amiRNA介导抗性转基因烟草植株的抗病性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人工合成的microRNA(amiRNA)的应用为植物抗病育种提供了新的途径。microRNA(miRNA)是一类由核基因编码的,转录后在细胞质中经一系列剪切而形成的小RNA,它能指导靶基因的剪切或翻译抑制来调控基因的表达。amiRNA技术是在内源基因沉默机制上发展起来的,利用该策略,设计特异的amiRNA就可以使靶基因发生高效的基因沉默。理论上讲,运用该策略也能用于培育抗病毒的转基因植株。本研究中,利用拟南芥的三个内源的miRNA前体(pre-miR159a,pre-miR167b和pre-miR171a)为骨架,设计特异的amiRNA,分别靶向马铃薯Y病毒(Potato virus Y, PVY)编码沉默抑制子的HC-Pro基因和马铃薯X病毒(Potato virus X, PVX)编码沉默抑制子的TGBp1/p25(p25)基因,并对所得的T1代转基因植株进行抗病性分析。主要实验结果如下:
     1)分别培育了三类针对PVY和PVX病毒的转基因植株,每类植株由不同的改造后的前体转化而来。Northern blot结果表明,三类转基因植株均能产生amiRNA,但效率不同,其中pre-miR159a植株的效率最高。
     2)病毒接种实验证明,三类转基因植株都具有一定的病毒抗性。ELISA和荧光定量PCR分析表明,植株的抗病性与amiRNA的表达量呈正相关。
     3)5′RLM-RACE实验证明,amiRNA能准确的指导靶序列的剪切。对接种后的转基因植株的Northern blot分析表明,病毒RNA的含量与amiRNA的表达水平呈负相关。
     4)不同株系的病毒接种实验表明,所得的amiRNA转基因植株对其所针对的病毒具有广谱的抗性,但其抗性水平受到靶序列的影响。
     5)表达pre-amiRNA二聚体的转基因植株能同时产生两类amiRNA,并能介导对PVX和PVY的双重抗性。
     6)对单抗植株的T2代进行抗性分析表明,混合接种时不发生协同效应,且其抗性具有可遗传性。
Recently, the application of artificial microRNA (amiRNA) strategy has supplied a new way for generating virus-resistant transgenic plant. MicroRNAs (miRNAs) processed from nuclear-encoded transcripts control the expression of target transcripts by directing cleavage or translational inhibition. amiRNAs that exploit this endogenous gene silencing mechanism can be designed to target any gene of interest and provide a highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. Thus, this strategy can be used to obtain virus-resistant transgenic plant in theory. Here, using Arabidopsis thaliana miR159a, miR167b, and miR171a precursors as backbones, we designed two types of amiRNAs targeting sequences encoding the silencing suppressor HC-Pro of Potato virus Y (PVY) and p25 of Potato virus X (PVX), respectively. Then, we investigated the virus-resistance of the T1 generation, and the main results are as follows:
     1) Three kinds of transgenic tobacco plants harboring different modified backbones which target to PVY or PVX were obtained. Northern blot assays revealed that all of them can generate amiRNAs, but with different efficiency. The plant with the pre-miR159a backbone was the most effective in generating amiRNAs.
     2) Through virus-challenging experiment, it was showed that all three kinds of transgenic plants could resist to their virus to some extent. ELISA assays and quantitative real-time RT-PCR have showed that the different resistance levels of the transgenic plants were correlated with the expression levels of amiRNAs.
     3) 5′RLM-RACE assay has showed that amiRNAs could mediated a precise cleavage of their target viral RNAs. Northern blot was carried out in the transgenic plants and the results indicated that the expression level of amiRNA was inversely correlated to the virus RNA accumulation.
     4) Inoculated the transgenic plants with different virus isolations of the one kind of virus. It was revealed that transgenic plants could present a wide range of resistance against their target viruses. However, the resistance was strongly influenced by the complementarity of the target sequence.
     5) Two different amiRNAs could be generated from transgenic plants with a dimeric amiRNA precursor, and these amiRNAs mediated double resistance against both PVX and PVY.
     6) The virus-challenging experiment of the T2 generation transgenic plants with single virus resistance verified that the resistance mediated by amiRNAs is hereditable, and when inoculated with mixed viruses, no synergistic effect was observed.
引文
Abhary, M.K., Anfoka, G.H., Nakhla, M.K., and Maxwell, D.P. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 2006, 151, 2349-2363.
    Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121, 207-221.
    Alvarez, J.P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., and Eshed, Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 2006, 18, 1134-1151.
    Ameres, S.L., Martinez, J., and Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130, 101-112.
    Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H., and Vance, V.B. A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 1998, 95, 13079-13084.
    Ares, X., Calamante, G., Cabral, S., Lodge, J., Hemenway, P., Beachy, R.N., and Mentaberry, A. Transgenic plants expressing potato virus X ORF2 protein (p24) are resistant to tobacco mosaic virus and Ob tobamoviruses. J Virol 1998, 72, 731-738.
    Audy, P., Palukaitis, P., Slack, S.A., and Zaitlin, M. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol Plant Microbe Interact 1994, 7, 15-22.
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297.
    Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356-363.
    Baulcombe, D. RNA silencing. Trends Biochem Sci 2005, 30, 290-293.
    Bazzini, A.A., Asurmendi, S., Hopp, H.E., and Beachy, R.N. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol 2006, 87, 1005-1012.
    Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999, 11, 781-792.
    Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W., and Baulcombe, D.C. Viral pathogenicity determinants are suppressors of transgene silencingin Nicotiana benthamiana. EMBO J 1998, 17, 6739-6746.
    Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320, 1185-1190.
    Bucher, E., Lohuis, D., van Poppel, P.M., Geerts-Dimitriadou, C., Goldbach, R., and Prins, M. Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 2006, 87, 3697-3701.
    Carrington, J.C., and Ambros, V. Role of microRNAs in plant and animal development. Science 2003, 301, 336-338.
    Castanotto, D., and Rossi, J.J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009, 457, 426-433.
    Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004, 303, 2022-2025.
    Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000, 101, 543-553.
    Davies, C., Hills, G., and Baulcombe, D.C. Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X. Virology 1993, 197, 166-175.
    Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., and Voinnet, O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 2006, 313, 68-71.
    Duan, C.G., Wang, C.H., Fang, R.X., and Guo, H.S. Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 2008, 82, 11084-11095.
    Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 2003, 13, 1768-1774.
    Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 2005, 15, 2038-2043.
    Gan, J., Tropea, J.E., Austin, B.P., Court, D.L., Waugh, D.S., and Ji, X. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 2006, 124, 355-366.
    Gargouri-Bouzid, R., Jaoua, L., Rouis, S., Saidi, M.N., Bouaziz, D., andEllouz, R. PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol Biotechnol 2006, 33, 133-140.
    Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432, 235-240.
    Guo, H.S., Xie, Q., Fei, J.F., and Chua, N.H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 2005, 17, 1376-1386.
    Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18, 3016-3027.
    Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125, 887-901.
    Jan, F.J., Fagoaga, C., Pang, S.Z., and Gonsalves, D. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 2000, 81, 2103-2109.
    Jones-Rhoades, M.W., and Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14, 787-799.
    Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 2006, 57, 19-53.
    Kang, B.C., Yeam, I., and Jahn, M.M. Genetics of plant virus resistance. Annu Rev Phytopathol 2005, 43, 581-621.
    Kasschau, K.D., and Carrington, J.C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 1998, 95, 461-470.
    Khvorova, A., Reynolds, A., and Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115, 209-216.
    Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005, 6, 376-385.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415-419.
    Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J.,Bartel, D.P., Linsley, P.S., and Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769-773.
    Lin, S.S., Wu, H.W., Elena, S.F., Chen, K.C., Niu, Q.W., Yeh, S.D., Chen, C.C., and Chua, N.H. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 2009, 5, e1000312.
    Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 2003, 426, 465-469.
    Llave, C., Kasschau, K.D., Rector, M.A., and Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002, 14, 1605-1619.
    Lomonossoff, G.P. Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 1995, 33, 323-343.
    Ma, E., MacRae, I.J., Kirsch, J.F., and Doudna, J.A. Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 2008, 380, 237-243.
    MacRae, I.J., Zhou, K., and Doudna, J.A. Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 2007, 14, 934-940.
    Macrae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams, P.D., and Doudna, J.A. Structural basis for double-stranded RNA processing by Dicer. Science 2006, 311, 195-198.
    Mallory, A.C., Bartel, D.P., and Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 2005, 17, 1360-1375.
    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004, 15, 185-197.
    Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 2000, 19, 5194-5201.
    Moissiard, G., and Voinnet, O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 2006, 103, 19593-19598.
    Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski,S., Weigel, D., and Baulcombe, D. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 2009.
    Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M., Nikic, S., Picault, N., et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 2000, 101, 533-542.
    Niu, Q.W., Lin, S.S., Reyes, J.L., Chen, K.C., Wu, H.W., Yeh, S.D., and Chua, N.H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 2006, 24, 1420-1428.
    Noris, E., Lucioli, A., Tavazza, R., Caciagli, P., Accotto, G.P., and Tavazza, M. Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol 2004, 85, 1745-1749.
    Parizotto, E.A., Dunoyer, P., Rahm, N., Himber, C., and Voinnet, O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 2004, 18, 2237-2242.
    Pooggin, M., Shivaprasad, P.V., Veluthambi, K., and Hohn, T. RNAi targeting of DNA virus in plants. Nat Biotechnol 2003, 21, 131-132.
    Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002, 21, 5864-5874.
    Qu, J., Ye, J., and Fang, R. Artificial microRNA-mediated virus resistance in plants. J Virol 2007, 81, 6690-6699.
    Ribeiro, S.G., Lohuis, H., Goldbach, R., and Prins, M. Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 2007, 81, 1563-1573.
    Ru, P., Xu, L., Ma, H., and Huang, H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 2006, 16, 457-465.
    Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18, 1121-1133.
    Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. Specific effects of microRNAs on the plant transcriptome. Dev Cell 2005, 8, 517-527.
    Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D.Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199-208.
    Simon-Mateo, C., and Garcia, J.A. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 2006, 80, 2429-2436.
    Song, J.J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J., and Joshua-Tor, L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 2003, 10, 1026-1032.
    Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004, 305, 1434-1437.
    Sunkar, R., and Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 2004, 16, 2001-2019.
    Tagami, Y., Inaba, N., Kutsuna, N., Kurihara, Y., and Watanabe, Y. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res 2007, 14, 227-233.
    Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 2004, 18, 1187-1197.
    Vazquez Rovere, C., del Vas, M., and Hopp, H.E. RNA-mediated virus resistance. Curr Opin Biotechnol 2002, 13, 167-172.
    Voinnet, O., Lederer, C., and Baulcombe, D.C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 2000, 103, 157-167.
    Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A., and de Vries, S.C. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 2003, 15, 1563-1577.
    Warthmann, N., Chen, H., Ossowski, S., Weigel, D., and Herve, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One 2008, 3, e1829.
    Xie, Z., Fan, B., Chen, C., and Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci U S A 2001, 98, 6516-6521.
    Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.M. Structure and conserved RNA binding of the PAZ domain. Nature 2003, 426,468-474.
    Yi, R., Doehle, B.P., Qin, Y., Macara, I.G., and Cullen, B.R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 2005, 11, 220-226.
    Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17, 3011-3016.
    Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25-33.
    Zeng, Y., Wagner, E.J., and Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002, 9, 1327-1333.
    Zhang, H., Kolb, F.A., Brondani, V., Billy, E., and Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 2002, 21, 5875-5885.
    Zhao, T., Wang, W., Bai, X., and Qi, Y. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700