X Z, et al. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant and Soil, 1996, 179: 261–268.
    225. Yoshida S, Ohnishi Y, Kitagishi K. Chemical forms, mobility, and deposition of silicon in the rice plant. Japanese Journal of Soil Science and Plant Nutrition, 1962, 8: 107-111.
    226. Zarlenga D S, Higgins J. PCR as a diagnostic and quantitative technique in veterinary parasitology. Vet Parasitol, 2001, 101: 215-230.
    227. Zeigler R S, Leong S A,Teng P S. Rice blast disease. IRRI.CAB International. 1994, pp.lll-134.
    228. Zhu T. Global analysis of gene expression using GeneChip microarrays. Current Opinion in Plant Biology, 2003, 6: 418-425.
    229. Zhu Y J, Qiu X H, Moore P H, et al. Systemic acquired resistance induced by BTH in papaya. Physiological and Molecular Plant Pathology, 2003, 63: 237–248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700