脑膜炎大肠杆菌的IbeA诱导多形核细粒细胞穿越血脑屏障的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多核中性粒细胞(PMN)跨越血脑屏障是细菌性脑膜炎病原发生中的一个关键事件。跨过血脑屏障的迁移-PMN向中枢神经系统的募集是一把“双刃剑”,它不仅是宿主防御系统对抗脑膜炎性细菌病原菌的关键环节,它也会带来显著的中枢神经系统组织损伤;后者导致灾难性的神经系统后遗症。尽管目前疫苗的研发可以降低细菌的感染率,但仍不能完全解除脑膜炎的危害。脑膜炎病理机制方面的研究发现,致病性的脑膜炎性大肠杆菌K1菌株所独有的IbeA蛋白是一个50KDa的膜蛋白,是位于该菌染色体第98分钟处的基因岛-GimA中的一个独特基因所编码的;IbeA作为一侵袭因子,能够诱导大肠杆菌侵入到脑内皮微血管细胞(BMEC);而正是脑内皮微血管细胞组成了血脑屏障。然而,对于IbeA在PMN跨血脑屏障过程中的作用尚未见报道;本文探索了IbeA在PMN跨血脑屏障迁移中的作用。
     通过建立的体外与体内实验模型,分别对ibeA缺失突变体(ZD1)、IbeA蛋白或ibeA基因回补突变体、IbeA蛋白包被的微珠、母本菌株(E44)在人BMEC和大肠杆菌性脑膜炎的小鼠模型中检验了它们对PMN跨内皮迁移至中枢神经系统的诱导能力。ibeA基因缺失突变体未能显著地诱导PMN跨内皮迁移,其所缺失的诱导能力通过基因回补及补充基因产物在体内与体外实验中均可得到修复。据此,我们确定IbeA参与了脑膜炎性E.coli诱导的PMN跨血脑屏障迁移过程。
     在确定IbeA参与脑膜炎发生中中性粒细胞向CNS的募集后,对其信号通路与作用机制进行了深入探索。IbeA在大肠杆菌K1菌株与内皮细胞之间的相互作用不是细菌自溶期间毒素分泌的结果。ibeA+大肠杆菌K1菌株诱导的PMN跨过人BMEC迁移以浓度依赖的方式被醉茄素A(WFA)(一种波形蛋白阻断剂)所阻断;人BMEC波形蛋白的过量表达导致大肠杆菌K1诱导的中性粒细胞跨内皮细胞迁移的显著增加,而这一效应没有出现于ibeA缺失突变菌株中。激光共聚焦观察发现正在迁移的多形核粒细胞存在于波形蛋白网络中。这意味着波形蛋白参与了IbeA诱导的PMN以跨细胞路径的迁移。
     为了到达感染位点,白细胞需要粘附到血管壁,跨内皮层迁移和浸润到下层组织中去。白细胞迁移研究大多是在肺部及皮肤内皮细胞等非血脑屏障体系中,我们对血脑屏障体系的粘附现象进行了进一步探索。研究发现完整的大肠杆菌K1菌株、和无LPS污染的IbeA蛋白都能够强烈地诱导人BMEC的ICAM-1和CD44的表达,IbeA能够以浓度和时间依赖的方式明显地诱导PMN向人BMEC的粘附。人BMEC中的波形蛋白过量表达可增强ICAM-1和CD44表达的上调,而波形蛋白头部区域缺失的BMEC细胞上ICAM-1和CD44表达减弱。通过3种脂阀破坏剂对BMEC的脂阀进行不同程度的破坏之后,剂量不同均带来了不同的PMN跨BMEC迁移降低,这意味着脂阀/细胞膜穴样内陷的完整与脑膜炎性大肠杆菌诱导的中性粒细胞跨脑部内皮细胞的迁移呈正相关。
     最后对IbeA蛋白通过生物信息学方法分析其结构,未能找到任何保守的结构域。因此在预测的IbeA蛋白的二级结构基础上,将其分成了F1-F4四个片段;进行克隆与体外表达纯化之后,对其功能进行了鉴定。结果发现GST-F1-IbeA、GST-F2-IbeA与GST-F4-IbeA不具备诱导PMN跨脑内皮迁移的能力,而GST-F3-IbeA诱导PMN迁移的能力可与IbeA蛋白持平。这意味着GST-F3-IbeA片段为IbeA蛋白的功能性片段,而271至370这一段氨基酸序列是IbeA蛋白诱导PMN跨BMEC迁移的关键功能所在。
     本文通过对脑膜炎大肠杆菌K1菌株-大脑微血管内皮细胞-多核白细胞三者相互作用的通路与分子机制的研究,为新生儿大肠杆菌性脑膜炎的病原发生学与治疗学提供新的视点。
Transmigration of neutrophil (PMN) across the blood-brain barrier (BBB) is a criticalevent in the pathogenesis of bacterial meningitis. However, as a “double-edge sword”, therecruitment of PMN into the CNS by transmigration across the BBB is not only crucial forhost defense against meningitic bacterial pathogens, but it is also responsible for significantCNS tissue damage, which results in devastating neurologic sequelae. Although thedevelopment of vaccines could reduce the rate of infection, but this cannot eliminatemeningitis completely. Research on bacterial pathogenecity has identified an importantvirulence factor, IbeA, that contributes to E. coli K1invasion of both intestinal epithelial cellsand BMEC both in vitro and in vivo, and BMEC is the major component of theblood-brain-barrier. The ibeA gene is a unique sequence on the GimA genetic island, onlypresent in pathogenic E. coli K1strains. However, little is know about the role of IbeA inPMN transmigration across the BBB. In this study, we investigate whether and how IbeA isinvolved in the process of PMN transmigration across the BBB.
     A number of in vitro and in vivo experiment models were constructed. The ability ofthe ibeA-deletion mutant strain ZD1, the ibeA gene restored-mutant, purified IbeA protein,IbeA protein coated beads, and the parent strain E44to induce PMN transmigration acrossthe brain endothelial to CNS was investigated. It was found that the ibeA-deletion mutantstrain ZD1was significantly less active in stimulating PMN transmigration than the parentstrain E44, ZD1was fully complemented by the ibeA gene or its product both in vitro and invivo. The results indicate that IbeA contributes to PMN transmigration across the BBB.
     After showing the involvement of IbeA in the recruitment of neutrophil to CNS duringmeningitis, the signal transduction and its molecular mechanism was investigated further.The interaction between ibeA+E. coli strains and brain endothelial cells was not resultedfrom the toxin secretion during the autolysis of bacteria. The transmigration of PMN acrossBMECs stimulated by ibeA+E. coli strains was blocked by WFA, an inhibitor on vimentin,in a dose-dependent manner. The overexpression of vimentin on human BMECs led to agreat increase of E. coli-induced neutrophil across of brain endothelial cells, and thisphenomenon did not occur to the ibeA-deletion mutant strain. The transmigrating neutrophilwas found in the net of vimentin under the confocal immunofluoresecence microscopy. Allthese indicate that vimentin contributes to the traversal of PMN across brain endothelialsstimulated by IbeA.
     In order to migrate to the site of infection, the leukocytes need to adhere to the blood vascular, transendothelially migrate and penetrate into the inner tissue. Previous studies ontransmigration of PMN across the BBB have been performed only to bacterial meningitiscaused by Meningococcus, Pneumococcus and Group B Streptococcus. On the other hand, E.coli-induced adhesive interactions between transmigrating leukocytes and pulmonaryendothelial cells are well understood. ICAM-1and CD44play a role in the leukocytetransmigration process during E. coli pneumonia. However, there are no in vitro and in vivostudies to date that focus on the PMN-brain endothelial cell interactions in response tomeningitic E. coli K1and its virulence factors. Surface adhesion molecules ICAM-1andCD44were upregulated after exposure of the endothelial monolayer to intact E. coli, orpurified IbeA (decontaminated with LPS). The adhesion of PMN to human BMEC wasaffected by IbeA protein in dose and time-course dependent manner. The upregulation ofICAM-1and CD44was increased by overexpression of vimentin on human BMEC anddecreased by deletion of the vimentin head domain. Three lipid rafts detergents were used inthe study of PMN migration, and all of them reduced the ration of PMN transmigration acrossBMEC in a dose-dependent manner. This suggested that there is a relationship between thecomplicity of lipid rafts/caveolae and neutrophil transmigration across BMEC in response tomeningitic E. coli.
     Finally, the molecular structure of IbeA protein was analyzed with bioinformatics tools,and no conserved domain was found in the secondary structure. On the basis of the predictedsecondary structure, ibeA was subcloned into four different fragments. Each fragment wasexpressed and proteins purified. It was found, by in vitro PMN transmigration assays, that F1,F2and F4-IbeA proteins did not have the ability to induce PMN transmigration across BMEC,but F3-IbeA did. This result suggested that F3-IbeA is the functional fragment of the IbeAprotein, and the sequence of amino acid from281to370is critical for IbeA to induced PMNtransmigration across BMEC.
引文
[1] Obaro S1Prediction rule for bacterial meningitis in children [J] JAMA,2007,297(15):1653
    [2] Narkeviciute I, Bernatomiene J, Mikelionyte A, et al. Aetiological diagnosis of acutebacterial meningitis in children Scand [J] J Infect Dis,2006,38(9):782
    [3] Huang S. H., Stins M., Kim K. S. Bacterial penetration across the blood-brain barrierduring the development of neonatal meningitis.[J] Microbes Infect.2000,2:1237-1244.
    [4] Huang S. H., Jong A. Cellular mechanisms of microbial proteins contributing to invasionof the blood-brain barrier.[J] Cell Microbiol.2001,3,277-287.
    [5] Kim K. S. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury.[J]Nat. Rev. Neurosci.2003,4,376-385.
    [6] Koedel U., and Pfister H. W. Models of experimental bacterial meningitis:role andlimitations.[J] Infect. Dis. Clin. N. Am.1999,13:549-557
    [7] Leib S. L., and Tauber M. G. Pathogenesis of bacterial meningitis.[J] Infect. Dis. Clin. N.Am.1999,13:527-547.
    [8] Huang S. H., Wass C. A., Fu Q., et al. Escherichia coli invasion of brain microvascularendothelial cells in vitro and in vivo: molecular cloning and characterization of invasion geneibe10.[J] Infect. Immun.1995,63:4470-4475.
    [9] Prasadarao N. V., Wass C. A., and Kim K. S. Endothelial cell GlcNAc beta1–4GlcNAcepitopes for outer membrane protein A enhance traversal of Escherichia coli across theblood-brain barrier.[J] Infect. Immun.1996,64:154-160.
    [10] Moore D.A.J. Pathogenesis of bacterial meningitis.[J] Proc R Coll Physic Edinb2000,30:131-135.
    [11] Leib S., Tauber M. Acute and chronic meningitis. In: Armstrong D, Cohen J, eds.[J]Infectious diseases. Vol.15. London: Harcourt,1999:1–15.
    [12] Taylor R.F., Price T.H., Schwartz S.M., et al. Nertrophil-endothelial cell interactions onendothelial monolayers grown on micropore filters.[J] J Clin Invest1981;67:584
    [13] Meerschaert J., Furie M.B. The adhesion molecules used by monocytes for migrationacross endothelium include CD11a/CD18, CD11b/CD18, and VLA-4on monocytes andICAM-1, VCAM-1, and other ligands on endothelium.[J] J Immunol.1995,154(8):4099-4112
    [14] Silver R.P., Aaronson W., Sutton A., et al. Comparative analysis of plasmids and somemetabolic characteristics of Escherichia coli K1from diseased and healthy individuals.[J]Infect Immun,1980,29(1):200~206
    [15] Stoll B.J., Hansen N., Fanaroff A.A., et al. Changes in pathogens causing early-onsetsepsis in very-low-birth-weight infants.[J] N. Engl. J. Med.2002,347:240-247
    [16] Huang S.H., Chen Y. H., Kong G., et al. A novel genetic island of meningiticEscherichia.coli K1containing the ibeA invasion gene (GimA): functional annotation andcarbon-source-regulated invasion of human brain microvascular endothelial cells.[J] Funct.Integr. Genomics,2001,1:312-322.
    [17] Chi F., Wang Y., Gallaher T. K.,et al. Identification of IbeR as a stationary-phaseregulator in meningitic Escherichia coli K1that carries a loss-offunction mutation in rpoS.[J]J Biomed Biotechnol.2009,2009:520283.
    [18] Huang S.H., Chen Y.H., Fu Q., et al. Identification and characterization of anEscherichia coli invasion gene locus, ibeB, required for penetration of brain microvascularendothelial cells.[J] Infect. Immun.1999,67:2103–2109.
    [19] Wang Y., Huang S.H., Wass C. A., et al. The gene locus yijP contributes to Escherichiacoli K1invasion of brain microvascular endothelial cells.[J] Infect. Immun.1999,67:4751–4756.
    [20] Huang S. H., Wan Z. S., Chen Y. H., et al. Further characterization of Escherichia colibrain microvascular endothelial cell invasion gene ibeA by deletion, complementation, andprotein expression.[J] J Infect Dis.2001,183,1071–1078.
    [21] Pietzak M. M., Badger J., Huang S. H., et al. Inderlied, C. Escherichia coli K1IbeA isrequired for efficient intestinal epithelial invasion in vitro and in vivo in neonatal rats.[J] JPediatr Gastroenterol Nutr.2001,33:400.
    [22] Huang S. H., Zhou Y. H., Wang Y., et al. Meningitic E. coli K1IbeA is an outermembrane protein involved in inducing apoptosis in human brain endothelial cells.[J] J PureAppl Microbiol.2009,3:1-10.
    [23] Mendu D. R, Dasari V. R., Cai M., et al. Protein folding intermediates of invasin proteinIbeA from Escherichia coli.[J] FEBS J.2008,275:458-469.
    [24] Soto S. M., Bosch J., Jimenez de Anta M. T., et al. Comparative study of virulence traitsof Escherichia coli clinical isolates causing early and late neonatal sepsis.[J] J Clin Microbiol.2008,46:1123-1125.
    [25] Chen Y. H., Chen S. H., Zhou Z. Y., et al. Enhanced Escherichia coli invasion of humanbrain microvascular endothelial cells is associated with alterations in cytoskeleton induced bynicotine.[J] Cell Microbiol.2002,4:503-514.
    [26] Zou Y., He L., Huang S. H. Identification of a surface protein on human brainmicrovascular endothelial cells as vimentin interacting with Escherichia coli invasion proteinIbeA.[J] Biochem. Biophys. Res. Commun.2006,351:625-630.
    [27] Nieminen M., Henttinen T., Merinen M., et al. Vimentin function in lymphocyteadhesion and transcellular migration.[J] Nat Cell Biol.2006,8:156-162.
    [28] Zwijnenburg P. J., van der Poll T., Roord, J. J, et al. Chemotactic factors in cerebrospinalfluid during bacterial meningitis.[J] Infect Immun.2006,74:1445-1451.
    [29] Van der Flier M., Geelen S.P., Kimpen J. L., et al. Reprogramming the host response inbacterial meningitis: how best to improve outcome?[J] Clin Microbiol Rev.2003,16:415-429.
    [30] Springer T. Traffic signals for lymphocyte recicirculation and leukocyte emigration: themultistep paradigm.[J] Cell.1994,76,301-314.
    [31] Moreland J. G., Bailey G., Nauseef W. M., et al. Organism-specific neutrophilendothelialcell interactions.in response to Escherichia coli, Streptococcus pneumoniae, andStaphylococcus aureus.[J] J Immunol.2004,172,426-432.
    [32] Moreland J. G., Bailey G. Neutrophil transendothelial migration in vitro to Streptococcuspneumoniae is pneumolysin dependent.[J] Am J Physiol Lung Cell Mol Physiol.2006,290:833-840.
    [33] Doran K. S., Liu G. Y., Nizet V. Group B streptococcal beta-hemolysin/cytolysinactivates neutrophil signaling pathways in brain endothelium and contributes to developmentof meningitis.[J] J Clin Invest.2003,112,736-744.
    [34] Doulet N., Donnadieu E., Laran-Chich M. P., et al. Neisseria meningitidis infection ofhuman endothelial cells interferes with leukocyte transmigration by preventing the formationof endothelial docking structures.[J] J Cell Biol.2006,173:627-637.
    [35] Rowin M. E., Xue, V., Irazuzta J. Integrin expression on neutrophils in a rabbit model ofGroup B Streptococcal meningitis.[J] Inflammation.2000,24,157-173.
    [36] Wang Q., Teder P., Judd N. P., et al. CD44deficiency leads to enhanced neutrophilmigration and lung injury in Escherichia coli pneumonia in mice.[J] Am J Pathol.2002,161:2219-2228.
    [37] Gao X., Xu N., Sekosan M., et al. Differential role of CD18integrins in mediating lungneutrophil sequestration and increased microvascular permeability induced by Escherichiacoli in mice.[J] J Immunol.2001,167:2895-2901.
    [38] Arnold J. Ueber das verhalten der wandungen der blutgefasse bei der emigration weisserblutkoper.[J] Vorchows Arch.1875,62:487-503.
    [39] Marchesi V.T. The site of leukocyte emigration during inflammation.[J] Q J Exp physiolCogn Med Sci.1961,46:115-118.
    [40] Earley S. and Plopper G. E. Disruption of focal adhesion kinase slows transedothelialmigration of AU-565breast cancer cells.[J] BBRC.2006,350(2):405-412.
    [41] Hashimoto K., Kataoka N., Nakamura E. et al. Direct observation and quantitativeanalysis of spatiotemporal dynamics of individual living monocytes during transendothelialmigration.[J] Atherosclerosis.2004,177:19-27.
    [42] Bobryshev Y. V. Monocyte recruitment and foam cell formation in atherosclerosis.[J]Micron.2006,37(3):208-222.
    [43] Wong C.W., Christen T., Roth I., et al. Connexin37protects against atherosclerosis byregulating monocyte adhesion.[J] Nature Medicine.2006,12(8):950-953.
    [44] Man S.W., Ma Y. R., Shang D.S.,et al. Peripheral T cells overexpress MIP-1α to enhanceits transendothelial migration in Alzheimer's disease.[J] Neurobiology of Aging.2007,28:485-496.
    [45] Monsonego A., Zota V., Karni A., et al. Increased T cell reactivity to amyloid beta proteinin older humans and patients with Alzheimer disease.[J] Journal of Clinical Investigation.2003,112(3):415-422.
    [46] Togo T., Akiyama H., Iseki E., et al. Occurrence of T cells in the brain of Alzheimer'sdisease and other neurological disease.[J] Journal of Neuroimmunology.2002,124(1-2):83-92.
    [47] David G. Healy, R. William G.. Watson, Conor O'Keane, et al. Neutrophiltransendothelial migration potential predicts rejection severity in human cardiactransplantation.[J] European Journal of Cardio-thoracic surgery.2006,29:760-766.
    [48] Jakobs F., Hsieh D., Buono C., et al. The role of CD11b/CD18mediated neutrophiladhesion in complement deficient xenograft recipients.[J] Clinical Transplant.1997,11:516-521.
    [49] Yasutaka O., Hartwig J.H., Stossel T. P. filGAP, a Rho-and ROCK-regulated GAP forRac binds filamin A to control actin remodeling.[J] Nature Cell Biology.2006,8(8):803-814.
    [50] Marchesi V.T. and Florey H.W. Electron micrographic observations on the emigration ofleucocytes.[J] Quarterly Journal of Experimental Physiology and Cognate Medical Scieces.1960,45(4):343-348.
    [51] Hammersen F. and Hammersen E. The ultrastructure of endothelial gap formation andleukocyte emigration.[J] Prog Appl Microcirc.1987,12:1-34.
    [52] Muller W. A. Migration of leukocyte across endothelial junctions: some concepts andcontroversies.[J] Microcirculation.2001,8(3):181-193.
    [53] Feng D., Nagy J.A., Pyne K., et al. Neutrophils emigrate from venules by atransendothelial cell pathway in response in response to fMLP.[J]1998, J Exp Med.187:903-915.
    [54] Dejana E. The transcellar railway: insights into leukocyte diapedesis.[J] Nature CellBiology.2006,8:105-107.
    [55] Millan J., Hewlett L., Glyn M. et al. Lymphocyte transcellar migration occurs throughrecruitment of endothelial ICAM-1to caveola-and F-actin-rich domains.[J] Nature CellBiology.2006,8(2):113-123.
    [56] Dvorak A. M.&Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cellpermeability organelle.[J] J. Histochem. Cytochem.2001,49:419–432.
    [57] Wu, Z.Z, Zhang, G., Long, M., et al. Comparison of the viscoelastic properties ofnormalhepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation.[J]Biorheology.2000,37:279-290.
    [58] Huttenlocher A. Cell polarization mechanisms during directed cell migration.[J] NatureCell Biology.2005,7(4):336-337.
    [59] Burridge K. and Doughman R. Front and back by Rho and Rac.[J] Nature Cell Biology.2006,8(8):781-782
    [60] Nishiya, N., Kiosses, W.B., Han, J. et al. Ginsberg. An α4integrin-paxillin-Arf-GAPcomplex restricts Rac activation to the leading edge of migrating cells.[J] Nature CellBiology.2005,7(4):343-352.
    [61] Webb D.J., Parson J.T and Horwitz A. F. Adhesion assembly, disassembly and turnoverin migrating cells-over and over again. Nature Cell Biology.2002,4:97-100.
    [62] Pollard P. D, and Borisy G.G. Cellular mobility driven by assembly and disassembly ofactinic filaments.[J] Cell.2003,112:453-465.
    [63] Krylyshkina O., Anderson K.I., Kaverina I., et al. Nanometer targeting of microtubules tofocal adhesions.[J] The Journal of Cell Biology.2003,161(5):853-859.
    [64] Ezratty E.J., Partridge M.A. and Gundersen G.G. Microtubule-induced focal adhesiondisassembly is mediated by dynamin and focal adhesion kinase.[J] Nature Cell Biology.2005,7(6):581-590.
    [65] Wojciak-Stothard B. and Ridley A.J. Rho GTPase and the reglulation of endothelialpermeability.[J] Vascular Pharmacology.2002,39:187-199.
    [66] Yuan S.Y. Protein kinase signaling in the modulation of microvascular permeability.[J]Vascular Pharmacology.2002,39:213-223.
    [67] Martinez M., Vaya A., Marti R., et al. Erythrocyte membrane cholesterol/phospholipidchanges and hemorheological modifications in familial hypercholesterolemia treated withlovastatin.[J] Thrombosis Research.1996,83:375-386.
    [68] Guo J., Zhang L., Jiang Y., et al. Effects of compound dan-shen root dropping pill onhemorheology in high-fat diet induced hyperlipidemia in dogs.[J] Clinical Hemorheology andMicrocirculation.2005,32:19-30.
    [69] Margetis P., Antonelou M., Karababa F., et al. Physiologically important secondarymodifications of red cell membrane in hereditary spherocytosis-evidence for in vivo oxidationand lipid rafts protein variations.[J] Blood Cells, Molecules, and Disease.2007,38:210-220.
    [70] Martínez M., Vayá A., Gil L., et al. The cholesterol/phospholipid ratio of the membranein children with familial hypercholesterolemia. Its relationship with plasma lipids and redblood cell aggregability.[J] Clinical Hemorheology and microcirculation.1998,18:259-263.
    [71] Muller, W. A. Leukocyte-endothelial-cell interactions in leukocyte transmigration andthe inflammatory response.[J] Trends Immunol.24,326–333(2003).
    [72] Johnson-Leger C., Aurrand-Lions M.&Imhof B. A. The parting of the endothelium:miracle, or simply a junctional affair?[J] J.Cell Sci.2000,113:921–933
    [73] Ager A. Inflammation: Border crossings.[J] Nature421,703–705(2003).
    [74] Van Buul J. D.,&Hordijk P. L. Signaling in Leukocyte Transendothelial Migration.[J]Arterioscler. Thromb.Vasc. Biol.2004,24:824–833
    [75] Engelhardt B.&Wolburg H. Mini-review: transendothelial migration of leukocytes:through the front door or around the side of the house?.[J] Eur. J. Immunol.2004,34:2955–2963.
    [76] Marchesi V. T., Florey H. W. Electron micrographic observations on the emigration ofleucocytes.[J] Q. J. Exp. Physiol. Cogn.Med. Sci.1960,45:343–348.
    [77] Williamson J. R., Grisham J. W. Electron microscopy of leukocytic margination andemigration in acute inflammation in dog pancreas.[J] Am. J. Pathol1961,39:239–256.
    [78] Dejana, E. Endothelial cell-cell junctions:Happy together.[J] Naure. Rev. Mol. Cell.Biol.2004,5,261–270
    [79] Barreiro, O., M. Yanez-Mo, J. M. Serrador, M. C. et al. Dynamic interaction of VCAM-1and ICAM-1with moesin and ezrin in a novel endothelial docking structure for adherentleukocytes.[J] J. Cell Biol.2002,157,1233–1245.
    [80] Yang L., Froio R. M., Sciuto T. E.,et al. ICAM-1regulates neutrophil adhesion andtranscellular migration of TNF--activated vascular endothelium under flow.[J]Blood,2005,106:584-592.
    [81] Carman, C. V.&Springer, T. A. A transmigratory cup in leukocyte diapedesis boththrough individual vascular endothelial cells and between them.[J] J. Cell Biol.2004,167,377–388
    [82] Fuchs E., Weber K. IFs: structure, dynamics, function, and disease.[J] Annu RevBiochem1994;63:345–382.
    [83] Coulombe P.A,. Bousquet O., Ma L., et al. The ‘ins’ and ‘outs’ of IF organization.[J]Trends Cell Biol2000,10:420–428.
    [84] Chou Y.H., Goldman R.D. IFs on the move.[J] J Cell Biol2000,150:101–106.
    [85] Parry D.A., Steinert P.M. IFs: molecular architecture, assembly, dynamics andpolymorphism.[J] Q Rev Biophys1999,32:99–187.
    [86] Chou Y.H., Skalli O., Goldman R.D. IFs and cytoplasmic networking: new connectionsand more functions.[J] Curr Opin Cell Biol1997,9:49–53.
    [87] Fuchs E., Cleveland D.W. A structural scaffolding of IFs in health and disease.[J]Science1998,279:514–519.
    [88] Irvine A.D., McLean W.H. Human keratin diseases: the increasing spectrum of diseaseand subtlety of the phenotype-genotype correlation.[J] Br J Dermatol1999,140:815–828.
    [89] Fuchs E. Of mice and men: genetic disorders of the cytoskeleton.[J] Mol Biol Cell1997,8:189–203.
    [90] Fuchs E. The cytoskeleton and disease: genetic disorders of IFs.[J] Annu Rev Genet1996,30:197–231.
    [91] Arin M.J., Roop D.R. Disease model: heritable skin blistering.[J] Trends Mol Med2001,7:422–424.
    [92] Takahashi K., Coulombe P.A., Miyachi Y. Using transgenic models to study thepathogenesis of keratin-based inherited skin diseases.[J] J Dermatol Sci1999,21:73–95.
    [93] McLean W.H., Lane E.B. IFs in disease.[J] Curr Opin Cell Biol1995;7:118–125.
    [94] Lane E.B. Keratin diseases.[J] Curr Opin Genet Dev1994,4:412–418.
    [95] Raz A., Ben-Ze’ev A. Modulation of the metastatic capability in B16melanoma by cellshape.[J] Science1983,221:1307–1310.
    [96] Geiger B. Intermediate filaments. Looking for a function.[J] Nature1987,329:392–393.
    [97] Ben-Ze’ev A. Animal cell shape changes and gene expression.[J] Bioessays1991,13:207–212.
    [98] Martys J.L., Ho C.L., Liem R.K., et al. IFs in motion: observations of IFs in cells usinggreen fluorescent protein-vimentin.[J] Mol Biol Cell1999,10:1289–1295.
    [99] Meriane M., Mary S,. Comunale F., et al. Cdc42Hs and Rac1GTPases induce thecollapse of the vimentin intermediate filament network.[J] J Biol Chem2000,275:33046–33052.
    [100] Murakami M., Naktani Y., Kuwata H., et al. Cellular components that functionallyinteract with signaling phospholipase A(2)s.[J] Biochim Biophys Acta2000,1488:159–166.
    [101] Ku N.O., Liao J., Chou C.F., et al. Implications of intermediate filament proteinphosphorylation.[J] Cancer Metastasis Rev1996,15:429–444.
    [102] Evans R.M. Vimentin: the conundrum of the IF gene family.[J] Bioessays1998,20:79–86.
    [103] Capetanaki Y., Kuisk I., Rothblum K., et al. Mouse vimentin: structural relationship tofos, jun, CREB and tpr.[J] Oncogene1990,5:645–655.
    [104] Johanna I., Hanna M. P., Jonna N., et al. Novel functions of vimentin in cell adhesion,migration and signaling.[J] Experimental Cell Research,2007,10(313):2050-2062.
    [105] Kreis S., Schonfeld H.J., Melchior C., et al. The intermediate filament p roteinvimentin binds specifically to a recombinant integrin alpha2/beta1cytop lasmic tail complexand colocalizes with native alpha2/beta1in endothelial cell focal adhesions.[J] Exp Cell Res,2005,305:110-121.
    [106] Kumar N., Robidoux J., Daniel K.W., et al. Requirement of vimentin filamentassembly for beta32adrenergic recep tor activation of ERKMAP kinase and lipolysis.[J] BiolChem,2007,282:9244-9250.
    [107] Pekny M., Lane B. Intermediate filaments and stress [J]. Exp Cell Res,2007,10(313):2244-2254.
    [108] Rittling S. R., Baserga R. Functional analysis and growth factor regulation of the humanvimentin p romoter.[J] Mol Cell Biol,1987,7:3908-3915.
    [109] Geisler N., Weber K. The amino acid sequence of chicken muscle desmin p rovides acommon structural model for intermediate filament proteins.[J] EMBO J,1982,1:1649-1656.
    [110] Bovolenta P., Liem R.K.H, Mason C.A. Development of cerebellular astroglia:Transitions in form and cytoskeletal content.[J] Developmental Boilogy,1984,1(102):248-259.
    [111]赵士福,黄其林,李黔宁,等.中间丝蛋白vimentin在非洲爪蛙嗅球发育过程中的表达及意义.[J]神经解剖学杂志,2007,23(1):25-29.
    [112] Parry D.A.D, Steinert P.M. Intermediate filaments: molecular architecture, dynamics,assembly and polymorphism.[J] Quart RevBiophys,1999,32:99-187.
    [113] Gao Y.S, Vrielink A., MacKenzie R., et al. A novel type of regulation of the vimentinintermediate filament cytoskeleton by a golgi p rotein.[J] European Journal of Cell Biology,2002,81:391-401.
    [114] Gohara R., Dahai T., Inada H., et al. Phosphorylation of vimentin head domain inhibitsinteraction with the carboxyl-terminal end of K2helical rod domain studied by surface plasmon resonance measurements.[J] FEBS Letters,2001,489(2-3):182-186.
    [115] Turowski P., MylesT., Hemmings B.A., et al. Vimentin dephosphorylation by proteinphosphatase2A is modulated by the targeting subunit B55.[J] Mol Biol Cell,1999,10(6):1997-2015.
    [116] Ying H.C., Bischoff J.R., Beach D., et al. Intermediate filament reorganization duringmitosis is mediated by p34cdc2phosphorylation of vimentin.[J] Cell,1990,62(6):1063-1071.
    [117] Dejana E. The transcellular railway: insights into leukocyte diapedesis.[J] Nat Cell Biol.2006,8:105-107.
    [118] Kurzchalia T.V., Parton R.G. Membrane microdomains and caveolae.[J] Curr OpinCell Biol,1999,11(4):424~431
    [119] van der Goot F.G., Harder T. Raft membrane domains: from a liquid-ordered membranephase to as iteof pathogen attack.[J] Semin Immunol,2001,13(2):89~97
    [120] Melkonian K.A., Chu T., TortorellaL B, et al. Characterization of proteinsindetergent-resistant membrane complexes from Madin-Darbycanine kidney epithelial cells.[J] Biochemistry,1995,34(49):16161~16170
    [121] Simons K., Ikonen E. Functional rafts in cell membranes.[J] Nature,1997,387:569~572
    [122] Brown D. Structure and function of membrane rafts.[J] Int J Med Microbiol,2002,291(6-7):433~437
    [123] Brown D.A., London E. Structure and function of sphingolipid-and cholesterol-richmembranerafts.[J] J Biol Chem,2000,275(23):17221~17224.
    [124] Anderson R.G. The caveolae membrane system.[J] Annu Rev Biochem,1998,67:199~225
    [125] Fielding C.J. Caveolaeandsignaling.[J] CurrOpinLipidol,2001,12(3):281~287
    [126] Nichols B.J., Lippincott-Schwartz J. Endocytosis without clathrincoats.[J] Trends CellBiol,2001,11(10):406~412
    [127] Fielding C.J., Fielding P.E. Caveolae and intracellular traffickingofcholesterol.[J] AdvDrug DelivRev,2001,49:251~264
    [128] Malaviya R., Gao Z.M., Thankavel K., et al. The mast cell tumor necrosis factor αresponse to FimH-expressing Escherichia coli is mediated by theglycosylphosphatidylinositol-anchored molecule CD48.[J] Proc Nat Acad Sci USA,1999,96(14):8110~8115
    [129] Baorto D.M., Gao Z.M., Malaviya R., et al. Survival of FimH-expressing enterobacteriain macrophages relies on glycolipid traffic.[J] Nature,1997,389:636~639
    [130] Shin J. S., Gao Z.M., Abraham S.N. Involvement of cellular caveolae inbacterial entryinto mast cells.[J] Science.2000,289:785~788
    [131] Gatfield J., Pieters J. Essential role for cholesterol in entry of mycobacteria intomacrophages.[J] Science,2000,288:1647~1650
    [132] Peyron P., Bordier C., N'Diaye E.N., et al. Nonopsonic phagocytosis of Mycobacteriumkansasii by human neutrophils depends on cholesterol and is mediated by CR3associatedwith glycosyl phosphatidyl inositol-anchored proteins.[J] J Immunol,2000,165(9):5186~5191
    [133] Wolf A. A., Jobling M.G., Wimer-Mackin S., et al. Ganglioside Structure dictatessignal transduction by choleratoxin and association with caveolae-like membranedomainsinpolarized epithelia.[J] J Cell Biol,1998,141:917~927
    [134] Lencer W.I., Moe S., Rufo P.A., et al. Transcytosis of cholera toxin subunits acrossmodel human intestinal epithelia.[J] Proc Natl Acad Sci USA,1995,92:10094~10098
    [135] Parton R.G., Lindsay M. Exploitation of major histocompatibility complex class Imolecules and caveolae by simian virus40.[J] Immunol Rev,1999,168:23~31
    [136] Pelkmans L., Kartenbeck J., Helenius A. Caveolae endocytosis of simian virus40reveals a new two-step vesicular transport pathway to the ER.[J] Nat Cell Biol,2001,3:473~483
    [137] Pelkmans L., Ptener D., Helenius A. Local actin polymerization and dynaminrecruitment in SV40-Induced internalization of caveolae.[J] Science,2002,296:535~539
    [138] Quagliarello V. J., and Scheld W. M. Treatment of bacterial meningitis.[J] N. Engl. J.Med.1997,336:708–716
    [139] Schuchat A., Robinson K., Wenger, J.D., et al. Bacterial meningitis in the UnitedStates in1995. Active Surveillance Team.[J] N. Engl. J. Med.1997,337:970–976.
    [140] van Alphen L., Spanjaard L., van der E. A.K., et al. Effect of nationwide vaccination of3-month-old infants in The Netherlands with conjugate Haemophilus influenzae type bvaccine: high efficacy and lack of herd immunity.[J] J. Pediatr.1997,131:869–873.
    [141] Maiden M. C., and Spratt B. G. Meningococcal conjugate vaccines: new opportunitiesand new challenges.[J] Lancet1999,354:615–616.
    [142] Spratt B. G., and Greenwood B. M. Prevention of pneumococcal disease by vaccination:does serotype replacement matter?[J] Lancet,2000.356:1210–1211.
    [143] Berner R. Group B streptococci during pregnancy and infancy.[J] Curr. Opin. Infect.Dis.15:307–313.
    [144] Paoletti L. C., and Madoff L. C.2002. Vaccines to prevent neonatal GBS infection.[J]Semin. Neonatol.2002,7:315–323.
    [145] Jodar L., Feavers I. M., Salisbury, D., et al. Development of vaccines againstmeningococcal disease.[J] Lancet2002,359:1499–1508.
    [146] Aronin S. I., Peduzzi P. and Quagliarello V. J. Community-acquired bacterialmeningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing.[J]Ann. Intern. Med.1998,129:862–869.
    [147] Radetsky M. Duration of symptoms and outcome in bacterial meningitis: an analysis ofcausation and the implications of a delay in diagnosis.[J] Pediatr. Infect. Dis. J.1992,11:694–698.
    [148] Wang V. J., Malley R., Fleisher G. R., et al. Antibiotic treatment of children withunsuspected meningococcal disease.[J] Arch. Pediatr. Adolesc. Med.2000,154:556–560.
    [149] Pfister H. W., Feiden W. and Einhaupl K. M. Spectrum of complications duringbacterial meningitis in adults. Results of a prospective clinical study.[J] Arch. Neurol.1993,50:575–581
    [150] Lorenzl S., Koedel U., Frei K., et al. Protective effect of a21-aminosteroid duringexperimental pneumococcal meningitis.[J] J. Infect. Dis.1995,172:113–118.
    [151] Mertsola J., Kennedy W. A., Waagner D., et al. Endotoxin concentrations incerebrospinal fluid correlate with clinical severity and neurologic outcome of Haemophilusinfluenzae type B meningitis.[J] Am. J. Dis. Child1991,145:1099–1103.
    [152] Mustafa M. M., Ramilo O., Syrogiannopoulos G. A., et al. Induction of meningealinflammation by outer membrane vesicles of Haemophilus influenzae type b.[J] J. Infect. Dis.1989,159:917–922.
    [153] Schneider O., Michel U., Zysk G., et al. Clinical outcome in pneumococcal meningitiscorrelates with CSF lipoteichoic acid concentrations.[J] Neurology1999,53:1584–1587.
    [154] Stins M.F., Shen Y., Huang S.H., et al. Gp120activates children's brain endothelial cellsvia CD4.[J] J Neurovirol.2001,7:125-134.
    [155] Germon P., Chen Y. H., He L.,et al. IbeA, a virulence factor of avian pathogenicEscherichia coli.[J] Microbiology2005,151,1179-1186.
    [156] Prasadarao N.V., Wass C.A., Huang S.H., et al. Identification and characterization of anovel Ibe10binding protein that contributes to Escherichia coli invasion ofbrain microvascular endothelial cells.[J] Infect Immun,1999,67(3):1131-1138
    [157] Cossart P. Met, the HGF-SF receptor: another receptor for Listeria monocytogenes.[J]Trends Microbiol,2001,9(3):105-107.
    [158] Echchannaoui H., Frei K., Letiembre M., et al. CD14deficiency leads to increasedMIP-2production, CXCR2expression, neutrophil transmigration, and early death inpneumococcal infection.[J] J Leukoc Biol.2005,78,705-715.
    [159] Ivaska J., Pallari H. M., Nevo J. et al. Novel functions of vimentin in cell adhesion,migration, and signaling.[J] Exp. Cell Res.2007,313,2050–2062
    [160] Murli S., Watson R. O. and Galan J. E. Role of tyrosine kinases and the tyrosinephosphatase SptP in the interaction of Salmonella with host cells.[J] Cell. Microbiol.2001,3,795–810
    [161] Shime H., Ohnishi T., Nagao K., et al. Association of Pasteurella multocida toxin withvimentin.[J] Infect. Immun,2002,70,6460–6463
    [162] Koudelka K. J., Destito G., Plummer E. M., et al. Endothelial targeting of cowpeamosaic virus (CPMV) via surface vimentin.[J] PLoS Pathog.2009,5:e1000417
    [163] Stefanovic S., Windsor M., Nagata K. I., et al. Vimentin rearrangement during Africanswine fever virus infection involves retrograde transport along microtubules andphosphorylation of vimentin by calcium calmodulin kinase II.[J] J. Virol.2005),79,11766–11775
    [164] Bargagna-Mohan P,, Hamza A,, Kim Y. E., et al. The tumor inhibitor and antiangiogenicagent withaferin A targets the intermediate filament protein vimentin.[J] Chem Biol2007,14:623-634.
    [165] Zou Y., He L., Wu C.H., et al. PSF is an IbeA-binding protein contributing to meningiticEscherichia coli K1invasion of human brain microvascular endothelial cells.[J] MedMicrobiol Immunol2007,196:135-143.
    [166] Chi F., Jong T., Wang L., et al. Vimentin-mediated signaling is required for IbeA+E.coli K1invasion of human brain microvascular endothelial cells.[J] Biochem J2010,427:79-90.
    [167] Cao H., Chen L.D., Yang J., et al. CglE’s role in meningitic E. coli K1infection andenergy metabolism defined by bioinformatic and molecular characterization.[J] Frontiers inthe Converg Biosci Inform Technol (FBIT),2007, pp.251-255
    [168] Chen Y.H., Chen S.H., Zhou Z.Y., et al. Enhanced Escherichia coli invasion of humanbrain microvascular endothelial cells is associated with alterations in cytoskeleton induced bynicotine.[J] Cell Microbiol,2002,4:503-514
    [169] Oppenheimer-Marks N. et al. Differential utilization of ICAM-1and VCAM-1duringthe adhesion and transendothelial migration of human T lymphocytes.[J] J. Immunol.1991,147:2913–2921
    [170] Schenkel A. R., Mamdouh Z.&Muller W. A. Locomotion of monocytes onendothelium is a critical step during extravasation. Nature Immunol.2004,5:393–400
    [171]. Mundy D. I. et al. Dual control of caveolar membrane traffic by microtubules and theactin cytoskeleton.[J] J. Cell Sci.2002,115:4327-4339
    [172] Gratton J. P., Bernatchez P.&Sessa W. C. Caveolae and caveolins in thecardiovascular system.[J] Circ. Res.2004,94:1408–1417.
    [173] Sprenger R. R., Fontijn R. D., van Marle J., et al. Spatial segregation of transport andsignalling functions between human endothelial caveolae and lipid raft proteomes.[J]Biochem. J.2006,400:401–410
    [174] Zaas D. W., Duncan M., Wright J. R., et al. The role of lipid rafts in the pathogenesis ofbacterial infections.[J] Biochim. Biophys. Acta2005,1746:305–313
    [175] Janich P., and Gorbeil D. GM1and GM3gangliosides highlight distinct lipidmicrodomains within the apical domain of epithelial cells.[J] FEBS Lett.2007,581:1783–1787
    [176] Krajewska W.M. and Mas owska I. Caveolins: structure and function in signaltransduction.[J] Cell. Mol. Biol.2004,9:195–220
    [177] Manes S., del Real G. and Martinez-A, C. Pathogens: raft hijackers.[J] Nat. Rev.Immunol.2003,3:557–568
    [178] Lafont F. and van der Goot F. G. Bacterial invasion via lipid rafts. Cell. Microbiol.2005,7,613–620
    [179] Jong A., Wu C. H., Shackleford G. M., et al. Involvement of human CD44duringCryptococcus neoformans infection of brain microvascular endothelial cells.[J] Cell.Microbiol.2008,10,1313–1326
    [180] Abraham S. N., Duncan M. J., Li G. et al. Bacterial penetration of the mucosal barrierby targeting lipid rafts.[J] J. Invest. Med.2005,53:318–321
    [181] Hawkes D. J. and Mak J. Lipid membrane; a novel target for viral and bacterialpathogens.[J] Curr. Drug Targets2006,7:1615–1621
    [182] Sukumaran S. K., Quon M. J. and Prasadarao N. V. Escherichia coli K1internalizationvia caveolae requires caveolin-1and protein kinase Cα interaction in human brainmicrovascular endothelial cells.[J] J. Biol. Chem.2006,277:50716–50724
    [183] Malorni W., Giammarioli A.M., Garofalo T., et al. Dynamics of lipid raft componentsduring lymphocyte apoptosis: The paradigmatic role of GD3.[J] Apoptosis,2007,12(5):941-949
    [184] Van der Luit A. H., Budde M., Zerp S., et al. Resistance toalkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase1expression with consequent sphingomyelin-and cholesterol-deficiency in lipid rafts.[J]Biochem J.2007,401:541–549.
    [185] Sumoza-Toledo A., Santos-Argumedo L. The spreading of B lymphocytes induced byCD44cross-linking requires actin, tubulin, and vimentin rearrangements.[J] J LeukocBiol,2004,75:233-239.
    [187] Ponta H., Sherman L., Herrlich P. A. CD44: from adhesion molecules to signallingregulators. Nat. Rev. Mol. Cell Biol.2003,4:33–45.
    [188] Screaton G. R., Bell M. V., Jackson D. G., et al. Genomic structure of DNA encodingthe lymphocyte homing receptor CD44reveals at least alternatively spliced exons.[J] Proc.Natl. Acad. Sci. USA1992,89,12160–12164.
    [189] Hirano H., Screaton G. R., Bell M. V., et al. CD44isoform expression mediated byalternative splicing: tissue-specific regulation in mice.[J] Int. Immunol.1994,6,49–59.
    [190] Lesley J., Hyman R., Kincade P. W. CD44and its interaction with extracellular matrix.[J] Adv. Immunol.1993,54,271–335.
    [191] Borland G., Ross J. A., Guy K. Forms and functions of CD44.[J] Immunology.1998,93,139–148.
    [192] Sherman L., Sleeman J., Herrlich P., et al. Hyaluronate receptors: key players in growth,differentiation, migration and tumor progression.[J] Curr. Opin. Cell Biol.1994,6,726–733.
    [193] DeGrendele, H. C., Estess, P., Picker, L. J., et al. CD44and its ligand hyaluronatemediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesionpathway.[J] J. Exp. Med.1996,183,1119–1130.
    [194] Bartolazzi A., Peach R., Aruffo A., et al. Interaction between CD44and hyaluronate isdirectly implicated in the regulation of tumor development.[J] J. Exp. Med.1994,180,53–66.
    [195] Sy M. S., Liu D., Schiavone R., et al. Interactions between CD44and hyaluronic acid:their role in tumor growth and metastasis.[J] Curr. Top. Microbiol. Immunol.1996,213,129–153.
    [196] Lesley J., Hyman R., English N., et al. CD44in inflammation and metastasis.[J]Glycoconj. J.1997,14,611–622.
    [197] Parton R. G. Caveolae-from ultrastructure to molecular mechanisms.[J] Nature Rev.Mol. Cell Biol.2003,4:162–167.
    [198] Simionescu M., Gafencu A.&Antohe F. Transcytosis of plasma macromolecules inendothelial cells: a cell biological survey.[J] Microsc. Res. Tech.2002,57:269–288.
    [199] Pelkmans L. et al. Genome-wide analysis of human kinases in clathrin-and caveolae/raft-mediated endocytosis.[J] Nature,2005,43:78–86.
    [200] Pelkmans L., Puntener D.&Helenius A. Local actin polymerization and dynaminrecruitme recruitment in SV40-induced internalization of caveolae.[J] Science2002,296:535–539
    [201] Arnold, K., Bordoli, L., Kopp, J., etal. The SWISS-MODEL Workspace: A web-basedenvironment for protein structure homology modelling.[J] Bioinformatics,200622,195-201.
    [202] SchwedeT., Kopp J., Guex N., et al. SWISS-MODEL: an automated protein homology-modeling server.[J] Nucleic Acids Research2003,31:3381-3385.
    [203]Guex N. and Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling.[J] Electrophoresis.1997,18:2714-2723

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700