小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原菌互作过程中,植物会产生一系列的防卫反应来抵御病原菌的入侵与扩展。在这些防卫反应中,寄主最快的抗病反应就是在短时间内产生大量的活性氧物质,即氧化迸发(oxidative burst)。虽然过量的活性氧积累会对植物细胞造成很强的毒害,但其在植物的抗病反应中却起着重要作用。自1983年Doke首次发表了有关非亲和病原物可以引起植物组织内产生O2-的文章以来,有关活性氧生理功能、产生机制、化学变化和清除系统等方面已进行了大量的研究。然而,小麦与条锈菌互作中活性氧迸发的特征及在抗病性表达中的作用方面的研究,目前国内外尚无报道。因此,本研究以小麦品种水源11与条锈菌毒性和非毒性小种(CY31和CY23)组成的亲和与非亲和互作体系为研究对象,对不同互作体系中的组织学特征和细胞学特征进行了研究,并利用NBT、DAB组织化学染色法来明确不同组合间O2-和H2O2产生的时间变化特征,利用电镜细胞化学标记技术在亚细胞水平上对O2-、H2O2和过氧化物酶的空间分布进行了定位,并检测了不同组合间活性氧迸发与相关酶系的变化关系及活性氧清除剂处理对寄主细胞过敏性坏死发生的影响,以明确活性氧迸发在小麦抗条锈性中的作用,从而为进一步揭示小麦抗条锈性机制奠定基础。通过研究取得了以下主要结果:
     1.利用荧光显微技术、微分干涉技术和电镜技术揭示了小麦品种水源11抗锈性表达过程中的组织学和超微结构特征。结果表明,亲和与非亲和组合中,条锈菌扩展及寄主细胞对条锈菌的侵染,在组织学和超微结构上均表现出明显差异。组织学水平上,非亲和组合表现为菌丝生长受抑,菌落发育延迟或败育,吸器母细胞和吸器数目明显减少;同时,侵染点的寄主细胞表现出典型的过敏性坏死症状。在亚细胞水平上,非亲和组合中病菌胞间菌丝、吸器母细胞、吸器也发生了一系列异常变化。其中原生质凝集、液泡程度增加、原生质逐渐消解;胞间菌丝、吸器母细胞细胞壁不规则增厚;细胞器排列紊乱,菌丝逐渐解体;吸器母细胞细胞质最终空泡化后丧失其生理功能。吸器外质膜皱褶,吸器外间质加宽,吸器体最终畸形坏死。同时,寄主细胞产生一系列显著的结构防卫反应:形成胞壁沉积物、乳突、吸器鞘等结构,以及发生坏死,使病菌的发育及扩展显著受抑。
     2.利用氮蓝四唑(nitroblue tetrazolium, NBT)和二氨基联苯胺(3,3-diaminobenzidine, DAB)组织化学染色法研究了小麦-条锈菌互作过程中O2-和H2O2产生的时间变化特征和在组织间的定位。非亲和组合中,O2-在接种后12 h左右为产生的高发期,而H2O2产生的高发期大约在接种后12~24 h之间。亲和组合中,绝大多数侵染位点互作早期难以检测到明显的NBT、DAB染色。此外,在侵入前期,两种条锈菌生理小种(CY23和CY31)均可诱导保卫细胞中H2O2的积累。接种后48 h内,O2-和H2O2基本上是在与条锈菌初生吸器母细胞相接触的叶肉细胞中产生;随着时间点的推移,O2-也可以在侵染点处坏死寄主细胞周围的叶肉细胞中产生,而H2O2在坏死寄主叶肉细胞及周围叶肉细胞中均可以检测到。Evans Blue染色后发现,寄主细胞过敏性坏死反应发生的时间大约在接种后16~20 h,这一时间要晚于O2-和H2O2开始产生的时间。试验表明,O2-和H2O2的产生和积累与寄主细胞过敏性坏死有着密切关系,在过敏性坏死反应的发生中可能起着重要作用。
     3.采用生化测定的方法对活性氧迸发与相关酶活的变化关系进行了研究。非亲和组合中O2-和H2O2的含量要高于亲和组合的;SOD在亲和组合中的活性总体上要高于非亲和组合的;接种24 h后,CAT在两种组合中的活性均高于对照,在接种后36 h和48 h时,亲和组合中的CAT活性高于非亲和组合的,而在接种60 h后又开始低于非亲和组合的;POD活性在接种24 h后均明显升高,但亲和组合中POD活性增幅大;MDA在非亲和组合中于接种后72 h含量明显上升。结果表明,亲和与非亲和组合中活性氧含量及相关酶活变化都存在明显差异,这些差异与小麦抗锈性的表达可能有密切联系。
     4.采用细胞化学方法对O2-、H2O2和过氧化物酶的分布进行了亚细胞水平的定位,基本明确了它们的产生部位。O2-在与菌丝或坏死寄主细胞相邻的叶肉细胞的液泡膜、质膜和细胞壁上均有分布,并且以分布在液泡膜上的情况居多;而H2O2多分布在与菌丝或坏死寄主细胞相邻的叶肉细胞的细胞壁和质膜上,少数细胞的液泡膜上及寄主细胞间隙也可有H2O2的分布;部分病原菌细胞壁上也显示有活性氧的分布;过氧化物酶在寄主细胞中存在的主要部位为细胞壁和细胞质膜上。试验表明,O2-、H2O2和过氧化物酶在亲和与非亲和组合中的分布位置基本相似,但不同组合间活性氧及过氧化物酶含量有着明显差异。
     5.通过使用活性氧清除剂SOD和CAT处理小麦叶片后发现,SOD处理的叶片中,H2O2的含量要大于CAT处理的叶片,且出现过敏性坏死的侵染点的比例明显高于对照;而CAT可在一定程度上降低出现过敏性坏死的侵染点的比例,但不能完全阻止过敏性坏死的发生。说明在小麦与条锈菌互作的体系中,活性氧的产生在过敏性坏死反应的发生中起着重要作用。
During the plant-pathogen interactions, host plants can induce some characteristic defense reactions to confine the infection and spread of pathogen. During the development of defense responses, pathogen recognition by plant cells leads to the rapid production of high levels of reactive oxygen species (ROS), which is oxidative burst. The superfluous accumulation of ROS is harmful for the growth of plant cells, but it plays an important role in plant defense reactions. Doke first reported generation of superoxide radical can be induced in plant tissue in response to inoculation by an avirulent isolate of pathogen. Since then, many investigations have been accomplished to elucidate the role of ROS about physiology function, production mechanism, chemical change and scavenging system. However, only few data are available on generation and function of ROS during disease resistance expression in the interaction between wheat and wheat stripe rust. In this work, histological and cytological characteristics of pathogen development were analyzed in the incompatible and compatible interactions between wheat and Puccinia striiformis f.sp. tritici; The temporal characteristics of O2- and H2O2 generation were studied histochemically using nitroblue tetrazolium (NBT) and 3,3-diaminobenzidine (DAB) in different interactions; The subcellular localization of O2- accumulation, H2O2 accumulation and peroxidase activity were studied using cytochemical technique; And to detect the relationship of the oxygen burst and the changes of protective enzymes and occurrence of hypersensitive response after using scavengers of ROS. The results were obtained as follows:
     1. The histology and cytology of resistant mechanism of wheat cultivar Suwon11 to Puccinia striiformis were examined by means of fluorescent microscopy,differential interference contrast microscopy and electron microscopy. The result indicated that there are striking differences in histology and ultrastructure were detected about pathogen development and host cells infected by stripe rust fungus in the incompatible and compatible interactions.The main histological features in the incompatible interaction included inhibition of hyphal growth, delay of hyphal branching and colony formation, decrease of formation of haustorial mother cells and haustoria, at the same time, occurrence of host cell necrosis. A series of abnormal cytological changes also occurred in intercellular hyphae, haustorial mother cells and haustoria in incompatible interaction. The cytoplasm became more electron-dense and vacuoles increased in number and in size which digested the protoplasm. The cell wall of intercellular hypha and haustorial mother cell were thichened irregularly. The organelles were distributed disorderly, then hypha disintegrated gradually. The cytoplasm were degraded into central vacuole gradually and haustorial mother cells lost their physiological function. The extrahaustorial membrane was wrinkled, the extrahaustorial matrix was widened,at the end, the haustorial body were malformed and necrosed. At the same time, the structural defense reactions such as formation of cell wall apposition, papilla, encasement of haustorium and necrosis of host cell were essentially more pronounced in th incompatible interaction than in compatible one. All constitute essential factors of resistance.
     2. During wheat and wheat stripe rust fungi interactions, the temporal characteristics and histological localization of O2- and H2O2 generation were studied histochemically using NBT and DAB, respectively. In the incompatible interaction, O2- generation was significant increased by 12h after inoculation (hai), About H2O2 accumulation, the rapid increase occurred from12 hai to 24 hai. Compared to the incompatible interaction, in the compatible interaction only a very small portion of infection sites showed O2- and H2O2 accumulation in the early infection stage. Moreover, at the pre-penetration stage, both stripe rust races (CY23 and CY31) induced H2O2 accumulation in guard cells. In addition, within 48 h after inoculation, the accumulation of O2- and H2O2 were detected in the mesophyll cells in contact with initial haustorial mother cells. At advanced incubation times, O2- accumulation also could be seen in the mesophyll cells around necrotic host cells at infection sites, and that H2O2 accumulation could be observed both in necrotic mesophyll cells and the surrounding living mesophyll cells. Evane Blue staining showed that, in the incompatible interaction, the host mesophyll cells around penetrated sites took up hypersensitive response (HR) about 16 hai to 20 hai, which was later than the production of O2- and H2O2. The result suggested that, the generation and accumulation of O2- and H2O2 are closely associated with the HR of host cells, and which may play an important role in the occurrence of HR.
     3. The relationship of the oxygen burst and the changes of protective enzymes were analyzed use biochemical measuration. In the incompatible interaction, content of O2- and H2O2 were higher than in compatible interaction;The SOD activities in compatible interaction usually were higher than that in incompatible ones; At 24 hai, the CAT activities in both interactions were all higher than that in control, and CAT activities in compatible interaction were higher than that in incompatible ones at 36 h and 48 h, but after 60 hai, CAT activities in compatible interaction were lower than that in compatible ones again; The POD acivities increased obviously in both interactions at 24 hai, but POD activities increased more rapidly in compatible ones; The MDA content was increased significantly at 72 hai in incompatible interaction. It might be concluded that there are striking differences about ROS content and relative enzymes activities in the incompatible and compatible interactions, which may have close relationship with resistance expression of wheat against stripe rust fungus.
     4. The subcellular localization of O2- accumulation, H2O2 accumulation and peroxidase activity were studied and demonstrated by cytochemistry. O2- accumulation could be seen in the tonoplast, the plasma membrane and the cell wall of mesophyll cells adjacent to hyphae and necrotic host cells, and main distribution of O2- production was the tonoplast of host cells; The accunulation of H2O2 was observed mainly in the cell wall and the plasma membrane of mesophyll cells adjacent to hyphae and necrotic host cells, as well as in the tonoplast of some host cells and in the intercellular space; Accumulation of H2O2 was also observed in the cell wall of hyphae; peroxidase was mainly located in the cell wall and the plasma membrane of host cells. The result indicated that the subcellular localization of O2- accumulation, H2O2 accumulation and peroxidase activity in compatible interaction are similar to incompatible one, but there are striking differences about the content of ROS accumulation and peroxidase activity in different interactions.
     5. Treatment of wheat leaves with SOD and CAT which were scavengers of ROS showed that content of H2O2 in wheat leaves with SOD treatment was higher than in leaves with CAT treatment, and the percentage of infection sites of mesophyll cells with HR in wheat leaves with SOD treatment was higher than in control; CAT could decrease the percentage of infection sites of mesophyll cells with necrotic cells in certain degree, but could not avoid the occurrence of HR. The results suggest that the generation of ROS play an important role in the occurrence of HR.
引文
[1] Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 251-275.
    [2] 郭泽建, 李德葆. 活性氧与植物抗病性[J]. 植物学报, 2000, 42(9): 881-891.
    [3] Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. J Exp Bot, 2002, 53: 1237–1247.
    [4] Fry S C. Cross-linking of matrix polymers in the growing cell walls of the angiosperms[J]. Annu Rev Plant Physiol, 1986, 37: 165-186.
    [5] Vianello A, Macri F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells[J]. J Bioenerg Biomembr, 1991, 23: 409-423.
    [6] Elstner E F. Mechanisms of oxygen activation in different compartments of plant cells[A]. In: Active Oxygen/Oxidative Stress in Plant Metabolism, edited by Pelland EJ and Steffen KL. American Society of Plant Physiologists, Rockville, MD. 1991, pp. 13-25.
    [7] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol, 2004, 55: 373-399.
    [8] Lindqvist T, Kenne L, Lindeke B. On the chemistry of the reaction between N-acetylcysteine and 4-[(4-ethoxyphenyl)imino]-2,5-cyclohexadien-l-one, a 4-ethoxyanailine metabolite formed during peroxidase reactions[J]. Chem Res Toxicol, 1991, 4: 489-496.
    [9] del R?o L A, Corpas F J, Sandalio L M, et al. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes[J]. Journal of Experimental Botany, 2002, 53: 1255-1272.
    [10] Apostol I, Heinstin P F, Low P S. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: Role in defense andsignal transduction[J]. Plant Physiol, 1989, 90: 109-116.
    [11] Vera-Estrella R, Blumward E, Higgins V J. Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells: evidence for the involvement of active oxygen species[J]. Plant Physiol, 1992, 99: 1208-1215.
    [12] Schwacke R, Hager A. Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity[J]. Planta Medica, 1992, 187: 135-141.
    [13] Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components[J]. Physiol Phant Pathol, 1983, 23: 345-357.
    [14] Mddhy M C. Active oxygen species in plant defense against pathogens[J]. Plant Physi, 1994, 105: 467-473.
    [15] Segal A W, Abo A. The biochemical basis of the NADPH oxidase of phagocytes[J]. Trends Biochem Sci, 1993, 18: 43-47.
    [16] Babior B M, El Benna J, Chanock S J, et al. The NADPH oxidase of leukocytes: The respiratory burst oxidase. Scandalios J. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. NewYork: Cold Spring Harbor Laboratory Press, 1997. 737-783.
    [17] Vignais P V. The superoxide-generating NADPH oxiftase: structural aspects and activation mechanism[J]. Cell Mol Life Sci, 2002, 59: 1428-1459.
    [18] Dwyer S C, Legendre L, Low P S, et al. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins[J]. Biochimica et Biophysica Acta, 2002, 1289: 231-237.
    [19] Xing T, Higgins V J, Blumwald E. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells[J]. Plant Cell, 1997, 9: 249-259.
    [20] 蔡以滢, 陈珈. 植物防御反应中活性氧的产生和作用[J]. 植物学通报, 1999, 16(2): 107-112.
    [21] Levine A, Tenhaken R, Dixon R A, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive response[J]. Cell, 1994, 79: 583-593.
    [22] Guo Z-J, Lamb C, Dixon R A. Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors[J]. Plant Physiol, 1998, 118: 1487-1494.
    [23] Harding S A, Oh S-H, Roberts D M. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species[J]. EMBO J, 1997, 16: 1137-1144.
    [24] Torres M A, Onouchi H, Hamada S, et al. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox)[J]. Plant J, 1998, 14: 365-370.
    [25] Bolwell G P, Davies D R, Gerrish C, et al. Comparative biochemistry of the oxidative burst producedby rose and French bean cells reveals two distinct mechanisms[J]. Plant Physiol, 1998, 116: 1379-1385.
    [26] Allan A C, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells[J]. Plant Cell, 1997, 9: 1559-1572.
    [27] Kawano T, Sahashi N, Takahashi K, et al. Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction[J]. Plant Cell Physiol, 1998, 39: 721-730.
    [28] Baker C J, Orlandi E W. Active oxygen in plant pathogenesis[J]. Annu. Rev. Phytopathol, 1995, 33: 299-321.
    [29] Heintzen C, Fischer R, Melzer S,et al. Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant Sinapis alba. L[J]. Plant Physiology, 1994, 106: 905-915.
    [30] Zhang Z G, Collinge D B, Thordal-Christensen H. Germin-like oxalate oxidase,a H2O2 producing enzyme, accumulates in barley attached by the powdery mildew fungus[J]. Plant J, 1995, 8: 139-145.
    [31] Hurkman W J, Tanaka C K. Germin gene expression is induced in wheat leaves by powdery mildew infection[J]. Plant Physiol, 1996, 111: 735-739.
    [32] Berna A, Beernier F. Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous protein[J]. Plant Molecular Biology, 1997, 33: 417-429.
    [33] Federico R, Angelini R. Occurrence of diamine oxidase in the apoplast of pea epicotyls[J]. Planta, 1986, 167: 300-302.
    [34] Angelini R, Manes F, Federico R. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems[J]. Planta, 1990, 182: 89-96.
    [35] Yahraus T, Chandra S, Legendre L, et al. Evedence for a mechanically induced oxidative burst[J]. Plant Physiology, 1995, 109: 1259-1266.
    [36] Wohlgemuth H, Mittelstrass K, Kschieschan S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone[J]. Plant Cell Environ, 2002, 25: 717-726.
    [37] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406: 731-734.
    [38] Zhang X, Zhang L, Dong F, et al. Hydrogen peroxide involves abscisic acid-induced stomatal movement in Vicia faba L[J]. Plant Physiol, 2001, 126: 1438-1448.
    [39] Joo J H, Bae Y S, Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism[J]. Plant Physiol, 2001, 126: 1055-1060.
    [40] Schopfer P, Liszkay A, Bechtold M, et al. Evidence that hydroxyl radicals mediate auxin-induced extension growth [J]. Planta, 2002, 214: 821-828.
    [41] Fath A, Bethke P C, Jones R L. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in bareley aleurone[J]. Plant Physiology, 2001, 126: 156-166.
    [42] Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid[J]. Science, 1993, 262: 1883-1886.
    [43] Lin C C, Kao C H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedliings[J]. Plant Scence, 2001, 160: 323-329.
    [44] Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42: 1265-1273.
    [45] D'Haeze W, Rycke R D, Mathis R, et al. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume[J]. Proc. Natl. Acad. Sci. USA, 2003, 100(20): 11789-11794.
    [46] Bais H P, Vepachedu R, Gilroy S,et al. Allelopathy and exotic plant invasion:From molecules and genes to species interactions[J]. Science, 2003, 301: 1377-1380.
    [47] 李红玉, 何晨阳, 王金生. 活性氧对植物防卫信号传导的作用探讨[J]. 农业生物技术学报, 1996, 4(2): 191-196.
    [48] Sekizawa Y, Haga M, Hirabayashi E, et al. Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substances[J]. Agricultural and Biological Chemistry, 1987, 51(3): 763-770.
    [49] Aver'yanov A A, Lapikova V P. Fungitoxicity determined by active forms of oxygen in excretion of rice leaves [J]. Soviet Plant Physiol, 1988, 35: 873-881.
    [50] Anderson A J, Rogers K, Tepper C S, et al. Timing of molecular events following elicitor treatment of plant cells [J]. Physiol Mo1 Plant Pathol, 1991, 38: 1-13.
    [51] Ellis J S, Keenan P J, Rathmell W G, et al. Inhibition of phytoalexin accumulation in potato tuber discs by superoxide scavengers[J]. Phytochemistry, 1993, 34(3): 649-655.
    [52] Adam A, Farkas T, Somlyai G, et al. Consequence of O2- generation during a bacterially induced hypersensitive reaction in tobacco deterioration of membrane lipids[J]. Physiol Mol Plnt Pathol, 1989, 34: 13-16.
    [53] 马忠华, 叶钟音. 植物-病原物互作过程中的活性氧[J]. 生命科学, 1999, 11(Suppl): 107-110.
    [54] Keppler L D, Baker C J, Atkinson M M. Active oxygen production during a bacteria induced hypersensitive reaction in tobacco suspension cells [J]. Phytopathology, 1989, 79: 974-978.
    [55] Baker C J, Orlandi E W, Mock N M. Harpin, an elicitor of the hypensensitive response in tobacco caused by Erwinia amylovoria, elicits active oxygen production in suspension cells [J]. Plant Physiol, 1993, 102: 1341-1344.
    [56] Doke N, Ohashi Y. Involvement of O2- generation system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus[J]. Physiol Mol Plant Pathol, 1988, 32: 163-175.
    [57] El-Moshaty F I B, Pike S M, Noveky A J. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ring spot virus or southern bean mosaic virus[J]. Physiol Mol Plant Pathol, 1993, 43: 109-119.
    [58] Zacheo G, Zacheo T B. Involvement of superoxide dismutase and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack[J]. Physiol Mol Plant Pathol, 1988, 32: 313-322.
    [59] Kim K K, Fravel D R, Papavizas G C. Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dabliae[J]. Phytopathol, 1988, 78(4): 488-492.
    [60] Bradley D J, Kjelborn P, Lamb C J. Elicitor and wound-induce oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response[J]. Cell, 1992, 70: 21-30.
    [61] Brady J D, Fry S C. Formation of di-isodityrosine and loss of isodityrosine in the cell walls of tomato cell-suspension cultures treated with fungal elicitors or H2O2[J]. Plant Physiol, 1997, 115: 87-92.
    [62] Sheng J, D’Ovidio R, Mehdy M C. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding[J]. Plant J, 1991, 3: 345-354.
    [63] 王利国, 李玲. 活性氧中间体和 NO 在植物抗病中的作用[J]. 植物学通报, 2003, 20(3): 354-362.
    [64] 张骁, 董发才, 宋纯鹏. 植物细胞的氧化猝发和 H2O2 的信号转导[J]. 植物生理学通讯, 2000, 36(4): 376-381.
    [65] 邱金龙, 金巧铃, 王钧. 活性氧与植物抗病反应[J]. 植物生理学通讯, 1998, 34(1): 56-61.
    [66] Devlin W S, Gustine D L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction[J]. Plant Physiol, 1992, 100: 1189-1195.
    [67] Rogers K R, Albert F, Anderson A. Lipid peroxidation is a consequence of elicitor activity[J]. Plant Physiol, 1988, 86: 547-553.
    [68] 林久生, 王根轩. 活性氧与植物细胞编程性死亡[J]. 植物生理学通讯, 2001, 37(6): 551-554.
    [69] Hückelhoven R, Kogel K H. Tissue-specific superoxide generation at interaction sites in resistant and susceptible nearisogenic barley lines attacked by the powdery mildew fungus(Erysiphe graminis fsp hordei) [J]. Mol Plant Microbe Interact, 1998, 11: 292-300.
    [70] Hückelhoven R, Fodor J, Preis C, et al. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation [J]. Plant Physiol, 1999, 119: 1251-1260.
    [71] Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science, 1996, 273: 1853-1856.
    [72] Glazener J A, Orlandi E W, Baker J. The active oxygen response of cell suspensions to incompatiblebacteria is not sufficient to cause hypersensitive cell death[J]. Plant Physiol, 1996, 110: 759-763.
    [73] Piedras P, Hammond-Kosack K E, Harrison K, et al. Rapid, Cf-9- and Avr9-dependent production of active oxygen species in tobacco suspension cultures[J]. Molecular Plant Microbe Interactions, 1998, 11(11): 1155-1166.
    [74] Shirasu K, Nakajima H, Rajasekhar V K, et al. Salicylic acid potentiation of an agonist-dependent gain control amplifying pathogen signals in the activation of defense mechanisms[J]. Plant Cell, 1997, 9: 261-270.
    [75] Pinto M C, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells[J]. Plant Physiol, 2002, 130(2): 323-333.
    [76] Delledonne M, Zeier J. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistane response [J]. PNAS, 2001, 98: 13454-13459.
    [77] Lander H M, Sehajpal P K, Novogrodsky A. Nitricoxide signaling: a possible role for G-proteins[J]. J Immunol, 1993, 151(12): 7182-7187.
    [78] Halliwell B, Gutteridge J M C. Role of free radicals and catalytic metal ions in human disease: an overview[J]. Methods Enzymol, 1990, 186: 1-85.
    [79] Kvaratskhelia M, George S J, Thorneley RN. Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase[J]. J Biol Chem, 1997, 272: 20998-21001.
    [80] Mur L A J, Naylor G, Warner S A J, et al. Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack[J]. Plant J, 1996, 9: 559-571.
    [81] Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco[J]. Plant Physiol, 1995, 108: 1673-1678.
    [82] Draper J. Salicylate, superoxide synthesis and cell suicide in plant defence[J]. Trends Plant Sci, 1997, 2: 162-165.
    [83] Orozco-Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves bywounding and systemin via the octadecanoid pathway[J]. Proc Natl Acad Sci USA, 1999, 96: 6553-6557.
    [84] Legendre L, Reuter S, Heinstein PF, et al. Characterization of the oligogalacturonide induced oxidative burst in cultured soybean (Glycine max) cells[J]. Plant Physiol, 1993, 102: 233-240.
    [85] 孙大业, 郭艳林, 马文耕. 细胞信号转导(第二版)[M]. 北京:科学出版社,1998: 245.
    [86] Alvarez M E, Pennell R I, Meijer P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92: 773-784.
    [87] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings[J]. Plant Physiol, 1998, 118: 1455-1461.
    [88] Van Camp W, Van Montagu M, Inze D. H2O2 and NO: redox signals in disease resistance[J]. Trends Plant Sci, 1998, 3: 330-334.
    [89] 董汉松.植物抗病防卫基因表达调控与诱导抗性传导机制[J]. 植物病理学报, 1996, 26(4):289-293.
    [90] Levine A, Pennell R I, Alvarez M E, et al. Calcium-mediatedapoptosis inaplanthype rsensitive disease resistance response[J]. Current Biology, 1996, 6: 427-437.
    [91] Tenhaken R, Levine A, Brisson L F, et al. Function of the oxidative burst in hypersensitive diseaseresistance [J]. Proceedings of the National Acadeny of Sciences, 1995, 92: 4158-416.
    [92] Green R, Fluhr R. UV-B-induced PR-1 accumulation is mediated by active oxygen species[J]. Plant Cell, 1995, 7: 203-212.
    [93] Desikan R, Reynolds A, Hancock J T, et al. Harpin andhydrogen peroxide both initiate programmedcell deathbuthavedifferential effectsongene expressionin Arabidopsis suspension cultures[J]. Biochemical Journal, 1998, 330: 115-120.
    [94] Etienne P, Petitot A S, Houot V, et al. Inductionof tcI 7, a gene encoding a β subunit of proteasome, in tobacco plants treated with elicitin, salicylic acid or hydrogen peroxide[J]. FEBS Letters, 2000, 466: 213-218.
    [95] Susana R, Alejandra R C, Matthew S, et al. CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence[J]. The EMBO Journal, 2004, 23(10): 2156-2165.
    [96] 王钧. 真核生物的信号传导[J]. 生命科学, 1994, 6(5): 34-49.
    [97] Stone J M, Walker J C. Plant Protein Kinase Families and Signal Transduction[J]. Plant Physiol, 1995, 108: 451-457.
    [98] 贾显禄. 植物抗病反应激发子、抑制子、受体及信号传递[D]. 华南农业大学博士后论文,1999.
    [99] Legendre L, Heinstein P F, Low P S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cell[J]. J Biol Chem, 1992, 267: 20140-20147.
    [100] Ma H, Yanofsky N F, Ituang H E M. Isolation and sequence analysis of TGAI cDNAS encoding a tomato G protein a subunit[J]. Gene (AMST), 1991, 107: 189-195.
    [101] Melin P M, Sommarin M, Sandelius A S. Identitification of Ca2+ stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes[J]. FEBS Lett, 1987, 223: 87-95.
    [102] Legendre L, Yueh Y U, Crain R, et al. Phospholipase C activation during elicitation of the oxidative burst in caltured plant cells[J]. J Biol Chem, 1993, 268: 24559-24563.
    [103] 刘曼西, Kolattukudy P E. 病原激发子对蕃茄阴离子过氧化物酶表达与反应性氧迸发的诱导[J]. 植物生理学报, 1997, 23(3): 220-226.
    [104] Atkinson M M, Keppier L D, Orhindi E W, et al. Involvememt of plasma membrane Ca2+ influx in bacterial induction of the K+/ H+ and hypersensitive responses in tobacco[J]. 1990, 92: 215-221.
    [105] Schwacke R, Hager A. Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity[J]. Planta Medica, 1992, 187: 135-141.
    [106] Tavernier E, Wendehenne D, Blein J P, et al. Involvement of free4 calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells[J]. Plant Physiol, 1995, 109: 1025-1031.
    [107] Jabs T, Tschope M, Colling C,et al. Elicitor-stimulated ion fluxes and·O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley[J]. Proc Natl Acad Sci USA, 1997, 94: 4800-4805.
    [108] Felix G, Grosskopf D G, Regenass M, et al. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells[J]. Proc Natl Acad Sci USA, 1991, 88: 8831-8834.
    [109] Dietrich A, Mayer J E, Hahlbrock K. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures[J]. J Biol Chem, 1990, 265: 6360-6368.
    [110] Grab D, Ferger M, Ebel J. An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor challenged cells[J]. Planta, 1989, 179: 340-348.
    [111] Viard M P, Martin F, Pugin A, et al. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein[J]. Plant Physiol, 1994, 104: 1245-1249.
    [112] 杜秀敏, 殷文璇, 赵彦修等. 植物中活性氧的产生及清除机制[J]. 植物工程学报, 2001, 17(2): 121-125.
    [113] Bowler C,Van Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Plant Mol Biol, 1992, 43:83-116.
    [114] Asada K. Production and action of active oxygen in photosyn-thetic tissue, CRC Press. Boca Raton F L, 1994, pp.77-104.
    [115] Van Camp W, Willekens H, Bower C, et al. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage[J]. -Bio/Technology, 1994, 12: 165-168.
    [116] Van Camp W, Capian K, Wan Montagu M et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J]. Plant Physiol, 1996, 112: 1703-171.
    [117] 曾永三, 王振中. 豇豆与锈菌互作中的活性氧代谢研究[J]. 植物病理学报, 2004, 34(2): 146-153.
    [118] 葛秀春, 宋凤鸣, 郑重. 稻瘟菌侵染后水稻幼苗活性氧的产生与抗病性的关系[J]. 植物生理学报, 2000, 26(3): 227-231.
    [119] Moreau R A, Osman S F. The properties of reducing agents released by treatment of Solanum tuberosum with elicitors from Phytophthora infestans[J]. Physiol. Mol. Plant.Pathol, 1989, 35: 1-10.
    [120] 董汉松. 植物诱导抗性原理和研究[M]. 北京:科学出版社,1995.
    [121] Willekens H, Langebartels C, Tire C, et al. Differential expression of catalase genes in Micotiana plumbaginif olia[J]. Proc. Natl. Acad. Sic USA, 1994, 91: 10450-10454.
    [122] Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants[J]. EMBO J, 1997, 16: 4806-4816.
    [123] 宋凤鸣, 郑重, 葛秀春. 活性氧及膜脂过氧化在植物-病原物互作中的作用[J]. 植物生理学通讯, 1996, 32(5): 377-385.
    [124] Pnueli L, Hongjian L, Mittler R. Growth suppression, abnormal guard cell response, and augmented induction of heat shock protein in cytosolic ascrobate peroxidase (Apx1)-deficient Arabidopsis plants[J]. Plant J, 2003, 34: 187-203.
    [125] Mittler R, Vanderauwera S, Gollery M, et al. The reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9: 490-498.
    [126] Arthur J R. The glutathione peroxidases[J]. Cellularand Molecular Life Sciences, 2000, 57: 1825-1835.
    [127] 苗雨晨, 白玲, 苗琛等. 植物谷胱甘肽过氧化物酶研究进展[J]. 植物学通报, 2005, 22(3): 350-356.
    [128] Doulis A G, Hausladen A, Mondy B, et al. Seasonal changes in antioxidants of red spruce (Picea rubens Sarg.) at two sites in the eastern United States[J]. New Phytol, 1993, 123: 365-374.
    [129] 刘家忠, 龚明. 植物抗氧化系统研究进展[J]. 云南师范大学学报, 1999, 19(6): 1-11.
    [130] Foyer C. Ascorbic acid. In: Antioxidants in Higher Plants[M]. R. G. Alscher and J. L. Hess(eds)CRC Press, Boca Raton, 1993, 31-58.
    [131] Smirnoff N. Antioxidant systems and plant response to the environment. In: Environment And Plant Metabolism[M]. BIOS Scientific Publishers, Oxford, U K. 1995, 217-243.
    [132] Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133: 21-25.
    [133] Asada K. Ascorbate peroxidase-hydrogen peroxide-scavenging enzyme in plants[J]. Physiol Plant, 1992, 85: 235-241.
    [134] 郝福顺. 植物质膜 NADPH 氧化酶参与 ABA 和镍离子诱导的活性氧积累[D]. 中国农业大学博士学位论文,2005.
    [135] Smith I K, Kendall A C. Keys A J, et al. The regulation of the biosynthesis of glutathione in leaves of barly (Hordeum vulgare L.)[J]. Plant Sci., 1985, 41: 11-17.
    [136] Yamasaki H, Heshiki R, Ikehara N, et al. Leaf-goldening induced by high light in Ficus microcarpa L f [J]. a tropical fig J Plant Res, 1995, 108: 171-180.
    [137] Conklin P L, Williams E H, Last R. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant[J]. Proc Natl Acad Sci USA, 1996, 93: 9970-9974.
    [138] Yamasaki H, Uefuji H, Sakihama Y et al. Bleaching of the red anthocyanin induced by superoxide radial[J]. Arch Biochem Biophys, 1996, 332: 183-186.
    [139] Castelluccio C, Paganga G, Melikian N, et al. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants[J]. FEBS Lett, 1995, 368: 188-192.
    [140] Shen B, Richard G, Hans J, et al. Mannitol protects against oxidation by hydroxyl radicals[J]. Plant Physiol, 1997, 115: 527-532.
    [141] Burton G W, Ingold K U. β-carotene: an unsual type of lipid antioxidant[J]. Science, 1984, 224: 569-573.
    [142] 赵洪璋,王金陵,孙济中主编. 作物育种学[M]. 北京:农业出版社,1980.
    [143] 李振岐. 李振岐院士论文选集[M]. 西安:西北农林科技大学出版社, 1999.
    [144] 万安民. 小麦条锈病的发生状况和研究现状[J]. 世界农业, 2000, (5): 39-40.
    [145] Boshoff W H P, Pretorius Z A, van Niekerk B. D. Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa[J]. Plant Dis, 2002, 86: 485-492.
    [146] Chen X M, Moore M, Milus E A, et al. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000[J]. Plant Dis, 2000, 86: 39-46.
    [147] 李振岐. 我国小麦品种抗条锈性丧失原因及其控制策略[J]. 大自然探索, 1998, 17 (66): 21-25.
    [148] 万安民, 赵中华, 吴立人. 2002 年我国小麦条锈病发生回顾[J]. 植物保护, 2003, 29(2): 5-8.
    [149] Wan A M, Chen X M, He Z H. Wheat stripe rust in China[J]. Australian Journal of Agricultural Research, 2007, 58, 605–619.
    [150] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. Tritici) on wheat[J]. Can J Plant Pathol, 2005, 27(3): 314-337.
    [151] 李振岐, 刘汉文. 陕、甘、青小麦条锈病发生发展规律之初步研究[J]. 西北农学院学报, 1956, (4): 1-18.
    [152] Zadoks J C. Yellow rust on wheat studies of epidemiology and physiologic specialization[J]. Neth J Plant Pathol, 1961, 67: 69-256.
    [153] 曾士迈. 小麦条锈病远程传播的定量分析[J]. 植病学报, 1988, 18(4): 219-223.
    [154] Beresford R M. Stripe rust (Puccinia striiformis), a new disease of wheat in New Zealand[J]. Cer. Rusts Bull, 1982, 10: 35-41.
    [155] Stubbs R W, Roelfs A P, Bushnell W R. The cereal rusts, Diseases, distribution, epidemiology, and control of Stripe rust[M]. Orlando, FL, USA, Academic Press, 1985, 2: 61-101.
    [156] 刘仪主编. 小麦条锈菌与寄主互作关系研究进展[M]. 植物病害研究与防治, 1998.
    [157] 康振生, 李振歧, 刘松杰. 洛夫林 10 抗条锈性与过氧化物酶活性关系初探[J]. 西北农林科技大学学报, 1987, 15(1): 19-23.
    [158] 蒋选利, 李振岐, 康振生. 小麦与条锈菌互作中过氧化物酶的细胞化学研究[J]. 西北植物学报, 2002, 22(3): 516-520.
    [159] 邢更妹, 李杉, 崔凯荣等. 抗锈小麦新品系与感病品种甘麦 8 号的水杨酸含量和相关酶类活性的变化[J]. 作物学报, 2002, 28(3): 355-358.
    [160] 张彬. 小麦抗病基因同源序列分析及条锈菌诱导的防御酶活性研究[D]. 四川农业大学, 2006.
    [161] 杨随庄,尚勋,曹世勤,叶春雷,王化俊。条锈菌侵染后小麦体细胞无性系几种酶活性的变[J]. 麦类作物学报, 2007, 27(4): 667-670.
    [162] Autrique J E. RFLP mapping of genes associated with different agronomic triaits and disease resistance in wheat [J]. Abstract of international Plaant Genome Ⅲ, 1995, 8.
    [163] 刘仲齐. 三个抗锈基因 Lr37/Sr38/Yr17 分子标记的筛选与改良[J]. 西南农业学报,1999,12(增刊):91-96.
    [164] Chen X M, Line R F and Leung H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis[J]. Phytopathology, 1993, 83: 1489-1497.
    [165] Shan W X, Chen S Y, Kang Z S, et al. Genetic diversity in Puccinia striiformis Westend. f. sp. Tritici revealed by pathogen genome-specific repetitive sequence[J]. Can J Bot, 1998, 76: 587-595.
    [166] 刘红彦. 小麦抗条锈基因分子标记的建立[D]. 西北农林科技大学, 1999.
    [167] Peng J H, Fahima T, R?der M S, et al. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative cross over interference on chromosome 1B[J]. Theory on Application of Genetics, 1999, 98: 862-872.
    [168] Peng J H, Fahima T, R?der M S, et al. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides[J]. Genetica, 2000, 109: 199-210.
    [169] 牛永春, 刘红彦, 吴立人等. 小麦品种“Lee”中抗条锈病基因的 PAPD 标记[J]. 高技术通讯, 1998, 12: 11-13.
    [170] Smith P H, Koebner R M D, Boyd L A, et al. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro[J]. Theoretical and Applied Genetics, 2002, 104(8): 1278-1282.
    [171] Justesen A F, Ridout C J, Hovm?ller M S. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers[J]. Plant Pathol. (London), 2002, 51: 13-23.
    [172] Markell S G, Milus E A, Chen X M. Genetic diversity of Puccinia striiformis f. sp. tritici in the United States. In Proceedings of the 11th International Cereal Rusts and Powdery Mildews Conference. 22–27 August 2004, John Innes Centre, Norwich, UK.
    [173] Ward H M. On the Relations between Host and Parasite in the Bromes and their Brown Rust,Puccinia dispersa (Erikss.) [J]. Ann Bot, 1902,16: 233-316.
    [174] Stakman E C. Relation between Puccinia graminis and plants highly resistant to its attack[J]. Journal of Agricultural Research, 1915, 4: 193-200.
    [175] 刘问林, 曾士迈. 小麦条锈菌(Puccinia striiformis)在几个慢锈品种叶组织中的扩展[J]. 植物病理学报, 1985, 15(8): 129-135.
    [176] 井金学, 陆和平, 商鸿生等. 小麦条锈侵染高温抗病品种组织病理学研究[J]. 西北农业大学学报, 2000, 28 (03): 22-25.
    [177] 康振生, 王瑶, 黄丽丽等. 小麦品种对条锈病低反应型抗性的组织学和超微结构研究[J]. 中国农业科学, 2003, 36(9): 1026-1031.
    [178] Mares D J. Microscopic study of the development of yellow rust (Puccinia striiformis) in a wheat cultivar showing adult plant resistance[J]. Physiological Plant Pathology 1979, 15: 289-296.
    [179] Nikes R E. Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings[J]. Phytopathology, 1983, 73: 60-64.
    [180] Ennifer M, Zacharias A. P, Bruno M. M, et al. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat[J]. Molecular Plant Pathology, 2008, 9: 137-145.
    [181] 李振歧主编. 中国小麦锈病[M]. 北京:中国农业出版社,2000.
    [182] 陈晔. 微分干涉相衬显微术及其应用[J]. 南京林业大学学报, 1992, 16(2): 69-73.
    [183] Zhang Lin, Dickinson Matt. Fluorescence from rust fungi: a simple and effective method to monitor the dynamics of fungal growth in planta[J]. Physiological and Molecular Plant Pathology, 2001, 59: 137-141.
    [184] Hilu H M. Host-pathogen relationships of puccinia sorghi in nearly isogenic resistant and susceptible seedlings corn[J]. Phytopathology, 1965, 55: 563-569.
    [185] Cartwright D W, Rusell G E. Development of puccinia striiformis in a susceptible winter wheat variety[J]. Trans Br Mycol, 1981, 76(2): 197-204.
    [186] 王瑶. 小麦对条锈病低反应型抗性的组织学和细胞学研究[D]. 西北农业大学硕士学位论文,1996.
    [187] 康振生. 植物病原菌超微结构[M]. 中国科学技术出版社,1995.
    [188] Mims C W, Richardson E A. Ultrastructure of Urediniospore Development in Coleosporium ipomoeae as Revealed by High-Pressure Freezing Followed by Freeze Substitution[J]. International Journal of Plant Sciences, 2005, 166: 219-225.
    [189] Mims C W, Richardson E A, Holt B F, et al. Ultrastructure of the host-pathogen interface in Arabidopsis thaliana leaves infected by the downy mildew Hyaloperonospora parasitica[J]. Can J Bot, 2004, 82(7): 1001-1008.
    [190] Kang Z, Rohringer R, Chong Jand Haber S. Microwave fixation of rust-infected wheat leaves. Preservation of fine structure and detection of cell surface antigens, lectin-, and sugar-binding sites[J]. Protoplasm, 1991, 162: 27-37.
    [191] Silva M. C., Nicole M., Rijo L, et al. Cytochemical Aspects of the Plant Rust Fungus Interface during the Compatible Interaction Coffea arabica (cv. Caturra) Hemileiavastatrix (race III)[J]. International Journal of Plant Sciences, 1999, 160 (1): 79-91.
    [192] Rohringer R, Chong J., Gillespie R, et al. Gold-conjugated arabinogalactan-protein and other lectinsas ultrastructural probes for the wheat/stem rust complex[J]. Histochemistry and Cell Biology, 1989, 91(5): 383-393.
    [193] Boehm E W A, Wenstrom J C, McLaughlin D J, et al. An ultrastructural pachytene karyotype for Puccinia graminis f. sp. tritici[J]. Can J Bot, 1992, 70: 401-413.
    [194] 康振生, 黄丽丽, H. Buchenauer. 小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位[J]. 植物病理学报, 2004, 34(5): 419-424.
    [195] Woods A M, Gay J L. Evidence for a neckband delimiting structural and physiological regions of the host plasma membrane associated with haustoria of Albugo candida[J]. Physiological Plant Pathology, 1983, 23:78-88.
    [196] Woods A M, Gay J L. The interface between haustoria of Puccinia poarum cmonokaryon and Tussilag farfarh[J]. Physiol.Molecul.Plant Pathology, 1987, 30: 167-185.
    [197] Mendgen K. Ultrastructural demonstration of different peroxidase activities during the bean rust infection process[J]. Physiol. Plant pathol, 1975, 6: 275-282.
    [198] Kang Z, Lili Huang and H. Buchenauer. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis[J]. Journal of Plant Diseases and Protection, 2002, 109(1): 25-37.
    [199] Kang Z, Buchenauer H. Immunocytochemical localization of β-1,3-glucanase and chitinase in Fusarium culmorum-infected wheat spikes[J]. Physiological and Molecular Plant Pathology, 2002, 60: 141-153.
    [200] Kang Z, Lili Huang, H. Buchenauer. Cytochemistry of cell wall component alternations in wheat roots infected by Gaeumannomyces graminis var. tritici[J]. J of Plant Diseases and Protection, 2000, 107 (4): 337-351.
    [201] Zakaria A, Baka M, Dorothy M L. Ultrastructure and lectin-gold cytochemistry of the interaction between the rust fungus Melampsora euphorbiae and its host, Euphorbia peplus[J]. Mycol Res, 1998, 102(11): 1387-1398.
    [202] Klaus B T, Barbara B M, Paul T. Immunogold localization of an extracellular β-1,3-glucanase of the ergot fungus Claviceps purpurea during infection of rye[J]. Mycol Res, 1999, 103(9): 1103-1118.
    [203] Rohringer R, Chong J, Gillespie R, et al. Gold conjugated ara-binogalactan protein and other lectins as ultrastructural probes for the wheat stem rust complex[J]. Histochemistry, 1989, 91:383-393.
    [204] Sock J, Rohringer R, Kang Z. Extracellular β-1,3-glucanases in stem rust-affected and abiotically stressed wheat leaves[J]. Plant Physiol, 1990, 94: 1376-1389.
    [205] Chong J, Harder D E., Rohringer R. Cytochemical studies on Puccinia graminis f.sp tritici in a compatible wheat hos I. Walls of intercellular hyphal cells and haustorium mother cells[J]. Canadian Journal of Botany, 1985, 63: 1713-1724.
    [206] Chong J, Harder D E., Rohringer R. Cytochemical studies on Puccinia graminis f.sp tritici in a compatible wheat host II. Haustorial mother cells at the host penetration site,haustorial walls, and the extra haustorial matrix[J]. Can J Bot, 1986, 64: 2561-2575.
    [207] Ebrahim-Nesabat F, Rohringer R, Heitefuss R. Ultrastructural and histochemical studies on mildew of barley, IV Characterisation of papillae in fifth leaves exhibiting adult plant resistance[J]. J Phytopathology, 1986, 117: 289-300.
    [208] 康振生, 李振岐, 商鸿生. 小麦条锈菌与寄主交界面的超微结构和细胞化学[J]. 西北农业大学学报, 1993, 21(增刊 2): 1-5.
    [209] Iwano M, Che F S, Goto K, et al. Electron microscopic analysis of the H2O2 accumulation preceding hypersensitive cell death induced by an incompatible strain of Pseudomonas avenae in cultured rice cells[J]. Molecular Plant Pathology, 2002, 3(1): 1-8.
    [210] Bestwick C S, Brown I, Bennett M H R, et al. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola[J]. Plant Cell, 1997, 9: 209-221.
    [211] Bestwick C S, Brown I R, Mansfield J W. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reastion in lettuce [J]. Plant Physiol, 1998, 118: 1067-1078.
    [212] Romero-Puertas M C, Rodriguez-Serrano M, Corpas F J, et al. Cadmium induced subcellular accumulation of O2– and H2O2 in pea leaves[J]. Plant Cell Environ, 2004, 27: 1122-1134.
    [213] 陈耀文, 林珏龙, 赖效莹等. 激光扫描共聚焦显微镜系统及其在细胞生物学中的应用[J]. 1998, 7(2): 131-134.
    [214] 许险峰, 徐锡金, 霍霞. 共聚焦激光扫描显微镜技术[J]. 激光生物学报, 2003, 12(2): 156-159.
    [215] 周丽华,黄光文. 激光扫描共聚焦显微镜在植物学中的应用[J]. 激光生物学报, 2005, 14(1): 76-79.
    [216] 闫炀. 激光扫描共聚焦显微术在生物医学中的研究[J]. 生命的化学, 2003, 23(3): 233-235.
    [217] 杨海伟, 霍霞. 共聚焦激光扫描显微镜在发育生物学中的应用[J]. 激光生物学报,2003,12(6):463-466.
    [218] 朱珊珊, 黄志江. 激光扫描共聚焦显微镜在生命科学研究中的应用[J].《国外医学》麻醉学与复苏分册, 2005, 26(2): 118-119.
    [219] 霍霞, 徐锡金, 陈耀文. 激光扫描共聚焦显微镜荧光探针的选择和应用[J]. 激光生物学报, 1999, 8(2): 152-156.
    [220] Elison B. Blancaflor, Simon Gilroy. Plant cell biology in the new millennium: new tools and new insights[J]. American Journal of Botany, 2000, 87: 1547-1560.
    [221] Wasteneys G O, Willingale-Theune J, Menzel D. Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls[J]. Journal of Microscopy, 1997, 188(1): 51-61.
    [222] 赵华,梁婉琪,杨永华. 等绿色荧光蛋白及其在植物分子生物学研究中的应用[J]. 植物生理学通讯,2003,39 (2): 171-178.
    [223] 唐孝青, 李斌, 伍小兵等. 绿色荧光蛋白及其应用的研究进展[J]. 陕西农业科学, 2007, 1: 123-124.
    [224] 王晓丽, 邵卫星, 单虎. 绿色荧光蛋白研究进展[J]. 动物医学进展, 2008, 29 (1): 56-59.
    [225] Lorang J M, Tuori R P, Martinez J P, et al. Green Fluorescent Protein Is Lighting Up Fungal Biology[J]. Applied and Environmental Microbiology, 2001, 67(5): 1987-1994.
    [226] 康振生, 黄丽丽, 李振岐. 小麦对条锈菌入侵反应的超微结构研究[J]. 西北农业学报, 1993, 2(3): 25-28.
    [227] 康振生. 小麦条锈菌及小麦秆锈菌超微结构和细胞化学的研究[D]. 西北农业大学博士学位论文, 1990.
    [228] Chong J, Harder D E. Ultrastructure of haustorium development in Puccinia coronata avenae: some host responses[J]. Phytopathology, 1982, 72: 1527-1533.
    [229] Rubiales D, Niks R E. Low appressorium formation by rust fungi in Hordeum chilense[J]. Phytopathology, 1992, 82: 1007-1012.
    [230] Harder D E. Developmental ultrastructure of hyphae and spores. In“The cerealrust”. Edtied by William R.; Bushnell W R.; Allen P R Academic Press, New Y0rk, 1984, pp.333-373.
    [231] Kastner B, Tenhaken R, Kauss H. Chitinase in cucumber hypocotyIs is induced by germinating fungal spores and by fungal elicitor in synergism with inducers of acquired resistance[J]. Plant Journal, 1998, 13(4): 447-454.
    [232] Littlefield L J, Heath M C. Infection of the susceptible host. In “Ultrastructure of rust fungi”. Academic Press, New York, 1979.
    [233] Harder D E,Rohringer R,Samborski D J,et al. Electron microscopy of susceptible and resistant near-isogenic (sr6/Sr6) lines of wheat infected by puccinia graminis f.sp.tritici Ι. The host-pathogen interface in the compatible (sr6/Sr6) interaction[J]. Canadian journal of Botany, 1978, 67: 2955-2966.
    [234] Chong J, Harder D E, Rohringer R. Ontogeny of mono- and dikaryotic rust haustoria: Cytochemisty and ultrastructural studies[J]. Phytopathology, 1981, 71(9): 975-983.
    [235] Hu G G, Rijkenberg F H J. Development of early infection structures of Puccinia recondita f.sp. tritici in non-host cereal species[J]. J. Phytopathology, 1998, 146: 1-10.
    [236] Coffey M D. Flax rust resistance involving the K gene: an ultrastructural survey. Canadian journal of Botany, 1976, 54: 1443-1457.
    [237] Skalamera D, Heath M C, Changes in the plant endomombrane system assoiated with callose sythesis during the interaction between cowpea (Vigna unguiculata) and the cowpea rust fungus (Uromyces vignae)[J]. Canadian Journal of Botany, 1995, 73: 1731-1738.
    [238] 康振生, 李振岐, 商鸿生等. 小麦条锈菌胞间菌丝的超微结构和细胞化学研究[J]. 真菌学报, 1993, 12 (3): 208-213.
    [239] 康振生, 李振岐, 商鸿生等. 小麦条诱菌吸器母细胞超微结构的研究[J]. 真菌学报, 1994, 13(3): 206-209.
    [240] 康振生, 李振岐, R罗林格等. 小麦条锈菌生要结构中糖基种类的细胞化学定位研究[J]. 真菌学报, 1994, 13(1): 58-64.
    [241] Mims C W, Taylor J, Richardson E A. Ultrastructure of the early stages of infection of peanut leaves by the rust fungus Puccinia arachidis[J]. Canadian Journal of Botany, 1989, 67: 3570-3579.
    [242] 康振生, 李振岐, 庄约兰等. 小麦条锈菌吸器超微结构和细胞化学的研究[J]. 真菌学报, 1994, 13(1): 52-57.
    [243] Chong J,Harder D E. Ultrastructure of haustorium development in Puccinia coronata avenae.Ⅰ. Cytochemistry and electron proble X-ray analysis of the haustorial neck ring[J]. CanadianJournal of Botany, 1980, 58: 2496-2505.
    [244] Coffey M D. Cytochemical specialization at the haustoriaI interface of a biotrophic fungal parasite Albugo candida[J]. Canadian Journal of Botany, 1983, 61: 2004-2014.
    [245] Hahn M, Mendgen K. Signal and nutrient exchange at biotrophic plant–fungus interfaces[J]. Current Opinion in Plant Biology, 2001, 4: 322-327.
    [246] Heath M C. Fungal growth, haustoriaI disorganization and host necrosis in two cultivars of cowpea inoculated with an incompatible race of the cowpea rust fungus[J]. Physiol.Plant Pathol, l982, 21:347-359.
    [247] Taylor J,Mims C W. FungaI development and host responses to the rust fungus Puccinia substriata var. indica in seedling and matrue leaves of susceptible and resistant pearl milIet[J]. Canadian journal of Botany, 1991, 69: 1207-1219.
    [248] 蒋选利. 小麦与条锈菌(Puccinia striiformis west.)相互作用的超微结构、细胞化学和分子生物学研究[D]. 西北农林科技大学博士学位论文,2002.
    [249] Heath M C, Heath I B. Ultrastructure of an immune and a susceptible reaction of cowpea leaves to rust infection [J]. Physio Plant Pathol, l971, 1: 277-287.
    [250] 张宏昌. 小麦新抗源一粒葡抗条锈病的组织学和超微结构研究 [D]. 西北农林科技大学硕士学位论文, 2007.
    [251] 魏国荣, 康振生. 介绍一种植物组织病理学研究的新方法[J]. 植物保护, 1996, 22(1): 36-37.
    [252] 康振生, 商鸿生, 李振岐. 小麦锈病组织荧光染色技术[J]. 植物保护, 1993, 19(2):27.
    [253] 蒋选利, 康振生,李振岐等. 抗病品种中小麦条锈菌细胞的超微结构变化过程[J]. 菌物学报, 2005, 24(10): 123-129.
    [254] 马青, 商鸿生. 小麦与条锈病菌不亲和互作的超微结构[J]. 植物病理学报, 2002, 32(4): 306-311.
    [255] Hu G G, Rijkenberg F H J. Subcellular localization of β-1,3-glucanase in Puccinia recondita f.sp.tritici-infected wheat leaves[J]. Planta, 1998, 204: 324-334.
    [256] Greenberg J T, Nan Y. The role and regulation of programmed cell death in plant–pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211.
    [257] Heath M C. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000, 44: 321-334.
    [258] Xu H X, Heath M C. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus[J]. The Plant Cell, 1998, 10: 585-597.
    [259] Grant M, Brown I,Adams S, et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death[J]. The Plant Journal, 2000, 23 (4): 441-450.
    [260] Wojtaszek P. Oxidative burst: an early plant response to pathogen infection[J]. Biochem J, 1997, 322: 681-692.
    [261] Peng M, Ku? J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82: 696-699.
    [262] Chen Z, Malamy J, Henning J, et al. Induction, modification, and transduction of the salicylic acid signal in plant defense responses[J]. Proc Natl Acad Sci USA, 1995, 92: 4134-4137.
    [263] Chamnongpol S, Willekens H, Moeder W, et al. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. Proc Natl Acad Sci USA, 1998, 95: 5818-5823.
    [264] Brisson L F, Tenhaken R, Lamb C. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance[J]. Plant Cell, 1994, 6: 1703-1712.
    [265] Neuenschwander U, Vernooij B, Friedrich L, et al. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance[J]? Plant J, 1995, 8: 227-233.
    [266] G?nner M V, Schl?sser E. Oxidative stress in interactions between Avena sativa L. and Drechslera spp[J]. Physiol Mol Plant Pathol, 1993, 42: 221-234.
    [267] von Tiedemann A V. Evidence for a primary role of active oxygen species in induction of host celldeath during infection of bean leaves with Botrytis cinerea[J]. Physiol Mol Plant Pathol, 1997, 50: 151-166.
    [268] Nürnberger T, Scheel D. Signal transmission in the plant immune response[J]. Trends Plant Sci, 2001, 6: 372-379.
    [269] Thordal-Christensen H, Zhang Z, Wei Y D, et al. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J]. Plant J, 1997, 11: 1187-1194.
    [270] Kuchitsu K, Kosaka H, Shiga T, et al. EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells[J]. Protoplasma, 1995, 188: 138-142.
    [271] Tada Y, Mori T, Shinogi T, et al. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat[J]. Mol Plant Microbe Interact, 2004, 17: 245-253.
    [272] Miao Y, Song C, Dong F. ABA-induced hydrogen peroxide generation in guard cells of Vicia faba[J]. Acta Phytophysiol Sin, 2000, 26: 53-58.
    [273] Caldwell R M, Stone GM. Relation of stomatal function of wheat to invasion and infection by leaf rust (Puccinia triticina)[J]. J Agric Res, 1936, 52: 917-932.
    [274] Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411: 826-833.
    [275] Lahaye T, Bonas U. Molecular secrets of bacterial type III effector proteins[J]. Trends Plant Sci, 2001, 6: 479-485.
    [276] Van den Burg H A, Waterink N, Francoijs K-J, et al. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin-binding ability[J]. J Biol Chem, 2003, 278: 27340-27346.
    [277] Dodds P N, Lawrence G J, Calanzariti A, et al. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells[J]. Plant Cell, 2004, 16: 755-768.
    [278] Catanzariti A M, Dodds P N, Lawrence G J, et al. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. Plant Cell, 2006, 18: 243-256.
    [279] Shetty N P, Kristensen B K, Newman M A, et al. Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat[J]. Physiol and Mol Plant Pathol, 2003, 62: 333-346.
    [280] Wang C F, Huang L L, Buchenauer H, et al. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat - Puccinia striiformis f.sp. tritici[J]. Physiological and Molecular Plant Pathology, 2008, doi: 10.1016/j.pmpp.2008.02.006.
    [281] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990, (6): 55-57.
    [282] 林植芳, 李双顺, 林桂珠等. 衰老叶片和叶绿体中 H2O2 的积累与膜脂过氧化的关系[J]. 植物生理学报, 1998, 14(1): 16-22.
    [283] Patterson B D, Mackae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts usingtitanium (Ⅳ)[J]. Anal Biochem, 1984, 139: 487-492.
    [284] 高俊凤. 植物生理学实验技术[M] . 北京:世界图书出版公司, 2000.
    [285] Hammerschmidt R, Nuckles E M, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium[J]. Physiol Plant Pathol, 1982, 20:73-82.
    [286] Bradford M N. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
    [287] Tomankova K, Luhovia L, Petrivalsky M, et al. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici[J]. Physiological and Molecular Plant Pathology, 2006, 68: 22-32.
    [288] 吴强, 冯汉青, 李红玉等. 条锈病侵染对小麦抗氰呼吸和活性氧代谢的影响[J]. 植物病理学报, 2006, 36(1): 49-56.
    [289] 李兰真, 赵会杰, 杨会武等. 小麦锈病与活性氧代谢的关系(简报)[J]. 植物生理学通讯, 1999, 35(2): 115-117.
    [290] 金兆辉, 李从顺, 杨婷婷等. 番茄幼苗对接种晚疫病菌的生理响应[J]. 西北植物学报,2007, 27(12): 2461-2465.
    [291] 宋海超, 史学群. 稻瘟菌侵染后水稻抗氧化酶类的变化与抗病性的关系[J]. 海南大学学报(自然科学版), 2006, 24(4): 378-382.
    [292] 陈利锋, 宋玉立, 徐雍皋等. 抗感赤霉病小麦品种超氧化物歧化酶和过氧化酶的活性比较[J]. 植物病理学报, 1997, 27(3): 209-213.
    [293] 贾显禄. 小麦与小麦秆锈菌互作及非亲和机制研究[D]. 沈阳:沈阳农业大学, 1997.
    [294] Adam A, Farkas T, Somiyal G, et al. Consequence of O2- generation during a bacteria induced hypersensitive reaction in tobacco: Deterioration of membrane lipids[J]. Phytopathology, 1989, 45: 259-266.
    [295] 葛秀春, 宋凤鸣, 郑重. 膜脂过氧化与水稻对稻瘟病抗性的关系[J]. 浙江大学学报, 农业与生命科学版, 2000, 26(3) : 254-258.
    [296] Steinbeck M J., Khan A U, Appel W H Jr, et al. The DAB-Mn++ cytochemical method revisited: Validationof specificity for superoxide[J]. Journal of Histochemistry and Cytochemistry, 1993, 41: 1659-1667.
    [297] Martin J. Egan, Zheng-Yi Wang, Mark A. Jones, et al. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease[J]. PANS, 2007, 104(28): 11772-11777.
    [298] Orozco-Cárdenas M L, Narváez-Vásquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defensegenes in tomato plants in response to wounding, systemin, and methyljasmonate[J]. The Plant Cell, 2001, 13: 179-191.
    [299] Pellinen R, Palva T, Kangasjarvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells[J]. The Plant Journal, 1999, 20: 349-356.
    [300] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249-279.
    [301] Catesson A M, Imberty A, Goldberg R, et al. Nature, localization and specificity of peroxidase involved in lignification processes[A]. In: Grepp in H, Penel C, Gaspar T H, eds. Molecular and physiological aspects of plant peroxidases[C]. Univ. Geneva, 1986: 189-198.
    [302] 蒋选利, 李振岐, 康振生. 过氧化物酶与植物抗病性研究进展[J]. 西北农科技大学学报, 2001, 29(6): 124-129.
    [303] Sharma A K, Sharma S K. Peroxidase and polyphenol oxidase activity changes in relation to leaf rust of wheat[J]. Journal of Maharashtra Agricultural University, 1998, 22(3): 286-291.
    [304] Jennings P H, Brannaman B L, Zscheile F P Jr, et al. Peroxidase and polyphenol oxidase activity associated with Helminthosporium leaf spot of maize [J]. Phytopathology, 1969, 59: 963-967.
    [305] Veech J A. Localization of peroxidase infected tobaccos susceptible and resistant to blank shank [J]. Phytopathology, 1969, 59: 566-571.
    [306] Doke N, Miura Y. In vitro activation of NADPH-dependent O2- generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans or with digitonin[J]. Physiol Mol Plant Pathol, 1995, 46 (1): 17-28.
    [307] 李征, 刘登义, 王育鹏等. 活性氧在植物一病原物相互作用过程中的作用[J]. 安徽师范大学学报(自然科学版), 2006, 29(1): 70-74.
    [308] Goodman R N, Novacky A J. The hypersensitive reaction in plants to Pathogones [M]. APS Press, 1994.
    [309] Chen C Y, Heath M C. Features of the rapid cell death induced in cowpea by the monokaryon of the cowpea rust fungus or the monokaryon-derived cultivar-specific elicitor of necrosis[J]. Physiol Mol Plant Pathol, 1994, 44: 157-170.
    [310] Heath M C. Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus[J]. New phytol, 1998, 138: 251-263.
    [311] Borden S, Higgins V J. Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum[J]. Physiological and Molecular Plant Pathology, 2002, 61: 227-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700