艾蒿精油对白纹伊蚊的作用及卵黄发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白纹伊蚊Aedes albopictus Skuse,属于双翅目蚊科,是传播登革热和登革出血热等多种传染病的重要媒介之一。艾篙Artemisia argyi Levl.et Vant为菊科篙属多年生草本植物,艾蒿精油具有很强的杀菌灭虫功效,对人畜低毒,是一种廉价的天然杀虫植物。本文主要研究了艾蒿精油对白纹伊蚊等昆虫的多种生物活性,以及对白纹伊蚊产卵量、卵巢发育、卵黄发生及酶系的影响,为艾蒿精油应用于害虫防治、探讨艾蒿精油对白纹伊蚊卵黄发生的作用机理提供理论基础和依据。主要结果如下:
     1.艾蒿精油对白纹伊蚊等昆虫的作用
     艾蒿精油对昆虫的作用方式主要有熏蒸、触杀、忌避和杀卵作用,且对不同种类的昆虫有选择性。艾蒿精油对多种昆虫表现出很高的熏蒸毒力,对白纹伊蚊成虫熏蒸0.5h,1h和4h后的LC50分别为0.69,0.59和0.47μL/L;40gL剂量下熏蒸96h对玉米象和赤拟谷盗成虫的致死率分别为100%和76.3%。艾蒿精油对白纹伊蚊成虫和幼虫的LD_(50)分别为67.6和45.4μg/mL;对赤拟谷盗和玉米象的LD_(50)分别为24.1和39.8μg/mL。艾蒿精油对白纹伊蚊成虫的最长保护时间为5.2小时:而赤拟谷盗成虫与玉米象成虫相比,艾蒿精油对赤拟谷盗的忌避效果更好。艾蒿精油对白纹伊蚊有很好的杀卵作用,各浓度处理组与对照组都存在显著差异。经LD_(10)和LD_(15)处理后白纹伊蚊的产卵量与对照呈显著差异,LD_(15)处理组的孵化率与对照组差异显著。
     2.艾蒿精油处理对白纹伊蚊卵巢发育的影响
     艾蒿精油处理后对白纹伊蚊的卵子和卵母细胞生长无明显影响,对照组和处理组都经历了前期平稳增长和后期快速增长直至稳定的发育过程,卵子和卵母细胞在各发育阶段的长度均与对照无显著差异。对照组和处理组中卵黄物质在卵母细胞中的沉积都经历了前期快速增长和后期缓慢增长直至稳定的过程,不同的是,从吸血后3小时至33小时,处理组中卵黄物质在卵母细胞中的比例显著低于对照组,在其它发育阶段则差异不显著。对比对照组和处理组的白纹伊蚊卵巢发育的显微结构特点,发现,在卵巢发育前期,处理组卵母细胞中存在较大颗粒的脂滴,对照组中不存在;在对照组中,卵黄物质的沉积起始于吸血后6小时,而处理组起始于吸血后12小时;对照组的卵黄膜形成在吸血后36小时,而处理组在吸血后48小时;在吸血后72小时,对照组中的卵壳已经形成,而处理组中还未能形成。精油处理后对卵巢发育超微结构的影响表现在:卵母细胞核内异染色质堆积呈不规则形状;滤泡细胞排列松散,开放间隙异常增大;卵母细胞中卵黄颗粒失去了原来的圆形或椭圆形,呈不规则形状:卵黄膜由多层颗粒排列组成,颗粒间不紧密,有较大缝隙;滋养细胞有死亡的现象,表现在滋养细胞失去了细胞原有的形态,细胞质发生溶解,里面的物质有丢失的情况等。
     3.白纹伊蚊卵黄蛋白的纯化及组织定位分析
     采用凝胶过滤层析和离子交换层析的方法对白纹伊蚊的卵黄蛋白(Vt)进行了纯化。SDS-PAGE分析表明,白纹伊蚊Vt由大220 KDa和66KDa两个亚基组成。Western免疫印迹结果表明,这两个亚基均能与Vt的多克隆抗体起特异性反应,但与雄虫匀浆液无反应,可以用于Vg/Vt的定性或定量检测。SDS-PAGE及对应Western免疫印迹分析表明,吸血后48小时雌蚊的脂肪体、血淋巴和卵的粗提物中均存在Vt的两个亚基,而雄蚊的血淋巴中不存在。
     4.艾蒿精油处理对卵黄发生的影响
     采用免疫大白兔的方法,制备得到抗白纹伊蚊Vt的多克隆抗血清,其效价达到1:12800。纯化后的多克隆抗体的重链和轻链的分子量分别为67.9 KDa和43.5KDa。通过ELISA检测发现,与对照组相比,艾蒿精油处理后对白纹伊蚊脂肪体、血淋巴及卵巢中Vg/Vt的发育趋势没有明显的影响。在对照组中,脂肪体中Vg含量的峰值出现在吸血后24h,处理组中的峰值则出现在吸血后36小时,且峰值之间呈现显著差异。对照组血淋巴中Vg含量的峰值都出现在吸血后24h,而处理组的峰值则出现在吸血后36小时,且峰值之间呈现显著差异。在对照组中,卵巢Vt含量在吸血后24小时达到峰值,而处理组则延迟到吸血后48h,但含量没有差异。
     5.艾蒿精油处理对白纹伊蚊体内酶系的影响
     艾蒿精油处理后,白纹伊蚊体内谷胱甘肽S.转移酶活性被显著激活,处理后36h、48h和72h的比活力分别比对照升高91%、87%和44%,而在处理初期(12h和24h)与对照无显著差异。艾蒿精油处理对酸性磷酸酶和Na~+ -K~+ -ATP酶活性有强烈的抑制作用,处理组都与对照存在显著差异。对碱性磷酸酶的活性表现出先抑制(12h和24h)后激活(36h和48h),72h后又被抑制。
The mosquito,Aedes albopictus Skuse(Diptera:Culicidae) is one of the important intermediary agents who spreads various infectious diseases such as dengue fever and dengue haemorrhagic fever.Artemisia argyi Levl.et Vant(Compositae:Artemisia) is one kind of perennial herb,the essential oil of A.argyi has strong bactericidal and insecticidal effect to insect,but low toxicity to human and livestock,so it is one kind of cheap natural insecticidal plant.In this study,the repellent activity and toxicity of A.argyi oil to A. albopictus,Tribolium castaneum and Sitophilus zeamaisewere studied.Also,its effect on egg laying,ovary development,vitellogenesis and enzymes of adults of A.albopictus were analysed,for the purpose of providing theoretical principle and basis for pest controlling and exploring the mechanism of A.argyi oil on vitellogenesis of A.albopictus. The results were as follows:
     1.The effect of A.argyi to insects such as A.albopictus
     The action modes of A.argyi oil to insect were fumigant,contact toxicity,repellent and ovicidal activity,and the action is selective to different kinds of insect.A.argyi oil expressed high fumigant toxicity to many kinds of insects.The LC_(50) values(0.5h,1h and 4h) to adult of A.albopictus were 0.69,0.59 and 0.47μL/L;the lethality rates(96h) of adults of T.castaneum and S.zeamaise treated with 40μL were 100%and 76.3%.Also,the LD_(50) values of A.argyi oil against adults and larvae of A.albopictus were 67.6 and 45.4μg/mL;the LD_(50) values were 24.1 and 39.8μg/mL to adults of T.castaneum and S.zeamaise.It was also repellent to the adults of A.albopictus,the longest protection time was 5.2h;T.castaneum was more susceptible than S.zeamaise based on the repellency effect.A.argyi oil had the strong ovicidal activity;all the treatments were significantly different compared with the control.The number of egg laying by A.albopictus was reduced treated with LC_(10) and LC_(15),and the hatchability was inhibited treated with LC_(15) significantly different compared with that of the control.
     2.The effect of A.argyi essential oil to the ovary development of A.albopictus
     A.argyi oil treatment had no obvious effect on eggs and oocytes development;Both the control group and treatment group experienced a steady growth in earlier stage and a rapid growth in later stage until stability,there was no significant difference between control groups and treated groups on the lengths of the egg and oocyte in each developmental stage.The yolk protein in the oocytes in controls and treatments experienced a rapid growth in earlier stage and a steady growth in later stage until stability,what is the difference is the proportion of yolk protein in the oocytes in treatments was significantly lower than that of the control during 3h to 33 h period ot time after blood-sucking;there was no significant difference in other developmental stages. Compared the microstructure of ovarian development characteristics of A.albopictus of control group with that of treated group,we found that there has large lipid droplets in the oocytes in treatments in earlier developmental stage where the control did not exist;we also found in the control group,the deposition of yolk protein began at 6h after blood meal,whereas the treatment group began at 12h;in the control group,the vitelline membrane formed at 36h after blood meal,whereas at 48h in the treatment group;we also found in the control,the chorion was formed at 72h after blood-sucking,whereas it was not observed in the treatment.The effect on the ultrastructure of A.albopictus ovarian eggs after treated with A.argyi oil was:the heterochromatin in the oocyte nucleus was in irregular shape;follicular cell arranged loose and the opening space increased abnormally; the yolk granules lost its original circle shaped or oval,was in irregular shape in the oocytes;the vitelline membrane was formed by muti-layer of granules,which arranged not closely;there were nurse cells in the egg,which characterized by losing the original form,losing materials and cytoplasm dissolution and so on.
     3.The purification of yolk protein of A.albopictus and analysis of tissue localization
     Gel filtration chromatography and ion-exchange chromatography were used to purify the vitellin of A.albopictus.SDS-PAGE analysis showed that the vitellin was composed of two subsuits,the large one 220 KDa and the small one 66 KDa.Western-blotting results showed that both of these two subunits acted specific reaction with polyclonal antibody,however,has no action with the homogenate of male.SDS-PAGE and corresponding Western-blotting anasysis showed the two subsuits existed in the fat body and hemolymph of female that has sucked blood for 48 h and its egg extract,but not in hemolymph of male of A.albopictus.
     4.The effect of A.argyi essential oil to the vitellogenesis
     A polyclonal antiserum against vitellin of A.albopictus was prepared in male rabbits, and the titer reached 1:12 800.We found the heavy chain and light chain of the polyclonal antibody were 67.9KDa and 43.5KDa,respectively.Detected through ELISA, we found that the Vg/Vt development trend in fat body,hemolymph and ovarian in treatment had not been impact when compared with the control.The results showed that in the control group,the Vg content in the fat body achieved peak at 24h after blood-sucking,while the peak appeared at 36h in the treatment group,whereas the two peaks content were significantly defferent;the Vg content peak appeared at 24h after blood-sucking in the control while at 36h in the treatment,and there was no significant difference between them;in the control group,the peak of Vt content was occurred at 24h after blood-sucking while the time was postponed until 48h in the treated group,but no difference between them.
     5.The effect of A.argyi essential oil to the enzyme system of A.albopictus
     The results showed that after treated with the A.argyi oil,the activity of GST was significantly activated;the activity of GST increased 91%、87%and 44%at 36h,48h and 72h respectively more than that of control,while there was no significant difference at the earlier stage(12h and 24h).A.argyi oil treatment had a strong inhibitory effect on the activities of ACP and Na~+-K~+-ATP,while there were significant differences between all the treatments and that of the related control.The activity of AKP reduced on the first (12h and 24h),then enhanced(36h and 48h),and then inhibited at 72h after blood feeding after treated with A.argyi oil.
引文
[1]曹仁烈,孙在源,王仲德.中药水浸剂在试管内抗皮肤真菌的观察.中华皮肤杂志.1957,4:286-290.
    [2]陈凤菊,高希武,雷明庆,郑炳宗.单宁酸对棉铃虫谷胱甘肽S-转移酶的影响.昆虫学报,2003,46(6):684-690.
    [3]陈文美.我国淡色库蚊种团对拟除虫菊酯杀虫剂抗性现状调查.医学动物防制,1986,2(3):8-111.
    [4]戴小军,刘延庆,梅全喜.蒿属药用植物药理活性研究进展.中药材,2005,28(3):243-247.
    [5]董言德,薛瑞德,尤洪涛,冯伶.溴氰菊酯处理对淡色库蚊卵黄发生的影响。寄生虫与医学昆虫学报,1994,1(3):44-47.
    [6]窦向梅,奚耕思.中华稻蝗卵子发生的观察.西北大学学报(自然科学版),2003,33(3):353-355.
    [7]防治慢性气管炎艾叶油研究协作组.艾叶油及其有效成分的药理研究.医药工业,1977,11:5-7.
    [8]付昌斌,张兴.砂地柏果实提取物对棉铃虫生长发育的影响.西北农业大学学报,1998,26(1):10-12.
    [9]龚和,瞿启慧,魏定义,张建中.七星瓢虫的卵黄发生:卵黄原蛋白的发生和取食代饲料的影响.昆虫学报,1980,23(23):252-259.
    [10]龚和,李乾君.家蝇的卵黄发生及其激素调节.昆虫学报,1992,35(3):129-137.
    [11]龚和,翟启慧.昆虫卵黄蛋白和卵黄发生.昆虫学报,1979,22(2):219-236.
    [12]韩铁,戴璨,汤璐瑛.艾叶挥发油抗病毒作用的初步研究.氨基酸和生物资源,2005,27(2):14-16.
    [13]侯军,马志卿,冯俊涛,张兴.鬼臼毒素对小菜蛾的生物活性及对其几种代谢酶系的影响.昆虫学报,2007,50(9):895-899.
    [14]江志利,陈安良,白伟,林琎,张兴.六种植物精油对家蝇的熏蒸及触杀毒力测定.农药学学报,2002,4(1):85-88.
    [15]姜文全.艾叶熏蒸用于母婴同室空气消毒.西北药学杂志,2002,17(2):80-81.
    [16]蒋志胜,尚稚珍,万树青,徐汉虹,赵善欢.光活化毒素α-三噻吩的电子自旋共振分析及其对库蚊保护酶系统活性的影响.昆虫学报,2003,46(1):22-26.
    [17]李宏.ATPase的研究进展.生物学杂志,1996,(3):9-12.
    [18]李兰娟.登革热和登革出血热的研究进展第七次全国肾综合征出血热会议论文汇编.杭州:科学出版社,2006,37-44.
    [19]李强,吴莉宇.辣蓼挥发油对小菜蛾的毒力测定.广西热带农业,2006,105(4):17-18.
    [20]李水清,张钟宁.艾蒿提取物对菜青虫的生物活性.昆虫知识,2004,41(5):439-442.
    [21]林永丽,郝蕙玲,孙锦程.四种植物精油对德国小蠊的驱避效果.昆虫知识,2008,45(3):477-479.
    [22]刘洪玲,董岩.艾蒿和猪毛蒿挥发油化学成分对比研究.时珍国医国药,2007,18(4):832-833.
    [23]刘永华,阎雄飞,叶恭银,李鲜花.不同食料对野蚕黑卵蜂卵巢发育和卵子发生的影响.华东昆虫学报,2006a,15(2):112-115.
    [24]刘永华,叶恭银,李鲜花.温度对野蚕黑卵蜂卵巢发育和卵子发生的影响.2006b,28(3):126-131.
    [25]吕建华,鲁玉杰,翟盟盟.大蒜挥发油对锯谷盗的控制作用.河南农业大学学报,2006,40(4):366-369.
    [26]骆和生,王建华.中药方剂的药理与临床研究进展.第Ⅰ版.广州:华南理工大学出版杜,1991,197-198.
    [27]马玉花.苦杏仁精油提取及其杀虫活性研究.[博士学位论文].西北农林科技大学,2007.
    [28]潘炯光,徐植灵,吉力.艾叶挥发油的化学研究.中国中药杂志,1992,17(12):741-744.
    [29]祁鸣.Na-K-ATPase的特性研究及其应用.生物化学与生物物理进展,1986,(3):22-26.
    [30]邱洁芬,胡遵荣.试述艾叶的药理作用及临床应用.实用中医药杂志,2003,19(8):446-447.
    [31]热孜万,龚和,饶漱靖.营养和激素对家蝇卵黄发生的影响.寄生虫与医学昆虫学报,1997,4(3):158-163.
    [32]沈志成,胡萃,龚和.几种飘虫的卵黄蛋白抗原性及其亚基结构的研究.浙江农业大学学报,1990,16:352-356.
    [33]苏寿泜,叶炳辉.现代医学昆虫学.北京:高等教育出版社,1996,236-239.
    [34]孙萌.蝶蛹金小蜂的卵巢发育与卵黄发生.[硕士学位论文].浙江大学,2000.
    [35]王竑晟.温度和营养对甜菜夜蛾生殖的影响.[硕士学位论文].山东农业大学,2003.
    [36]王健,李雅,雷朝亮.艾蒿精油对家蝇的忌避及熏蒸活性.昆虫知识,2005,42(1):51-53.
    [37]王晟,徐洪富,崔峰.高温处理对甜菜夜蛾雌虫成虫期生殖力及卵巢发育的影响.西南农业大学学报,2006,19(5):916-919.
    [38]王荫长.昆虫生理学.北京:中国农业出版社,2004,380-381.
    [39]魏波,郝赤,李会仙.杀虫剂亚致死剂量对棉铃虫靶标酶的影响.现代农药,2006,5(3):35-38.
    [40]吴佩文.植物精油类农药.世界农药,1999,21(6):23-26.
    [41]夏传国,陈杰林,李隆术.丹皮及其提取物对几种中药材储粮害虫的忌避作用研究.粮食储藏,2000,29(1):3-9.
    [42]肖洪美,屠康.香茅精油对两种主要储粮害虫的控制作用.粮食储藏,2008,3:8-11.
    [43]徐汉虹.杀虫植物与植物性杀虫剂.北京中国农业出版社,2001,8.
    [44]徐健,刘琴,殷向东,朱锦磊,祁健航,王艳.病原细菌在传媒蚊虫防治中的应用研究进展.江苏农业科学,2004,168-171.
    [45]薛瑞德,赵彤信.1987年以来白纹伊蚊的研究状况及其未来.中国媒介生物学及控制杂志,1994,5(5):392-397.
    [46]颜增光,将志胜,杜育哲,尚稚珍.光活化毒素α-T对棉铃虫和亚洲玉米螟离体水解酶系的影响.南开大学学报(自然科学版),2003,36(1):50-54.
    [47]杨念婉,李艾莲.植物精油应用于害虫防治研究进展.植物保护,2007,33(6):16-21.
    [48]杨频,马雅军,廉振民.五种植物精油熏杀致倦库蚊的效果.第二军医大学学报,2004,25(10):1094-1096.
    [49]叶春枚,呈荧,高建芳.艾熏治愈54例手指骨髓炎临床观察与实验研究.上海针灸,1988,2:7-8.
    [50]叶恭银,胡萃,龚和.昆虫卵黄发生及其激素调控的最新进展.见朱军等主编,生命科学研究与应用.杭州:浙江大学出版社,1996,401-407.
    [51]叶恭银,吕慧平,蒋彩英.昆虫卵黄蛋白分子的多样性与进化关系.见李典谟主编,走向二十一世纪的中国昆虫学.北京:中国科学技术出版社,2000,178-189.
    [52]尹庚明,孙宁,朱锦瞻,麦亦红,林华基,卞则梁.艾叶挥发性成分的提取及其化学成分的气相色谱/质谱分析.分析化学研究简报,1999,27(1):55-58.
    [53]张吉斌.蚊虫生物防制的研究进展.公共卫生与预防医学,2005,16(6):33-38.
    [54]张玲春,李国清,刘泽文.艾蒿抽提物对甜菜夜蛾产卵的影响.南京农业大学学报,2002,25(4):110-112.
    [55]张玲春,李国清,王科峰.艾蒿粗提物和几种淋洗物对甜菜夜蛾幼虫的作用.生物农药,2003a,42(5):42-44.
    [56]张玲春,刘泽文,李国清,董双林.艾蒿提取物及其不同柱层析馏分对甜菜夜蛾产卵行为的影响.农业学学报,2003b,5(2):59-63.
    [57]张兴.川楝素引致菜青虫中毒症状研究.西北农业大学学报,1993,21(1):27-30.
    [58]张映梅.我国白纹伊蚊和埃及伊蚊传播西尼罗病毒的实验研究.[博士学位论文].中国人民解放军军事医学科学院,2006.
    [59]赵春,李水清.艾蒿提取物的生物活性研究.湖北农业科学,2003,4:44-46.
    [60]赵卓,任炳忠.斑腿蝗科2种蝗虫卵子发生比较研究.吉林农业大学学报,2006,28(5):501-509.
    [61]浙江省平喘药研究协作组.艾叶油新的平喘有效成分的研究.中草药,1982,13(6):1-3.
    [62]周峰,秦路平,连佳芳,郑清明.艾叶的化学成分、生物活性和植物资源.药学实践杂志,2000,18(2):96-103.
    [63]Abdel-Sattar E,Zaitoun A A,Farag M A,EI Gayed S H,Harraz F M.Chemical composition,insecticidal and insect repellent activity of Schinus molle L.leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res, 2009, 25:1-10.
    [64]Aclé D, Brookes V J, Pratt G E, Feyereisen R. Activity of the corpora allata of adult female Leucophaea maderae: effect of mating and feeding. Arch Insect Biochem Physiol, 1990,14: 121-129.
    [65] Adams T S, Filipi P A, Yi S X. Effect of age, diet, diapause and juvenile hormone on oogenesis and the amount of vitellogenin and vitellin in the twospotted stink bug,Perillus bioculatus (Heteroptera: pentatomidae). J Insect Physiol, 2002,48: 477-486.
    [66] Adams T S, Gerst J W. Effect of diet on vitellogenin, vitellin and ecdysteroid levels during the second cycle of oogenesis in the housefly, Musca domestica. J Insect Physiol, 1993, 39: 835-843.
    [67] Adams T S, Gerst J W. Interaction between diet and hormones on vitellogenin levels in the housefly, Musca domestica. Int J Invertebr Reprod Dev, 1992,21: 91-98.
    [68] Adams T S, Gerst J W. The effect of pulse-feeding a protein diet on ovarian maturation, vitellogenin levels, and ecdysteroid titre in houseflies, Musca domestica,maintained on sucrose. Int J Invertebvr Reprod Dev, 1991,20: 49-57.
    [69]Aguirre S A, Frede S, Rubiolo E R, Canavoso L E. Vitellogenesis in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae), a vector of Chagas' disease. J Insect Physiol, 2008, 54: 393-402.
    [70]Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes,Anopheles, and Culex mosquitoes. Parasitol Res, 2006,99: 478-490.
    
    [71]Ammar M, Barbouche N, Hamouda M H. Leave extracts from Cestrum paraquii and Olea europea on longevity and growth of the locust Schistocerca gregaria. Med Fac Landbouww Univ Gent, 1995,60: 831-836.
    [72] Ansari M A, Razdan R K, Tandon M, Vasudevan P. Larvicidal and repellent actions of Dalbergia sissoo Roxb. (F. Leguminosae) oil against mosquitoes. Bioresour Technol,2000,73:207-211.
    [73]Azuma M, Ohta Y, Kanazawa H. Identification and development changes in plasma proteins of the yellow-spotted longicom beetle, Psaeothera hilaris (Pascoe) (Coleoptera: Cerambyeidae). Appl Entomol Zool, 1993,28: 141-149.
    [74]Bassolé I H, Guelbeogo W M, Nébié R, Costantini C, Sagnon N, Kabore Z I, Traoré S A. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia, 2003,45(1): 23-26.
    [75]Boggs C L, Ross C L. The effect of adult food limitation on life history traits in Speyeria mormonia (Lepidoptera: Nymphalidae). Ecology, 1993,21: 433-441.
    [76]Bownes M, Blair M. The effects of a sugar diet and hormones on the expression of the Drosophila yolk protein genes. J Insect Physiol, 1986, 32: 493-501.
    [77]Bulusu S, Chakravarty I. Effect of subacute administration of three organophosphorus pesticides on the hepatic phosphatases under various nutritional conditions. Environ Res, 1987,44:126-135.
    [78] Chaubey M K. Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). J Oleo Sci, 2008,57(3):171-179.
    [79]Chen A C, Kim, R T, Mayer, R T. Vitellogenisis in stablefly Stomoxys calcitraus,Comp Biochem Physiol, 1987, 88: 897-903.
    [80]Chen L, Zhu J, Sun G, Raikhel A S. The early gene broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. J Mol Endocrinol, 2004, 33(3): 743-761.
    [81] Cheng S S, Chang H T, Lin C Y, Chen P S, Huang C G, Chen W J, Chang S T.Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci, 2009, 65(3):339-343.
    [82]Cho W L, Tsao S M, Hays A R, Walter R, Chen J S, Snigirevskaya E S, Raikhel A S. Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is produced as a latent extraovarian precursor. J Biol Chem, 1999, 274 (19):13311-13321.
    [83]Choochote W, Chaithong U, Kamsuk D, Jitpakdi A, Tippawangkosol P, Tuetun B,Champakaew D, Pitasawat B. Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia, 2007, 78: 359-364.
    [84]Daumal J, Boinel H. Variability in fecundity and plasticity of oviposition behaviour in Anagasta kuehniella (Lepidoptera: Pyralidae). Annu Entomol Soc Am, 1994, 87: 250-256.
    [85] de Omena M C, Navarrob D M AF, de Paulac J E, Lunaa J S, Ferreira de Limaa M R, and Sant'Ana A E G. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol, 2007,98(13): 2549-2556.
    [86] Dong S Z, Ye G Y, Zhu J Y, Chen Z X, Hu C, Liu S S. Vitellin of Pteromalus puparum (Hymenoptera: Pteromalidae), a pupal endoparasitoid of Pieris rapae (Lepidoptera: Pieridae): biochemical characterization, temporal patterns of production and degradation. J Insect Physiol, 2007, 53: 468-477.
    [87]Dorn A, Rademacher J M, Sehn E. Effects of azadirachtin on the moulting cycle,endocrine system, and ovaries in last-instar larvae of the milkweed bug, Oncopeltus fasciatus. J Insect Physiol, 1986, 32(3): 231-238.
    [88]Dorn A, Rademacher J M, Sehn E. Effects of azadirachtin on the moulting cycle,endocrine system, and avaries in last-instar larvae of the milkweed bug, Oncopeltus fasciatus. J Insect Physiol, 1985, 32(3): 231-238.
    
    [89]Eckelbarger K J. Oogenesis and oocytes. Hydrobiologia, 2005, 535: 179-198.
    [90] Engelmann F. Insect vitellogenin: identification, biosynthesis and role in vitellogenesis. Annu Rev Entomol, 1979,14: 49-108.
    [91] Engelmann F. Juvenile-hormone controlled synthesis of female specific protein in the cockroach Leucophaea maderae. Arch Biochem Biophys, 1971,145: 439-447.
    [92] Fill A. Structural and functional modifications of the nucleus during oogenesis in the mosquito Aedes aegypti. J Cell Sci, 1974,14: 51-67.
    [93]Friesen K J, Kaufman W R. Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. J Insect Physiol,2002,48: 773-782.
    [94]Fuchs M S, Fong W F. Inhibition of blood digestion by α-amanitin and actinomycin D and its effect on ovarian development in Aedes aegypti. J Insect Physiol, 1976, 22:465-471.
    [95]Gelbic I, Sula J, Socha R. (R, S)-9-(2, 3-dihydroxypropy) adenine induced sterility in females of the red cotton bug, Dsydercus cingulatus F. (Her., Pyrrhocoridae). J Appl Entomol, 1991,111:254-262.
    [96]Germinara G S, Rotundo G, Cristofaro A De. Repellence and fumigant toxicity of propionic acid against adults of Sitophilus granarius (L.) and S. oryzae (L.). J Stored Prod Res, 2007,43(3): 229-233.
    [97]Giorgi F, Bradley J T, Vignali R, Mazzini M. An autoradiographic analysis of vitellogenin synthesis and secretion in the fat body of the stick insect Bacillus rossius.Tissue Cell, 1989,21:543-558.
    [98]Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K. Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res, 2008, 103:691-695.
    [99]Guilvard E, De R M, Rioux J A. Changes in ecdysteroid and juvenile hormone titers correlated to the initiation of vitellogenesis in two Aedes species (Diptera, Culicidae).Gen Comp Endocrinol, 1984, 53(2): 218-223.
    [100]Hagedorn H H, Kunkel J G. Vitellogenin and vitellin in insects. Annu Rev Entomol,1979, 24: 475-505.
    [101]Hagedorn H H. The endocrinology of the adult female mosquito. In: Harris K F eds., Advance in Disease Vector Research. New York: Springer-Verlag, 1994, 109-148.
    [102] Handler A M. Developmental regulation of yolk protein gene expression in Anastrepha suspesae. Arch Insect Biochem Physiol, 1997, 36: 25-35.
    [103]Harborne J B. Secondary plant products: encyclopedia of plant physiology.Phytochemistry, 1980,19 (12): 2803-2804.
    
    [104] Harumichi S. Review: Functions of spices. (日)香料. 1999, 203: 97-106.
    [105]Highnam K C, Hill L, Mordue E. The endocrine system and oocyte growth in Schistocerca in relation to starvation and frontal ganglionectomy. J Insect Physiol,1966,12: 977-994.
    [106]Hirai M, Watanabe D, Kiyota A, Chinzei Y. Nucleotide sequence of vitellogenin mRNA in the bean bug, Riptortus clavatus: analysis of proeessing in the fat body and ovary. Insect Biochem Mol Biol, 1998,28: 537-547.
    
    [107]Hotchkin P G, Fallon A M. Ribosome metabolism during the vitellogenic cycle of the mosquito, Aedes aegypti. Biochem Biophys Acta, 1987,924(2): 352-359.
    [108] Huang Y, Lan S L, Ho S H. Bioactivities of essential oil form Elletaria cardamomum(L.) Maton. to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Stored Prod Res, 2000, 36(1): 107-117.
    [109] Huang Y, Tan J M W L, Kini R, Ho M S H. Toxic and antifeedant action of Nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J stored Prod Res, 1997, 33(4):289-298.
    [110] Hussein K T. Pathological alterations in the ovaries of Culex pipiens induced by fixed oil extracts from Thevetia peruvine, Datura stramonium and Acacia SP. J Egypt Soc Parasitol, 1999,29(3): 997-1004.
    [111]Izumii S, Yano K, Yamamoto Y, Takahashi S Y. Yolk Proteins from insect eggs:structure, biosynthesis and programmed degradation during embryogenesis. J Insect Physiol, 1994,40:735-746.
    [112]Jarial M S. Toxic effect of Garlic Extracts on the eggs of Aedes aegypti (Diptera,Culicidae), a scanning electron microscopic study. J Med Entomol, 2001, 38(3):446-450.
    [113]Kageyama Y, Kinoshit T, Umesono Y, Hatakeyama M, Oishi K. Cloning of cDNA for vitellogenin of Athalia rosae (Hymenoptera) and characterization of the vitellogenin gene expression. Insect Biochem Mol Biol, 1994,24: 599-605.
    [114]Karlsson B, Wickman P O. Increase in reproductive effort as explained by body size and resource allocation in the speckled wood butterfly, Pararge aegeria. Funct Ecol,1990,4:6009-6017.
    [115]Kaulenas, M S. Insect accessory reproductive structure: function, structure and development. Berline: Springer-Verlag, 1992,1-206.
    [116]Keikichi U, Daijiro O, Takashi U, Masako N, Yuki E, Akihiro Fukunaga, Eiki K.Preoviposition activation of cathepsin-like proteinases in degenerating ovarian follicles of the mosquito Culex pipiens pallens. Dev Biol, 2001,237: 68-78.
    [117]Kéíta S M, Vincent C, Schmit J, Arnason J T, Belanger A. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculates (Fab.) (Coleoptera: Bruchidae). J Stored Prod Res, 2001, 37: 339-349.
    [118]Ketoh G K, Koumaglo H K, Glitho I A. Inhibition of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) development with essential oil extracted from Cymbopogon schoenanthus L. Spreng. (Poaceae), and the wasp Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae). J Stored Prod Res, 2005,41(4): 363-371.
    [119]Kim Y G, Krafsur E S. In vivo and in vitro effeets of 20-hydroxyecdysone and methoprene on diapause maintenance and reproductive development in Musca autumnalis. Physiol Entomol, 1995,20: 52-58.
    [120]Kiran S R, Reddy A S, Devi P S, Reddy K J. Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia DC. Pest Manag Sci, 2006, 62(11): 1116-1121.
    [121]Klowden M J. Initiation and termination of host-seeking inhibition in Aedes aegypti during oocyte maturation. J Insect Physiol, 1981, 27: 799-803.
    [122]Koller C N, Raikhel A S. Initiation of vitellogenin uptake and protein synthesis in the mosquito (Aedes aegypti) ovary in response to a blood meal. J Insect Physiol,1991,37:703-711.
    [123]Kunkel JG, Nordin J H. Yolk proteins. In: Kerkut G A, Gilbert L I eds.,Comprehensive bisect Physiology, Biochemistry and Pharmacology, Vol. 1. Oxford:Pergamon Press, 1985, 83-111.
    [124]Lamnissou K. Nutritional effects of vitellogenesis in species of Drosophilla. J Entomol Sci, 2000, 35: 452-464.
    [125] Lee J M, Hatakeyama M, Oishi K. A simple and rapid method for cloning insect vitellogenin cDNAs. Insect Biochem Mol Biol, 2000b, 30: 189-194.
    [126] Lee J M, Nishimori Y, Hatakeyama M, Bae T W, Oishi K.Vitellogenin of the cicada Graptopsaltria nigrofuscala (Homoptera): analysis of its primary structure. Insect Biochem Mol Biol, 2000a, 30:1-7.
    [127] Lee S D, Lee S S, Kim K R. Purification and characterization of yolk protein-2 from the fall Webworm, Phantria cunea Drury. Arch. Insect Bioehem Physiol, 1995, 28:113-129.
    
    [128]Lu Y H, Hagedorn H H. Egg development in the mosquito Anopheles albimanus. Int J Invert Reprod Dev, 1986,9: 79-94.
    [129]Lucantoni L, Giusti F, Cristofaro M, Pasqualini L, Esposito F, Lupetti P, Habluetzel A.. Effects of a neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue Cell, 2006,38: 361-371.
    [130] Ma M, He G, Newton P B, Borkovec A B. Monitoring Aedes aegypti vitellogenin production and uptake with hybridoma antibodies. J Insect Physiol, 1986, 32: 207-213.
    [131] Ma M, Newton P B, He G, Kelly T J, Hsu H T, Masler E P, Borkovec A B.Development of monoclonal antibodies for monitoring Aedes atropalpus vitellogenesis. J Insect Physiol, 1984,30: 529-536.
    [132]Maciel M V, Morais S M, Bevilaqua C M L, Camurca-Vasconcelos A L F, Costaa C T C, Castro C M S. Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasitol, 2006,140(1): 98-104.
    [133]Mahmood F, Walters L L, Guzman H, Tesh R B. Effect of ivermectin on the ovarian development of Aedes aegypti (Diptera: Culicidae). J Med Entomol, 1991, 28(5): 701-707.
    [134] Martinez T, Wheeler D. Identification of vitellogenin in the ant, Camponotus festinales: changes in hemolymph proteins and fat body development in workers.Arch Insect Biochem Physiol, 1991,17: 143-155.
    [135] Medina P, Budia F, Estal P D, Vi(?)uela E. Influence of azadirachtin, a botanical insecticide, on Chrysoperla carea (Stephens) reproduction: toxicity and ultrastructural approach. J Econ Entomol, 2004,97(1):43-50.
    [136]Melo A C A, Valle D, Maehado E A, Salerno A P, Paiva-Silva G O, Cunha E S NL,de Souza W, Masuda H. Synthesis of vitellogenin by the follicle cells of Rhodnius prolixus. Insect Biochem Mol Biol, 2000, 30: 549-557.
    [137]Mer G G Experimental study on the development of the ovary in Anopeles elatus,Edw. (Dipt. Culic). Bull Entomol Res, 1936,27: 351-359.
    [138]Miao S T, Bazzaz F A. Responses to nutrient pulses of two colonizers requiring different disturbance frequencies. Ecology, 1990, 71: 2166-2178.
    [139]Mkolo M N, Magano S R. Repellent effects of the essential oil of Lavendula angustifolia against adults of Hyalomma marginatum rufipes. J S Afr Vet Assoc, 2007,78(3):149-152.
    [140]Moharramipour S, Taghizadeh A, Meshkatalsadat M H, Talebi A A, Fathipour Y.Repellent and fumigant toxicity of essential oil from Thymus persicus against Tribolium castaneum and Callosobruchus maculatus. Commun Agric Appl Biol Sci,2008, 73(3): 639-642.
    [141]Moravvej G, Abbar S. Fumigant toxicity of citrus oils against cowpea seed beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Pak J Biol Sci, 2008, 11(1):48-54.
    [142] Mullens B A, Holbrook F R. Temperature effects on the gonotrophic cycle of Culicoides variipennis (Diptera: Ceratopogonidae). J Am Mosquito Control Assoc,1991,7:588-591.
    [143]Namrata P, Mittal P K, Singh O P. Action of essential oils from plants against the vector mosquitoes Anopheles (Liston), Culex quinquefascitus (Say) and Aedes aegypti (L.). Int Pest Control, 2000,42(2), 53-55.
    [144]Nathan S S, Kalaivani K, Chung P G The effects of azadirachtin and nucleopolyhedrovirus on midgut enzymatic profile of Spodoptera litura Fab. (Lepidoptera: Noctuidae). Pestic Biochem Physiol, 2005a, 83:46-57.
    [145]Nathan S S, Kalaivani K, Murugan K, Chung P G The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guene'e) the rice leaffolder.Pestic Biochem Physiol, 2005b, 81: 113-122.
    [146] Nathan S S. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolders Cnaphalocrocis medinalis (Guene'e) (Lepidoptera:Pyralidae). Pestic Biochem Physiol, 2006, 84(2): 98-108.
    [147]Negahban M, Moharramipour S, Sefidkon F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stored Prod Res, 2007,43(2): 123-128.
    [148]Ni X Z, McCaffrey J P, Stoltz R L. Effects of postdiapause adult diet and temperature on oogenesis of the cabbage seedpod weevil (Coleoptera: Curculionidae).J Econ Entomol, 1990, 83: 2246-2251.
    [149] Nose Y, Lee J M, Ueno T. Cloning of cDNA for vitellogenin of the parasitoid wasp,Pimpla nipponica (Hymenoptera: Apocrita: Ichneumonidae): vitellogenin primary structure and evolutionary considerations. Insect Biochem Mol Bol, 1997, 27:1047-1056.
    [150]Odalo J O, Omolo M O, Malebo H, Angira J, Njeru P M, Ndiege I O, Hassanali A.Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop, 2005, 95: 210-218.
    [151]Ogendo J O, Kostyukovsky M, Ravid U, Matasyoh J C, Deng A L, Omolo E O,Kariuki S T, Shaaya E. Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J Stored Prod Res, 2008, 44(4): 328-334.
    [152]Osire E O, Law J H. Studies on binding and uptake of vitellogenin by follicles of the tobacco homworm, Manduca Sexta. Arch Insect Biochem Physiol, 1986, 3: 513-528.
    [153]Ozyardimci B, Cetinkaya N, Denli E, Ic E, Alabay M. Inhibition of egg and larval development of the Indian meal moth Plodia interpunctella (Hübner) and almond moth Ephestia cautella (Walker) by gamma radiation in decorticated hazelnuts. J Stored Prod Res, 2006,42(2): 183-196.
    [154]Pan M L, Bell W J, Telfer W H. Vitellogenin blood protein synthesis by insect fat body. Science, 1969,165: 393-394.
    [155]Papachristos D P, Stamopoulos D C. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera:Bruchidae). J Stored Prod Res, 2002, (38): 117-128.
    [156]Park I K, Kim J N, Lee Y S, Lee S G, Ahn Y J, Shin S C. Toxicity of plant essential oils and their components against Lycoriella ingenua (Diptera: Sciaridae). J Econ Entomol, 2008,101(1):139-144.
    [157]Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res, 2008, 22(2):274-278.
    [158]Peferoen M, de Loof A. Synthesis of vitellogenin and nonvitellogenic yolk proteins by the fat body and the ovary of Letinotarsa decemlineata. Comp Biochem Physiol,1986, 83B: 251-254
    [159]Prajapati V, Tripathi A K, Aggarwal K K, Khanuja S P S. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi,Aedes aegypti and Culex quinquefasciatus. Bioresour Technol, 2005, 96(16):1749-1757.
    [160]Pushpanathan T, Jebanesan A, Govindarajan M. Larvicidal, ovicidal and repellent activities of Cymbopogan citratus Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera : Culicidae). Trop Biomed, 2006,23(2): 208-212.
    [161]Raikhel A S, Kokoza V A, Zhu J, Martin D, Wang S F, Li C, Sun G, Ahemd A,Dittmer N, Attardo G. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol,2002, 32(10): 1275-1286.
    [162]Raikhel, A S, Dhadialla, T S. Accumulation of yolk proteins in insect oocyte. Annu Rev Entomol, 1992, 37: 217-251.
    [163]Raikhel, A S, Lea A O. Control of follicular epithelium development and vitelline envelope formation in the mosquito; role of juvenile hormone and 20-hydroxyecdysone. Tissue Cell, 1991,23: 577-591.
    [164]Raikhel, A.S, Lea, A.O. Abnormal vitelline envelope induced by unphysiological doses of ecdysterone in Aedes aegypti. Physiol Entomol, 1982, 7: 55-64.
    [165]Raikhel, A.S, Lea, A.O. Previtellogenic development and vitellogenin synthesis in the fat body of a mosquito: an ultrastructural and immunochemical study. Tissue Cell,1983,15:281-299.
    [166]Raikhel, A.S, Lea. A O. Control of follicular epithelium development and vitelline envelopeFormation in the mosquito: role of juvenile hormone and 20-hydroxyecdysone. Tissue Cell, 1991, 23: 1-4.
    [167]Rajkumar S, Jebanesan A. Mosquitocidal activities of octacosane from Moschosma polystachyum Linn, (lamiaceaw). J Ethnopharmacol, 2004, 90: 87-89.
    [168]Raju M, Thakur S. Action of flower extract of Butea monosperma on the ovaries of Dysdercus simili (Heteroptera). Int Pest Control, 1992, 34: 154.
    [169] Ram R N, Singh S K. Carbofuran-induced histopathological and biochemical changes in liver of the teleost fish, Channa punctatus (Bloch). Ecotoxicol Environ Safety, 1988,16: 194-201.
    [170]Riehle M A, Brown M R. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res, 2002,308: 409-420.
    [171] Roth T F, Porter K R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol, 1964,20: 313-332.
    [172]Sakharov I Y, Makarova I E, Ermolin G A. Chemical modification and composition of tetrameric isozyme K of alkaline phosphatase from harp seal intestinal mucosa.Comp Biochem Physiol, 1989,92: 119-122.
    [173]Sappington T W, Hays A R, Raikhel A S. Mosquito vitellogenin receptor:purification, developmental and biochemical characterization. Insect Biochem Mol Biol, 1995, 25(7): 807-817.
    [174]Sappington T W, Raikhel A S. Aedes aegypti. In: Knobil E, Neill J D eds.,Encyclopedia of reproduction, vol 1. San Diego: Academic Press, 1999, 61-77.
    [175]Sayah F, Fayet C, Idaomar M, Karlinsky A. Effect of azadirachtin on vitellogenesis of Labidura riparia (Insect Dermaptera). Tissue Cell, 1996,28(6): 741-749.
    [176]Sheehan D, Meade G, Foley, V M, Down C A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J, 2001, 360: 1-16.
    [177]Shimizu C, Hori M. Repellency and toxicity of troponoid compounds against the adzuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae). J Stored Prod Res, 2009,45(1): 49-53.
    
    [178]Skou J C. The Na-K-ATPase. J Bioenerg Biomembr, 1992, 24 (3): 249-261.
    [179]Snelson J T. Grain Protectants (ACIAR Monograph No. 3). Fyshwick, ACT:Canberra Publishing and Printing Co, 1987,448.
    [180]Socha R, Sala J, Kordri D, Gelbic I. Hormonal control of vitellogenin synthesis in Pyrrhocoris apterus (L.) (Heteroptera). J Insect Physiol, 1991,37: 805-816.
    [181]Soumaré M L, Ndiaye M. Ultrastructural studies of mosquito ovogenesis. Tissue Cell, 2005, 37:117-224.
    [182]Stamopoulosa D C, Damosb P, Karagianidou G Bioactivity of five monoterpenoid vapours to Tribolium confusum (du Val) (Coleoptera: Tenebrionidae) . J Stored Prod Res., 2007,43(4): 571-577.
    [183]Strangways-Dixon J. The relationship between nutrition, hormones and reproduction in the blowfly Calliphora erythocephala. 1. Selective feeding in relation to the reproductive cycle, the corpus allatum volume and fertilization. J Exp Biol, 1961, 38: 225-235.
    [184]Su T, Mulla M S. Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Cont Asso,1998,14(2): 204-209.
    [185] Tan R X, Jia Z J. Eudesmanolides and other constituents from Artemisia argyi. Plant Medica, 1992, 58(4): 370-372.
    [186]Telfer W H. Immunological studies of insect metamorphosis II. The role of a sex-limited blood protein in egg formation by the cecropia silkworm. J Gen Physiol, 1954, 37: 539-558.
    [187]Thomas F R, Keith R P. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J Cell Biol, 1964,20:313-330.
    [188]Tobe S S, Chapman C S. The effects of starvation and subsequent feeding on juvenile hormone synthesis and oocyte growth in Schistocerca americana gregaria. J Insect Physiol, 1979,25: 701-708.
    [189]Traboulsi A F, Taoubi K, EI-Haj S, Bessiere J M, Rammal S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci, 2002, 58(5): 491-495.
    [190]Trewitt P M, Heilmann L J, Degrugillier S S, Kumaran A K. The boll weevil vitellogenin gene: nucleotide sequence, strueture, and evolutionary relationship to nematode and vertebrate vitellogenin genes. J Mol Evol, 1992, 34: 478-492.
    [191]Tripathi A K, Prajapati V, Affarwal K K, Kumar S. Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castanaeum (Coleoptera: Tenebrionidae). J Econ Entomol, 2001, 94(4):979-983
    [192]Tripathi A K, Prajapati V, Aggarwal K K, Khanuja S P, Kumar S. Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J Econ Entomol, 2000, 93(1): 43-47.
    [193]Tripathi A K, Prajapati V, Verma N, Bahl J R, Bansal R P, Khanuja S P, Kumar S. Bioactivities of the leaf essential oil of Curcuma longa on three species of stored-product beetles (Coleoptera). J Econ Entomol, 2002, 95(1): 183-189.
    [194]Tu Z, Byrne D N, Hagedorn H H. Vitellin of the sweet potato whitefly, Bemisia tabaci: biochemical characterization and titer changes in the adult. Arch Insect Bioehem Physiol, 1997,34: 223-227.
    [195] Tunc, B. M. Berger, F. Erler, Dag F. Ovicidal activity of essential oils from five plants against two stored-product insects. J Stored Prod Res, 2000, 36:161-168.
    [196]Tunón H, Thorsell W, Mikiver A, Malander I. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia, 2006, 77 (4): 257-261.
    [197]Ujváry I, Matolcsy G, Lynn M. Inhibition of spiracle and crochet formation and juvenile hormone activity of isothiocyanate derivatives in the tobacco hornworm,Manduca Sexta. Pestic Biochem Physiol, 1989, 35 (3): 259-274.
    [198] Van Handel E, Lea A O. Vitellogenin synthesis in blood-fed Aedes aegypti in the absence of the head, thorax and ovaries. J bisect Physiol, 1984,30: 871-875.
    [199] Van Vianen A, van Lenteren J C, Van Vianen A. The parasite-host relationship between Encarsia formosa (Hymenoptera, Aphelinidae) and Trialeurodes vaporariorum (Homoptera, Aleyrodidae): XV. Oogenesis and oviposition of Encarsia formosa. J Appl Entomol, 1986, 102: 130-139.
    [200] Visser J H. Host odor perception in phytophagous insects. Annu Rev Entomol, 1986,31: 121-144.
    [201] Wang J, Zhu F, Zhou X M, Niu C Y, Lei C L. Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res, 2006,42: 339-347.
    [202] Wang Z W, Davey K G. Characterization of yolk protein and its receptor on the oocyte membrane in Rhodnius prolixus. Insect Biochem Mol Biol, 1992, 22: 757-767.
    [203] Weaver R J. Effect of food and water availability and NCA-1 section upon juvenile hormone biosynthesis and oocyte development in adult female Periplaneta Americane. J Insect Physiol, 1984, 30: 831-838.
    [204] Wheeler D, Liebig J, Holldobler B. Atypical vitellins in ponerine ants (Formicidae:Hymenoptera). J Insect Physiol, 1999,45: 287-293.
    [205] Wheeler D. The role of nourishment in oogenesis. Annu Rev Entomol, 1996, 41:407-431.
    [206]Woodhead A P, Stay B. Neural inhibition of corpora allata in protein-deprived Diploptera punctata. J Insect Physiol, 1989, 35: 415-421.
    [207] Ye GY, Hu C, Gong H. Effect of high temperature on vitetllogensis in the Japanese oak silkworm, Antheraea yamamai (Lepidoptera: Saturniidae). Entomol Sin, 1999, 6:242-252.
    [208] Yin C M, Zou B X, Yi S X. Ecdysteroid activity during oogenesis in the black blowfly, Phormia regina (Meigen). J Insect Physiol, 1990, 36: 375-382.
    [209]Zapata N, Budia F, Vi(?)uela E, Medina P. Insecticidal effects of various concentrations of selected extractions of Cestrum parqui on adult and immature Ceratitis capitata. J Econ Entomol, 2006, 99(2): 359-365.
    [210]Zeng F, Shu S, Park Y I. Vitellogenin and egg production in the moth, Heliothsis virescens, Arch Insect Biochem Physiol, 1997, 34: 287-300.
    [211]Zhai Q H, Postlethwait, J H, Bodley, J W. Vitellogenin synthesis in the lady beetle Coccinella septempunctata. Insect Biochem, 1984,14: 299-305.
    [212]Ziegler R, Engler D L, Bartnek F, Van Antwerpen R, Bluestein H A, Gilkey J C,Yepiz-Plascencia G M. A new type of highly polymerized yolk protein from the cochineal insect Dactylopius confuses. Arch Insect Biochem Physiol, 1996, 31:273-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700