轮枝镰孢的荧光标记及其在寄主—病原菌互作中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米茎腐病在中国乃至全世界玉米生产区都有普遍发生。近年来,受耕作制度(如保护性耕作、秸秆还田等)的改变和气候变化的影响,我国玉米茎腐病的发生正逐渐加重。玉米茎腐病的主要致病菌之一轮枝镰孢[Fusarium verticillioides (Sacc.) Nirenberg]不仅能侵染玉米的根、茎和穗,引起苗枯病、茎腐病和穗腐病,还能像内生菌那样既能定殖于植株体内又不引起病症。
     本研究采用农杆菌介导法将红色荧光蛋白基因DsRed转入轮枝镰孢FV菌株,通过对转化子的生理生化等分析筛选到与野生菌差异最小的转化子进行后续分析。主要结论如下:农杆菌介导法能够将GFP和DsRed荧光蛋白标记基因随机插入轮枝镰孢的基因组内,且外源基因的差异多为单拷贝随机插入。对转化子进行生理生化等指标的测定,发现DsRed更易导致突变体的出现。采用农杆菌介导法将红色荧光蛋白基因DsRed转入轮枝镰孢FV菌株,利用荧光显微镜观察轮枝镰孢在玉米感抗自交系根部定殖和生长的规律。
     在感病材料中土壤中的轮枝镰孢首先从须根开始,它们可以在须根中大量定殖而不使须根致死。所以须根在轮枝镰孢侵染玉米以及玉米抗侵染方面可能起着关键作用,特别是在侵染的早期。随后轮枝镰孢沿主根向上侵染,以菌丝的形式扩展到地上组织。有些孢子附着在根表皮的纹理中,萌发形成菌丝而扩展;有的则向内侵染附着的细胞,然后再继续向周边侵染。由根内部向上侵染的菌丝多沿着细胞间隙上行,有些也会穿行在不同细胞之间。轮枝镰孢在侵染感病玉米有时会形成马赛克结构,而且这种马赛克结构在后期菌丝充满整个植物细胞时,会造成细胞的死亡。菌丝通常会定殖在须根下面或附近的细胞中。而在抗病玉米材料中,其须根数量明显低于感病材料,而且会形成坏死斑以限制轮枝镰孢的扩展。分析接种不同时间轮枝镰孢在玉米根和茎基部组织形成的单菌落数量(CFU)发现,轮枝镰孢在根部的CFU值随时间逐渐减小,而茎基部的CFU值则呈逐渐增大的趋势。这说明土壤中的轮枝镰孢能够通过对根系的系统侵染途径危害地上部组织。在抗病材料中根部和茎基部的CFU值都低于感病材料。
Maize stalk rot occures widely all over the world. In recent years, this disease was ingravescent in China due to the shift of farming system (e.g., protective farming and straw returning) and weather conditions. Fusarium verticillioides (Sacc.) Nirenberg, one of the major pathogens of stalk rot in maize (Zea mays L.), is able to infect maize root, stalk, and ear, inciting seedling blight, stalk rot, and ear rot. It also can grow inside maize tissues like asymptomatic endophyte.
     In this study, gene DsRed encoding red fluorescent protein was delivered into F. verticillioides strain FV via Agrobacterium tumefaciens-mediated transformation (ATMT). the mutant, which showed the minimum differences with FV was selected by physio-biochemical characteristics analysis, was employed for further study. The main results as followed: fluorescent protein GFP and DsRed were inserted in the genome of F. verticillioidies by ATMT randomly. The results of physio-biochemical characteristics analysis showed the F. verticillioidies labelled with DsRed tended to form mutants. In this study, gene DsRed encoding red fluorescent protein was delivered into F. verticillioides strain FV via Agrobacterium tumefaciens-mediated transformation. Using the DsRed-tagged F. verticillioides, systemic colonization of the fungus in roots and stems of the susceptible and resistance maize inbred were investigated.
     In susceptible maize lines,the fungus invaded and multiplied inside the hair root tissues at the very beginning, and the fungus were able to colonize in hair roots without killing them. Then the hyphae of Fusarium verticillioidies expanded upward along the main roots. Some conidia adhered to the veins of root surfaces and germinated to produce hyphae, which expanded upward. The hyphae were able to expand along the intercellular space or ran across several cells by breaking into them. Fusarium verticillioidies was able to form the mosaic pattens, when they was propagated in susceptable maize roots, and the cells seems to be killed when they fill with hyphea. The hyphea alway located under maize root surface with some hair roots grew on it. The resistent maize lines, which developed less hair roots than susceptable maize lines, usually form the necrotispot to limit the expension of Fusarium verticillioidies. Analysis of colony forming unit (CFU) from diseased plants demonstrated that following inoculation the CFU values from roots tended to decrease, but those from stems inclined to increase. This indicates that F. verticillioides is able to attack the aboveground parts of plant via systemic colonization on roots.
引文
[1]王晓鸣,晋齐鸣,石洁等.玉米病害发生现状与推广品种抗性对未来病害发展的影响[J].植物病理学报, 2006, 36: 1-11.
    [2] Iltis H H, Doebley J F. Taxonomy of Zea (Gramineae). 2. Subspecific categories in the Zea mays complex and a generic synopsis [J]. Am J Bot, 1980, 67: 994-1004.
    [3] Evans M M S, Kermicle J L. Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize [J]. Theor Appl Genet, 2001, 103: 259-265.
    [4]吴建宇,席章营,盖钧镒.玉米抗病育种的研究[J].玉米科学, 1999, 7: 6-11.
    [5] Williams L E, Alexander L J. Maize dwarf mosaic, a new corn disease [J]. Phytopathology, 1965, 55: 802-804.
    [6]高文臣,魏宁生.玉米矮花叶病研究进展[J].西北农林大学学报, 2000, 28: 86-90.
    [7]王晓鸣,戴法超,廖琴等.玉米病虫害田间手册-病虫害鉴定与抗性鉴定[M].北京:中国农业科技出版社. 2002.
    [8]朱卫刚,胡伟群,陈杰.精甲霜灵和噁霉灵复配对辣椒猝倒病的联合毒力[J].农药, 2010, 12: 24-26.
    [9] Leden?an T, ?imi? D, Brki? I, et al. Resistance of maize inbreds and their hybrids to fusarium stalk rot [J]. Czech J Genet Plant Breed, 2003, 39: 15-20.
    [10]梅丽艳,郭梅,李志勇.钾肥防治玉米青枯病应用技术初步研究[J].植保技术与推广, 2003, 23: 3-5.
    [11] Bottalico A, Viseonti A, Logrieco A, et al. Occurrence of zearalenols (diastereomeric mixture) in corn stalk rot and their production by associated Fusarium species [J]. Appl Environ Microb. 1985, 49: 547-551.
    [12] Munkvold G P. Cultural and genetic approaches to managing mycotoxins in maize [J]. Annu Rev Phytopathol, 2003, 41: 96-116.
    [13] Ito S, Kimura J. Studies on the“bakanae”diease of the rice Plant [J]. Report of Hokkaido Agricultural experimental Station, 1931, 27: l-95.
    [14] Ou S H. Rice disease [M]. Commonwealth Mycological institute, Kew, England, 1985.
    [15] Booth C. The Genus Fusarium [M]. Commonwealth Mycological institute, Kew, England, 1971, 237.
    [16] Snyder W C, Hansen H N. The species concept in Fuarium [J]. Am J Bot, 1940, 27: 64-67.
    [17] Gerlach W, Nirenberg H. The genus Fusarium-a pietoria atlas [J]. Mitt bium bundesanst landund forstwirt-shaft (Berlio-Danlem), 1982, 209: l-406.
    [18] Nelson P E, Toussoun T A, Marasas W E. Fusaruim species-An illustrated manual for identilification [M]. Univ Park and London, Pennsylvania State Univ Press, 1983, 193.
    [19]郑镐燮,吕彬,吴润植.水稻恶苗病抗病性筛选方法的初步研究[J].植物保护学报, 1993, 24: 315-319.
    [20] Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein [J]. FEBS Lett, 1979, 104: 220-222.
    [21] Chalfie M, Kain S. Green fluorescent protein: properities applications, and protocols [J]. Wiley-Liss, New York. 1998.
    [22] Leffel S, Mabon S A, Stewart C N Jr. Application of green fluorescent protein in plants [J]. Biotechniques, 1997, 23: 912-918.
    [23] Mark R S, Jason O, William P H. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells [J]. FASEB J, 2005, 19: 440-442.
    [24] Rose A M, Maria A S, Valter A de B, et al. Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae) [J]. Genet Mol Biol, 2008, 31: 932-937.
    [25] Sarrocco S, Falaschi N, Vergara M, et al. Use of Fusarium oxysporum f. sp. dianthi transformed with marker genes to follow colonization of carnation roots [J]. J Plant Pathol, 2007, 89: 47-54.
    [26] Gross L A, Baird G S, Hoffman R C, et al. The structure of the chromophore within DsRed, a red fluorescent protein from coral [J]. Proc Natl Acad Sci USA, 2000, 97: 11990-11995.
    [27] Campbell R E, Tour O, Palmer A E, et al. A monomeric red fluorescent protein. Proc Natl Acad Sci USA, 2002, 99: 7877-7882.
    [28] Garcia-Parajo M F, Koopman M, Dijk E M, et al. The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecular detection [J]. Proc Natl Acad Sci USA, 2001, 98: 14392-14397.
    [29] Webb C D, Decatur A, Teleman A, et al. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis [J]. J Bacterial, 1995, 177: 5906-5911.
    [30] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and post translational autoxidation of green fluorescent protein [J]. Proc Natl Acad Sci USA, 1994, 91: 12501-12504.
    [31] Fischer M, Haasa I, Simmeth, et al. A brilliant monomeric red fluorescent protein to visualize cytoskeletom dynamics in Dictyostelium [J]. FEBS Lett, 2004, 577: 227-232.
    [32] Ormo M, Cubitt A B, Kallio K, et al. Crystal Stucture of the Aequorea vietoria green fluorescent protein [J]. Science, 1996, 273: 2782-2790.
    [33] Cubitt A B, Heim R, Adams S R, et al. Understanding, improving and using green fluorescent proteins [J]. Trends Biochem Sci, 1995, 20: 448-55.
    [34] Sheen J, Hwang S, Niwa Y, et al. Green-fluorescent protein as a new vital market in plant cells [J]. Plant J, 1995, 8: 777-784.
    [35]周盛梅,孟凡国,黄大年等.绿色荧光蛋白及其进展[J].生物工程进展, 1999, 19: 55-60.
    [36] Fradkov A F, Chen Y, Ding L, et al. Novel fluorescent protein from discosoma coral and its mutants possesses a unique far-red fluorescent [J]. FEBS Lett, 2000, 479: 127-130.
    [37] Xi C W, Lambrecht M, Vanderleyden J, et al. Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies [J]. J Microbiol Methods, 1999, 35: 85-92.
    [38]安千里,杨学健.用共聚焦激光扫描显微镜观测GFP标记的内生固氮菌Klebsiella oxytoca SA2侵染水稻根[J].植物学报, 2001, 6: 23-27.
    [39] Pistorio B J, Christopher J C, Daniel G N. A phototriggered molecular spring for aerobic catalytic oxidation reactions [J]. J Am Chem Soc, 2002, 124: 7884-7885.
    [40] Wrathall C R, Tatum E L. The peptides of the hyphal wall of Neurospora crassa [J]. J Gen Microbiol, 1973, 78: 139-153.
    [41] Binninger D M, Skrzynia C, Pukkila P J, et al. DNA-mediated transformation of the Basidiomycete coprinuseinereus [J]. EMBO J, 1987, 6: 835-840.
    [42]刘朋娟.农杆菌介导的稻瘟病菌转化及致病突变体的筛选[D].浙江:浙江大学, 2005.
    [43] Ruiz-Diez B. Strategies for the transformation of filamenious fungi [J]. J Appl Microbiol, 2002, 92: 189-195.
    [44]黄卫,汪天虹,吴志红等.丝状真菌遗传转华系统研究进展[J].微生物学杂志, 2000, 20: 40-44.
    [45]亚丽,潘玮,蒋细良等.根癌农杆菌介导丝状真菌遗传转化的研究进展[J].生物技术通报, 2007, 3: 111-114.
    [46] Mishra N C, Tatum E L. Non-Mendelian inheritance of DNA induced inositol independence in Neurospor [J]. Proc Natl Acad Sci USA, 1973, 70: 3875-3879.
    [47] Case M E, Schweizer M, Kushner S R, et al. Efficient transformation of Neurospora by utilizing hybrid plasmid DNA[J]. Proc Natl Acad Sci USA, 1979, 76: 5259-5263.
    [48] Bundock P, Dulk R A, Beijersbergen A G M. Trans-kingdom T-DNA transferfrom Agrobacterium tumefaciens to Saccharomyces cerevisiae [J]. EMBO J, 1995, 14: 3206-3214.
    [49] Hinnen A, Hicks J B, Fink G R. Transformation of yeast [J]. Proc Natl Acad Sci USA, 1978, 75: 1929-1933.
    [50] Kaeppler H, Somers D, Rines H, et al. Silicon fiber-mediated stable transformation of plant cells [J]. Theor Appl Genet, 1992, 84: 560-566.
    [51] Alson J M, Stepanova A N, Leisse T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana [J]. Science, 2003, 301: 653-657.
    [52] Chai B L, Sticklen M B. Application of biotechnology in turfgrass genetic improvement [J]. Crop Sci, 1998, 38: 1320-1338.
    [53]王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用[J].菌物系统, 2001, 20: 142-147.
    [54] Brown J S, Aufauvre-Brown A, Holden D W. Insertional mutagenesis of Aspergillus fumigates [J]. Mol Gen Genet, 1998, 259: 327-335.
    [55] Kuspa A, Loomis W F. REMI-RFLP mapping in the Dictyostelium genome [J]. Genetics, 1994, 138: 665-674.
    [56] Tunlid A, Ahman J, Oliver R P. Transformation of the nematode-trapp ing fungus Arthrobotrys oligospora [J]. FEMS Microb Lett, 1999, 173: 111-116.
    [57]闫新甫主编.转基因植物[M].北京:科学出版, 2003.
    [58] Bruno T. 1996. The integration of T-DNA into plant genomes[J]. Trends Plant Sci, 1996, 6: 178-184.
    [59] Gelvin S. Improving plant genetic engineering by manipulating the host [J]. Trends Biotechnol, 2003, 21: 95-98.
    [60] dos-Reis M C, Pelegrinelli Fungaro M H, Duarte R T D, et al. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana [J]. J Microbiol Methods, 2004, 58: 197-202.
    [61]高兴喜,杨谦.根癌农杆菌介导的球毛壳菌遗传转化及T-DNA插入突变体的获得[J].微生物学报, 2005, 45: 129-131.
    [62]高兴喜,杨谦,宋金柱,郭兆奎.根癌农杆菌介导的木霉菌遗传转化方法[J].高技术通讯. 2004, 5: 32-35.
    [63] Rodr?′guez-Tovar F J. Fe-oxide spherules infilling Thalassinoides burrows at the Cretaceous–Paleogene (K–P) boundary: evidence of a near-contemporaneous macrobenthic colonization during the K–P event [J]. Geology, 2005, 33: 585-588.
    [64] Christopher R T, Dennis P, Gavin E W, et al. Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts [J]. Microbiology, 2002, 148: 1263-1279.
    [65] Campoy S, Perez F, Martin J F. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer [J]. Curr Genet, 2003, 43: 447-452.
    [66] Michielse C B, Ram A F J, Hooykaas P J J, et al. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori [J]. Fungal Genet Biol, 2004, 45: 571-578.
    [67] Tsuji G, Fujii S, Fujihara N, et al. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium [J]. J Gen Plant Pathol, 2003, 69: 230-239.
    [68] Katherine F, Sandra J. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahlia [J]. Curr Genet, 2004, 45: 104-110.
    [69]黎裕,王天宇,石云素等.基因组学方法在玉米种质资源研究中的应用[J].植物遗传资源学报, 2003, 4: 256-260.
    [70] Kommedahl T, Windels C E. Root-, stalk-, and ear-infecting Fusarium species on corn in the USA. In: Nelson P E, Toussoun T A, Cook R J eds. Fusarium: Diseases, Biology and Taxonomy [M]. Pennsylvania State University Press, University Park, Pennsylvania, USA, 1981. 94-103.
    [71] Bacon C W, Hinton D M. Symptomless endophytic colonization of maize by Fusarium moniliforme [J]. Can J Bot, 1996, 74: 1195-1202.
    [72] Foley D C. Systemic infection of corn by Fusarium moniliforme [J]. Phytopathology, 1962, 52: 870-872.
    [73] Kedera C J, Leslie J F, Claflin L E. Systemic infection of corn by Fusarium moniliforme [J]. Phytopathology, 1992, 82: 1138.
    [74] Munkvold G P, McGee D C, Carlton W M. Importance of different pathways for maize kernel infection by Fusarium verticillioides [J]. Phytopathology, 1997, 97: 209-217.
    [75] Headrick J, Pataky J. Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme [J]. Phytopathology, 1991, 81: 268-274.
    [76] Munkvold G P, Carlton W M. Influence of inoculation method on systemic Fusarium moniliforme infection of maize plants grown from infected seeds [J]. Plant Dis, 1997, 81: 211-216.
    [77] Munkvold G P, Helmich R L, Showers W B. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance [J]. Phytopathology, 1997, 87: 1071-1077.
    [78] Duncan K E, Howard R J. Biology of maize kernel infection by Fusarium verticillioides [J]. Mol Plant-Microbe Interact, 2010, 23: 6-16.
    [79] Leslie J F, Pearson C, Nelson P, Toussoun T. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States [J]. Phytopathology, 1990, 80: 343-350.
    [80] Rheeder J P, Marasas W F O. Fusarium species from plant debris associated with soils from maize production areas in the Transkei region of South Africa [J]. Mycopathologia, 1998, 143: 113-119.
    [81] Lübeck M, Knudsen I M B, Jensen B, Thrane U, Janvier C, Jensen D F. GUS and GFP transformation of the biocontrol strain Clonostachysrosea IK726 and the use of these marker genes in ecological studies [J]. Mycol Res, 2002, 106: 815-826.
    [82] von der Weid I, Artursson V, Seldin L, Jansson J K. Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177 [J]. World J Microbiol Biotechnol, 2005, 21: 8-9.
    [83] Mansouri S, Fakhoury A M. Developing molecular tools to study the Fusarium virguliforme soybean interaction [J]. Phytopathology, 2006, 96: S72-S73.
    [84] Eckert M, Maguire K, Urban M, Foster S, Fitt B, Lucas J, Hammond-Kosack K. Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp [J]. FEMS Microbiol Lett, 2005, 252: 67-74.
    [85] Oren L, Ezrati S, Cohen D, Sharon A. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate [J]. Appl Environ Microbiol, 2003, 81: 556-565.
    [86] Wilke A L, Bronson C R, Tomas A, et al. Seed transmission of Fusarium verticillioides in maize plants grown under three different temperature regimes [J]. Plant Dis, 2007, 91: 1109-1115.
    [87] de Groot M J A, Bundock P, Hooykaas P J J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi [J]. Nat Biotechnol, 1998, 165: 839-842.
    [88] Mullins E D, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology, 2000, 91: 173-180.
    [89] Murillo I, Cavalarin L, Segundo S S. Cytology of infection of maize seedlings by Fusarium moniliforme and immunolocalization of the pathogenesis-related PRms protein [J]. Phytopathology, 1999, 89: 737-747.
    [90] Howard R J. Breaching the outer barriers-cuticle and cell wall penetration. In: Carroll G, Tudzynski P eds. Plant Relationships [M]. New York, NY: Springer-Verlag. 1997, 43-60.
    [91] Zhanga Y P, Yoon-E Choib, Zoua X X, et al. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides [J]. Fungal Genet Biol, 2011, 48: 71-79.
    [92] Money N P, Caesar-TonThat T C, Frederik B A, Henson J M. Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomyces graminis var. graminis [J]. Fungal Genet Biol, 1998, 24: 240-251.
    [93]刘雪梅,肖建国.小麦纹枯病菌侵染过程的组织学研究[J].菌物学报, 1999, 18: 288-293.
    [94]蔡邦平,陈俊愉,张启翔,郭良栋.中国梅丛枝菌根侵染的调查研究[J].园艺学报, 2008, 35: 599-602.
    [95] Danielsen S, Jensen D. Relationships between seed germination, fumonisin content, and Fusarium verticillioides infection in selected maize samples from different regions of Costa Rica [J]. Plant Pathol, 1998, 47: 609-614.
    [96] Jardine D J, Leslie J F. Aggressiveness to mature maize plants of Fusarium strains differing in ability to produce fumonisin [J]. Plant Dis, 1999, 83: 690-693.
    [97] Sukno S A, García V M, Shaw B D, et al. Root infection and systemic colonization of maize by Colletotrichum graminicola [J]. Appl Enviro Microbiol, 2008, 74: 823-832.
    [98] Bluhm B H, Woloshuk C P. Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels [J]. Mol Plant-Microb Interact, 2005, 18: 1333-1339.
    [99] Shim W B, Woloshuk C P. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi [J]. FEMS Microbiol Lett, 1999, 177: 109-116.
    [100] Tsuneaki A, Julie M. Stone, Jacqueline E H, et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires Jasmonate-, Ethylene-, and Salicylate-dependent signaling pathways [J]. Plant Cell, 2000, 12: 1823-1835.
    [101] Julie M S, Jacqueline E H, Tsuneaki A, et al. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants [J]. Plant Cell, 2000, 12: 1811-1822.
    [102] Sesma A, and Osbou rn, A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi [J]. Nature, 2004, 431: 582–586.
    [103]汪恒英,周守标,常志州.绿色荧光蛋白(GFP)研究进展[J].生物技术, 2004, 14: 70-73.
    [104]吴瑞,张树珍.绿色荧光蛋白及其在植物分子生物学中的应用[J].分子植物育种, 2005, 3: 240-244.
    [105] Jakobs, S., Subramaniam, V., Schonle, A., Jovin, T.M., and Hell, S.W. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy [J]. FEBS Lett, 2000, 479: 131–135.
    [106] Füchslin, H.P., Rüegg, I., van der Meer, J.R., and Egli, T. Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid [J]. Environ Microbiol, 2003, 5: 878–887.
    [107] Dandie, C.E., Larrainzar, E., Mark G.L., O’Gara, F., and Morrissey, J.P. (2005) Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology application [J]. Environ Microbiol, 2005, 7: 1818–1825.
    [108] Keller, S.E., Sullivan, T.M., and Chirtel, S. Factors affecting the growth of Fusarium proliferatum and the production of fumonisin B1: oxygen and pH [J]. J Ind Microbio Biot, 1997, 19: 305–309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700