恶臭假单胞菌表面展示细菌漆酶及对染料的脱色性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌表面展示系统是一种蛋白质应用新技术,已在多个生物技术领域显示出应用前景。本研究利用丁香假单胞菌冰晶核蛋白(Ice Nucleation Protein) InaQ的N-末端结构域作为运载蛋白,采用C-端融合的方法,将一种细菌漆酶成功展示在恶臭假单胞菌(Pseudomonas putida) AB92019菌株的表面,然后对3种不同重复单元InaQ-N、(InaQ-N)2和(InaQ-N)3作为运载蛋白表面展示细菌漆酶的性能进行了比较分析,并对优化系统进一步用于染料脱色的性能进行了研究。
     从携带细菌漆酶基因的重组质粒pMB172中通过PCR反应扩增得到突变型漆酶基因wlacD,然后酶切连接至分别含有1、2和3个inaQ-N基因重复的表达载体pMB104、pMB111和pMB112,构建得到分别含有融合基因inaQ-N-wlacD、(inaQ-N)2-wlacD和(inaQ-N)3-wlacD的重组质粒pMB281、pMB282和pMB283,并通过电转化导入恶臭假单胞菌AB92019菌株,筛选得到恶臭假单胞菌表面展示重组菌MB284、MB285和MB286。经对重组菌的SDS-PAGE、Western Blot、免疫荧光显微镜镜检以及流式细胞仪分析,结果证明重组菌MB284、MB285和MB286均能成功地在细胞表面分别展示其融合蛋白InaQ-N-WlacD、(InaQ-N)2-WlacD和(InaQ-N)3-WlacD。通过对3个重组菌全细胞漆酶酶活的检测发现,表面展示(InaQ-N)2-WlacD融合蛋白的重组菌MB285酶活最高,达到6.9U/mL。因此,选择重组菌MB285进行染料的脱色研究。
     选取酸性绿和酸性红2种染料进行脱色试验。实验结果发现,重组菌MB285对两种染料均具有明显的脱色性能,其中对酸性绿的脱色率达到35.5%,对酸性红的脱色率达到17%。
     对重组菌在优化培养条件下对两种染料的绝对脱色性能进行了考察。测定了重组菌MB285的全细胞酶活曲线,发现该曲线与重组菌的生长曲线具有同步性。通过单因子试验探讨重组菌MB285的摇瓶发酵条件(培养温度、初始pH、装液量和接种量)对生长量的影响。确定最佳培养条件为初始pH7.0,培养温度30℃,装液量20%和接种量4%。通过单因素和正交试验确定重组菌MB285发酵培养基的最佳配比为(W/V)2%葡萄糖、3%玉米浆、2%硫酸铵、0.2%氯化钠、0.08%MgSO4·7H2O和0.05% K2HPO4·3H2O。筛选出的优化培养基活菌数为1.1×1011CFU/mL,与优化前相比提高了约2.3倍。重组菌MB285摇瓶发酵优化后绝对脱色效率明显的提高,对酸性绿的绝对脱色率由优化前的36.5%提高到优化后的45%,对酸性红的绝对脱色率由优化前的17.9%提高到优化后的28%。
Bacterial surface display system has been recognized as a new technology in protein applications, which has shown a promising applying prospect in many biotechnological fields. In this dissertation, the N-terminal domain of a newly-identified ice nucleation protein (InaQ) from Pseudomonas syringae, was engineered as a functional carrier protein to immobilize a bacterial laccase onto the surface of P. putida AB92019 strain through the C-terminal fusion pattern, followed by further comparative analyses of the display efficiencies of three recombinant cell-surface display systems constituting of 1,2 or 3 tandemly repeated InaQ-N anchor and the laccase. The effect on dye decolorization treating with the optimized laccase-displaying system was subsequently investigated.
     The mutated bacterial laccase gene wlacD was PCR-amplified from its parent plasmid pMB172, then ligated into the expression vector pMB104, pMB111 and pMB112 to yield the recombinant plasmids pMB281, pMB282 and pMB283, which carrying the recombinant inaQ-N-wlacD, (inaQ-N)2-wlacD and (inaQ-N)3-wlacD fusion genes, respectively. Three recombinant strains, MB284, MB285 and MB286, which were endowed the surface-display activities, were subsequently obtained by respectively introducing those recombinant genes into P. putida AB92019 strain by electroporation. The surface localization of the fusion proteins expressed by the recombinant strains were confirmed using SDS-PAGE and Western blot analyses of cell fractions, immunofluorescence microscopic examinations and flow cytometry analyses of intact cells. Whole-cell laccase activities of three recombinant strains were further determined, it showed that the recombinant MB285 expressing (InaQ-N)2-WlacD, exhibited the highest enzymatic activity by 6.9 U/mL, was an apparent optimum strain that displaying laccase on the surface.
     Two dye materials, acid green and acid red, were selected as the substrates for dye decolorization test using the intact MB285 cells with optimum laccase-displaying efficiency, it showed that MB285 cells exhibited the substantial decolorazation effect on both of two dye substrates, the decolorization rate of acid green was by 35.5%, while the decolorization rate of acid red was by 17%.
     The absolute dye decolorization capacity of MB285 under the optimized culture conditions was evaluated. The time course of enzymatic activity of MB285 whole cells, showed a considerable coordination with that of cell growth of this bacterium, it therefore provides an approach to enhance the absolute dye decolorization by simply increasing the cell's growth density. MB285 culture conditions in flask fermentation (culture temperature, initial pH, medium volume and inoculum) was investigated and optimized by means of the single factor test. As a result, an optimum culture condition was found by culturing MB285 with an initial pH 7.0, incubation temperature 30℃, 20% of medium load (v/v) and 4% of inoculum (v/v), while using an optimum medium that was made up of 2% glucose (w/v),3% corn steep liquor,2% ammonium sulfate,0.2% sodium chloride,0.08% MgSO4·7H2O and 0.05% K2HPO4·3H2O. The optimized cell culture can reach up to 1.1×1011 CFU/mL in cell density, which was about 2.3-fold in contrast to the original culture condition. Furthermore, by using the optimized cultures to treat two dye materials, it found that the absolute decoloration rate of dye acid green had increased from 36.5% to 45%, whereas the absolute decoloration rate of dye acid red increased from 17.9% to 28%.
引文
1. 钞亚鹏,钱世钧.真菌漆酶及其应用.生物工程进展.2001,21(5):23-28
    2. 初华丽,梁宗琦.漆酶的潜在应用价值.山地农业生物学报,2004,23:529-533
    3. 郭梅,蒲军,路福平.白腐菌漆酶特性及其应用前景.天津农学院学报,2004,11(3):44-47
    4. 胡平平,付时雨.漆酶催化活性中心结构及其特性研究进展.林产化学与工业,2001,21(3):69-75
    5. 黄民生,程永前,张国莹.白腐真菌对染料的脱色与降解.上海环境科学,2003,3(19):124-128
    6. 黄俊,王行国.Klebsiella sp.601细菌漆酶的鉴定及性质.化学与生物工程,2006,23(3):31-34
    7. 李小华,黄新凤,邵小虎,李林.利用乳酸乳球菌AcmA表面展示β-1,3-1,4-葡聚糖酶.生物工程学报.2009,25(1):89-94
    8. 李茜茜.利用冰晶核蛋白构建细菌细胞表面展示体系及其应用研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    9. 刘梅,卢林静,黄军艳,张书环,毕丁仁,孙明.H5N1亚型禽流感病毒血凝素HA1蛋白在苏云金芽胞杆菌细胞表面的展示及其对小鼠的免疫性.农业生物技术学报,2007,15(3):371-377
    10.路延笃,黄巧云,陈雯莉,李林.细菌表面展示技术及其在环境重金属污染修复中的意义.生态与农村环境学报,2006,22:74-79
    11.萨姆布鲁克J,拉赛尔D W.分子克隆实验指南.第三版,黄培堂译,北京:科学出版社,2002
    12.宋安东,王艳婕,王松江,戚元成,吴坤.漆酶的分子生物学研究及其应用.信阳师范学院学报(自然科学版),2004,17(2):244-248
    13.王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用.植物学通报,2003,20(4):469-475
    14.叶婷,姚陈,李茜茜,张红星,李林.假单胞菌表达载体pYMBP03的构建 与性能分析.应用与环境生物学报,2008,14:528-533
    15.郑光洪,冯西宁.染料化学.北京:中国纺织出版社,2001,2-8
    16.朱思明,于淑娟,杨连生.真菌漆酶的生产、性质和应用.中国食品添加剂开发应用,2006,74:126-131
    17.张红星,李茜茜,叶婷,李维琳,李林.细胞表面展示有机磷水解酶的恶臭假单胞菌工程菌的构建及全细胞酶活性分析.华中农业大学学报,2008,27:65-70
    18. Afendra A S, Vargas C, Nieto J J, Drainas C. Gene transfer and expression of recombinant proteins in moderately halophilic bacteria. Methods Mol Biol, 2004,267:209-223
    19. Alexandre G, Bally R, Taylor B L, Zhulin I B. Loss of cytochromeoxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J Bacteriol,1999,181:6730-6738
    20. Alexandre G, Zhulin I B. Laccases are widespread in bacteria. Trends Biotechnol,2000,18(2):41-42
    21. Antonio S A, Francisco S. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem Biophys Res Commun,1997,240(3):787-792
    22. Aoki T, Tahara T, Fujino H, Watabe H. "GFP-display" and easy detection method for single amino acid changes in a target polypeptide:application to random mutagenesis. Anal Biochem,2002,300:103-106
    23. Bae W, Mulchandani A, Chen W. Cell surface disp lay of synthetic phytochelatins using ice nucleation p rotein for enhanced heavy metal bioaccumulation. J Inorg Biochem,2002,88(2):223-227
    24. Bae W, Wu C H, Kostal J, Mulchandani A, Chen W. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol,2003,69:3176-3180
    25. Bassi A S, Ding D N, Gloor G B, Margaritis A. Expression of single chain antibodies (ScFvs) for c-myc oncoprotein in recombinant Escherichia coli membranes by using the ice-nucleation protein of Pseudomonas syringae. Biotechnol Prog,2000,16:557-563
    26. Bingle W H, Nomellini J F, Smit J. Cell-surface display of a Pseudomonas aeruginosa strain K pilin peptide within the paracrystalline S-layer of Caulobacter crescentus. Mol Microbiol,1997,26:277-288
    27. Bourbonnais R, Paice M G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Letters,1990,267: 99-102
    28. Brouwers G J, de Vrind J P, Corstjens P L, Cornelis P, Baysse C, de Vrind-deJong E W. cumA, a gene encoding a multicopper oxidase, is involved in Mn oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol,1999,65: 1762-1768
    29. Cha J, Cooksey D A. Copper resistance in Pseudomonas syringae by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA,1991,88: 8915-1919
    30. Chang H J, Sheu S Y, Lo S J. Expression of foreign antigens on the surface of Escherichia coli by fusion to the outer membrane protein traT. J Biomed Sci, 1999,6:64-70
    31. Chang H, Lo S J. Modification with a phosphorylation tag of PKA in the TraT-based display vector of Escherichia coli. J Biotechnol,2000,78:115-122
    32. Claus H. Laccases and their occurrence in prokaryotes. Arch Microbiol,2003, 179:145-150
    33. Chen H, Schifferli D M. Comparison of a fimbrial versus an autotransporter display system for viral epitopes on an attenuated Salmonella vaccine vector. Vaccine,2007,25:1626-1633
    34. Cornelis P, Sierra J C, Lim A, Jr., Malur A, Tungpradabkul S, Tazka H, Leitao A, Martins C V, di Perna C, Brys L, De Baetseller P, Hamers R. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli. Biotechnology (N Y),1996,14:203-208
    35. Daugherty P S, Chen G, Olsen M J, Iverson B L, Georgiou G. Antibody affinity maturation using bacterial surface display. Protein Eng,1998,11(9):825-832
    36. Desvaus M, Dumas E, Chafsey I, Hebraud M. Protein cell surface display in Gram-positive bacteria:from single protein to macromolecular protein structure. FEMS Microbiol Lett,2006,256:1-15
    37. Dhillon J K, Drew P D, Porter A J. Bacterial surface display of an anti-pollutant antibody fragment. Lett Appl Microbiol,1999,28:350-354
    38. Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem,2000,32:919-927
    39. Durao P, Bento I, Fernandes A T, Melo E P, Lindley P F, Martins L O. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem, 2006,11:514-526
    40. Endo K, Hosono K, Beppu T, Ueda K. A novel extracytoplasmatic phenol oxidase of Streptomyces:its possible involvement in the onset of morphogenesis. Microbiology,2002,148:1767-1776
    41. Francis C A, Tebo B M. cumA multicopper oxidase genes from diverse Mn(Ⅱ)-oxidizing and non-Mn(Ⅱ)-oxidizing Pseudomonas strains. Appl Environ Microbiol,2001,67:4272-4278
    42. Freeman J C, Nayar P G, Begley T P, Villafranca J J. Stoichiometry and spectroscopic identity of copper centers in phenoxazonine synthase:a new addition for the blue copper oxidase family. Biochemistry,1993,32:4826-4830
    43. Givaudan A, Effosse A, Faure D, Potier P, Bouillant M L, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere:Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiology Letters,1993,108:205-210
    44. Graether S P, Jia Z. Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J,2001,80:1169-1173
    45. Hakulinen N, Kiiskinen L L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol.2002,9(8):601-605
    46. Hall J F, Kanbi L D, Harvey I, Murphy L M, Hasnain S S. Modulating the redox potential and acid stability of rusticyanin by site-directed mutagenesis of Ser86. Biochemistry,1998,37:11451-11458
    47. Hall J F, Kanbi L D, Strange R W, Hasnain S S. Role of the axial ligand in type 1 Cu centers studied by point mutations of metl48 in rusticyanin. Biochemistry, 1999,38:12675-12680
    48. Hansson M, Samuelson P, Gunneriusson E, Stahl S. Surface display on gram positive bacteria. Comb Chem High Throughput Screen,2001,4(2):171-184
    49. Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, Guebitz G M. Biotransformation of phenolics with laccase containing bacterial spores. Environ Chem Lett,2005,3(2):74-77
    50. Hew C L, Yang D S. Protein interaction with ice. Eur J Biochem,1992,203: 33-42
    51. Hullo M F, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus substilis is a copper-dependent laccase. JBacteriol,2001,183:5426-5430
    52. Isticato R, Cangiano G, Tran H T, Ciabattini A, Medaglini D, Oggioni M R, De Felice M, Pozzi G, Ricca E. Surface display of recombinant proteins on Bacillus subtilis spores. JBacteriol,2001,183:6294-6301
    53. Jose J, Kramer J, Klauser T, Pohlner J, Meyer T F. Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene,1996,178:107-110
    54. Jose J, Bernhardt R, Hannemann F. Cellular surface disp lay of dimeric Adx and whole cell P4502 mediated steroid synthesis on E.coli. J Biotechnol,2002,95 (3):257-268
    55. Jung H C, Lebeault J M, Pan J G. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol,1998a,16:576-580
    56. Jung H C, Park J H, Park S H, Lebeault J M, Pan J G. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol,1998b,22:348-354
    57. Jung H C, Kwon S J, Pan J G. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnol,2006,19:6-23
    58. Kang D G, Li L, Ha J H, Choi S S, Cha H J. Efficient cell surface display of organophosphorous hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Korean J Chem Eng,2008,25:804-807
    59. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical region covering the substrate-binding site. J Mol Biol, 2007,373(1):141-152
    60. Kim E J, Yoo S K. Cell surface display of CD8 ecto domain on Escherichia coli using ice nucleation protein. Biotechnol Tech,1998,12:197-201
    61. Kim E J, Yoo S K. Cell surface display of hepatitis B virus surface antigen by using Pseudomonas syringae ice nucleation protein. Lett Appl Microbiol,1999, 29:292-297
    62. Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol, 2000,66:788-793
    63. Kim C, Lorenz W W, Hoopes T, Dean J F. Oxidation of siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol, 2001,183:4866-4875
    64. Kim J H, Park I S, Kim B G Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis. Biochem Biophys Res Commun,2005,334(4):1248-1253
    65. Kinya K, Shinya K, Masanori S. Degradation of lignin compounds by bacteria from termite guts. Biotechnology Letters,1998,20(5):459-462
    66. Kjaergaard K, Sorensen J K, Schembri M A, Klemm P. Sequestration of zinc oxide by fimbrial designer chelators. Appl Environ Microbiol,2000,66:10-14
    67. Kornacker M G, Pugsley A P. The normally periplasmic enzyme beta-lactamase is specifically and efficiently translocated through the Escherichia coli outer membrane when it is fused to the cell-surface enzyme pullulanase. Mol Microbiol,1990,4:1101-1109
    68. Kornhonen T K. Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Eng,1997,10:1319-1326
    69. Kozloff L M, Turner M A, Arellano F. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. JBacteriol,1991,173:6528-6536
    70. Kramer K J, Kanost M R, Hopkins T L, Jiang H, Zhu Y C, Xu R, Kerwin J L,Turecek F. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron,2001,57:385-392
    71. Kurtz M B, Champe S P. Purification and characterization of the conidial laccase of Aspergillus nidulans. JBacteriol,1982,151:1338-1345
    72. Kuwajima G, Asaka J I, Fujiwara T, Fujiwara T, Nakano K, Kondoh E. Presentation of an antigenic determinant from hen egg-white lysozyme on the flagellar filament of Escherichia coli. Bio/Technology,1988,6:1080-1083
    73. Kwak Y D, Yoo S K, Kim E J. Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein. Clin Diagn Lab Immunol,1999,6:499-503
    74. Lang H, Maki M, Rantakari A, Korhonen T K. Use of the OmpS-display-system to localize the receptor-binding region in the PapG adhesin of uropathogenic Escherichia coli. Adv Exp Med Biol,2000,485:133-136
    75. Lee Y, Hendson M, Panopoulos N J, Schroth M N. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis:homology with small copper proteins and multicopper oxidases. JBacteriol,1994,176:173-188
    76. Lee J S, Shin K S, Pan J G, Kim C J. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat Biotechnol,2000,18:645-648
    77. Lee S Y, Choi J H, Xu Z. Microbial cell-surface display. Trends Biotechnol, 2003,21:45-52
    78. Lee S H, Choi J I, Park S J, Lee S Y, Park B C. Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl Environ Microbiol,2004,70: 5074-5080
    79. Lee S H, Lee S Y, Park B C. Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Appl Environ Microbiol,2005,71(12):8581-8586
    80. Lei Y, Mulchandani A, Chen W. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Biotechnol Prog,2005,21: 678-681
    81. Li K, Xu F, Eriksson K E. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol, 1999,65(6):2654-2660
    82. Li L, Kang D G, Cha H J. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol Bioeng,2004,85:214-221
    83. Li Q, Yu Z, Shao X, He J, Li L. Improved phosphate biosorption by bacterial surface display of phosphate binding protein utilizing ice nucleation protein. FEMS Microbiol Lett,2009,299:44-52
    84. Lu Z, Murray K S, Van Cleave V, LaVallie E R, Stahl M L, McCoy J M. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin:a system designed for exploring protein-protein interactions. Biotechnology,1995,13:366-372
    85. Maki L R, Galyan E L, Chang-Chien M M, Caldwell D R. Ice nucleation induced by Pseudomonas syringae. Appl Microbiol,1974,28:456-459
    86. Martins L O, Soares C M, Pereira M M, Teixera M, Costa T, Jones G H, Henriques A O. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem,2002,277:18849-18859
    87. Medaglini D, Pozzi G, King T P, Fischetti V A. Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization. Proc Natl Acad Sci USA,1995,92(15):6868-6872
    88. Morozova O V, Shumakovich G P, Gorbacheva M A, Shleev S V, Yaropolov A I. "Blue" laccases. Biochemistry (Mosc),2007,72(10):1136-1150
    89. Nakajima H, Shimbara N, Shimonishi Y, Mimori T, Niwa S, Saya H. Expression of random peptide fused to invasin on bacterial cell surface for selection of cell-targeting peptides. Gene,2000,260:121-131
    90. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung M H, Fukuda H, Kondo A. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol,2006,72(1):269-275
    91. Nguyen T N, Gourdon M H, Hansson M, Robert A, Samuelson P, Libon C, Andreoni C, Nygren P A, Binz H, Uhlen M, Stahl S. Hydrophobicity engineering to facilitate surface display of heterologous gene products on Staphylococcus xylosus. J Biotechnol,1995,42:207-219
    92. Nickoloff J A. Electroporation protocols for microorganisms. Totowa NJ: Humana Press,1995
    93. Norton P M, Brown H W, Wells J M, Macpherson A M, Wilson P W, Le Page R W. Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol,1996,14: 167-177
    94. Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine,2006,24(18):3900-3908
    95. Rappe M S, Giovannoni S J. The uncultured microbial majority. Annu Rev Microbiol,2003,57:369-394
    96. Richins R D, Kaneva I, Mulchandani A, Chen W. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol,1997,15(10):984-987
    97. Roberts Sue A, Weichsel A, Grass G, Thakali K, Hazzard J T, Tollin G, Rensing C, Montfort W R. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Nat Acad Sci USA,2002,99:2766-2771
    98. Ruijssenaars H J, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol,2004, 65(2):177-182
    99. Sanchez-Amat A, Lucas-Elio P, Ferandez E, Garcia-Borron J C, Solano F. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta, 2001,1547:104-116
    100. Schmid D, Pridmore D, Capitani G, Battistutta R, Neeser JR, Jann A. Molecular organization of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Lett,1997,414:590-594
    101. Schorr J, Knapp B, Hundt E, Kupper H A, Amann E. Surface expression of malarial antigens in Salmonella typhimurium:induction of serum antibody response upon oral vaccination of mice. Vaccine,1991,9:675-681
    102. Servil M, Stefanog D E, Piacquadio P, Sciancalepore V. A novel method for removing phenols grape must. American Journal of Enology and Viticulture, 2000,51(4):357-361
    103. Shao X H, Gao Y H, Jiang M T, Li L. Deletion and site-directed mutagenesis of laccase from Shigella dysenteriae results in enhanced enzymatic activity and thermostability. Enzyme Microb Technol,2009a,44:274-280
    104. Shao X, Jiang M, Yu Z, Cai H, Li L. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb Cell Fact, 2009b,8:48
    105. Shimazu M, Nguyen A, Mulchandani A, Chen W. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor.Biotechnol Prog,2003,19(5):1612-1614
    106. Singh G, Capalash N, Goal R, Sharma P. A pH-stable laccase from alkali-tolerant y-proteobacterium JB:purification, characterization and indigo carmine degradation. Enzyme MicrobTechnol,2007,41:794-799
    107. Solomon E I, Sundaram U M, Machonkin T E. Multicopper Oxidases and Oxygenases. Chem Rev,1996,96(7):2563-2606
    108. Sousa C, Kotrba P, Ruml T, Cebolla A, de Lorenzo V. Metalloadsorption by Escherichia coli displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. JBacteriol,1998,180:2280-2284
    109. Soukharev V, Mano N, Heller A. A four-electron O(2)-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc,2004,126(27):8368-8369
    110. Stentebjerg-Olesen B, Pallesen L, Jensen L B, Christiansen G, Klemm P. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae:effects of insert position and host background. Microbiology,1997,143 (6):2027-2038
    111. Strauss A, Gotz F. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol,1996,21: 491-500
    112. Su G F, Brahmbhatt H N, Wehland J, Rohde M, Timmis K N. Construction of stable LamB-Shiga toxin B subunit hybrids:analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect Immun,1992,60:3345-3359
    113. Susana C S, Gloria M D, Yaacov O. Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiology Letters,2002,209(1): 119-125
    114. Suzuki T, Lett M C, Sasakawa C. Extracellular transport of VirG protein in Shigella. JBiol Chem,1995,270:30874-30880
    115. Taylor I M, Harrison J L, Timmis K N, O'connor C D. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K 12:structure-function relationships in the TraT protein. Mol Microbiol,1990,4:1259-1268
    116. Thurston C F. The structure and function of fungal laccases. Microbiology,1994, 140(1):19-26
    117. Ton-That H, Faull K F, Schneewind O. Anchor structure of staphylococcal surface proteins A branched peptide that links the carboxyl terminus of proteins to the cell wall. JBiol Chem,1997,272(35):22285-22292
    118. Tschiggerl H, Casey J L, Parisi K, Foley M, Sleytr U B. Display of a peptide mimotope on a crystalline bacterial cell surface layer (S-layer) lattice for diagnosis of Epstein-Barr virus infection. Bioconjug Chem,2008,19:860-865
    119. van Bloois E, Winter R T, Janssen D B, Fraaije M W. Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis. Appl Microbiol Biotechnol,2009,83:679-687
    120. Valls M, Atrian S, de Lorenzo V, Fernandez L A. Engineering a mouse metallothionein on the surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol,2000,18:661-665
    121. Van Waasbergen L G, Hildebrand M, Tebo B M. Identification and characterization of a gene cluster involved in maganese oxidation by spores of a marine Bacillus sp. strain SG-1.JBacteriol,1996,178:3517-3530
    122. Wang A, Mulchandani A, ChenW. Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherich ia coli strain with a surface expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol,2002,68 (4):1684-1689
    123. Wernerus H, Stahl S. Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem,2004,40(3):209-228
    124. Westerlund-Wikstrom B, Transkanen J, Virkola R, Hacker J, Lindberg M, Skurnik M, Yoshida H. Chemistry of lacquer (urushi). J Chem Soc,1883,43: 472-486
    125. Willner I. Bioelectronics:Biomaterials for sensors, fuel cells, and circuitry. Science,2002,298(5602):2407-2408
    126. Wolber P K. Bacterial ice nucleation. Adv Microb Physiol,1993,34:203-235
    127. Wu M L, Tsai C Y, Chen T H. Cell surface display of Chi92 on Escherichia coli using ice nucleation protein for improved catalytic and antifungal activity. FEMS Microbiol Lett,2006,256:119-125
    128. Wu P H, Giridhar R, Wu W T. Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnol Bioeng,2006, 95:1138-1147
    129. Xu Z, Lee S Y. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl Environ Microbiol,1999,65:5142-5147
    130. Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, Mulchandani A, Chen W. Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol Bioeng,2008,99(1):30-37
    131. Zhang L, Ruan L, Hu C, Wu H, Chen S, Yu Z, Sun M. Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Appl Microbiol Biotechnol, 2007,74:667-675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700