番茄14-3-3蛋白(TFT7)在缺铁响应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是植物生长发育必需的微量元素。由于土壤中铁的生物有效性普遍较低,缺铁是限制全球农业生产的重要因素之一。植物缺铁时会产生各种生理和分子机制来增加土壤中铁的生物有效性和增强根部的铁吸收能力。番茄缺铁时,先通过高铁还原酶FRO1将Fe3+还原成Fe2+,后Fe2+经转运蛋白IRT1转运入根部。FER编码bHLH蛋白,是一类转录因子,在转录水平和转录后水平调控FRO1和IRT1。目前对于FER是如何感知缺铁信号、如何受到调控以及高铁还原酶活性(FCR,Ferric Chelate Reductase)如何受到调控知之甚少。TFT7基因的表达受到缺铁诱导,为了进一步了解其分子调控机理,我们采用病毒诱导的基因沉默(VIGS)的方法研究了14-3-3基因(TFT7)在番茄缺铁响应中的作用。用烟草花叶病毒介导的14-3-3基因(TFT7)沉默载体,以农杆菌为媒介侵染番茄获得基因沉默植株。结果表明,在缺铁条件下,14-3-3基因(TFT7)沉默后,根部高铁还原酶活性明显降低,同时FRO1基因表达也下调,侧根根尖膨大和根毛的形成受到抑制。该结果证明了14-3-3蛋白在转录水平和转录后水平调控缺铁诱导的高铁还原酶活性,并且能促进根尖膨大和根毛的形成。
     14-3-3基因(TFT7)沉默后,FER基因的表达量也相应下调。有趣的是,番茄T3238fer突变体中,无论是正常或缺铁处理下,TFT7基因表达量都下调。通过酵母双杂技术,发现二者并不能互作。因此,我们推测TFT7、FER之间存在反馈调节机制来互相调节表达。另外,我们认为可能有第三种因子能与TFT7、FER或者分别与其中之一相互形成复合物来调控下游的响应。
     综上,我们证明了14-3-3基因(TFT7)确实在缺铁响应中起作用,在转录水平和转录后水平调控缺铁诱导的高铁还原酶活性,促进根尖膨大和根毛的形成,与FER互相反馈调控或者与FER和(或)第三种因子形成复合物调控缺铁信号途径。
Iron is one of the essential micro-nutrients for plant, and iron (Fe) deficiency constitutes one of the major limitations for crop production in calcareous soils. Plants employ a number of responses to Fe deficiency including some specific physiological and molecular actions that can either increase Fe bioavailability in the soils or enhance the root capacity to uptake Fe. In tomato, reduction of ferric iron is mediated by iron reductase FRO1 and subsequent uptake of ferrous iron into root epidermis by the metal transporter IRT1. The bHLH transcription factor FER is required for the regulation of FRO1 and IRT1. However, the signaling pathway leading to the activation of ferric chelate reductase (FCR) activity or FER action still remains unclear. TFT7 was induced following the imposition of Fe starvation. We utilized VIGS (virus-induced gene silencing) to individually reduced the expression of TFT7, which resulted in the reduce of FCR activity and the expression FRO1 in response to Fe deficiency, and the suppression of the root tip swelling and root hair formation, suggesting that TFT7 regulates FCR activity on transcription and post-transcription level.
     In TFT7 silenced lines, FER expression was suppressed either in normal or iron defficiency condition. Interestingly, in fer mutant line, TFT7 expression was also repressed and its transcriptional response to Fe deficiency was eliminated. Yeast two-hybrid assay indicated that TFT7 could not interact with FER. It was speculated that there is a positive feedback loop between TFT7 and FER to which they mutually regulate each other's expression. Or maybe there is another protein to binding both,then to trigger iron deficiency response.
     Taking all of these findings together, we demonstrated that TFT7 takes part in regulating the signaling pathway of Fe-deficiency-induced FCR activity, promoting the root tip swelling and root hair formation and has a positive feedback loop with FER.
引文
Abarca D, Madueno F, Martinez-Zapater JM, and Salinas J. (1999). Dimerization of Arabidopsis 14-3-3 proteins:Structural requirements within the N-terminal domain and effect of calcium. FEBS Lett.462:377-382.
    Acs P, SzaUasi Z, Kazanietz MG, and Blumberg PM. (1995). Differential activation of PKC isozymes by 14-3-3 protein. Biochem. Biophys. Res. Commun. 216:103-109.
    Aitken A, Collinge DB, van Heusden BPH, Isobe T, Roseboom PH, Rosenfeld G, and Soll J. (1992).14-3-3 proteins:a highly conserved, wide spread family of eukaryotic proteins. Trends Biol. Sci.17:498-501.
    Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C. (2004). Plasma membrane H(+)-ATPase and 14-3-3 isoforms of Arabidopsis leaves:evidence for isoform specificity in the 14-3-3/H(+)-ATPase interaction. Plant Cell Physiol.45:1202-1210.
    Babakov AV, Chelysheva VV, Klychnikov OI, ZorinyanzSE, Trofimova MS, and de Boer AH. (2000). Involvement of 14-3-3 proteins in the osmotic regulation of H+-ATPaseinplant plasma membranes. Planta.211:446-448.
    Bai Ming-Yi, Zhang Li-Ying, Gampala Srinivas S. (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA. 104:13839-13844.
    Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Friml J, Vert G. (2011). Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. PNAS.108:E450-E458
    B.B.布坎南,W.格鲁依森姆,and R.L.琼斯.(2004).植物生物化学与分子生物学.科学出版社北京.
    Brandt J, Thordal-Christensen H, Vad K, Gregersen P, Collinge DB. (1992). A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J.2:815-820.
    Bridges D and Moorhead GB. (2005).14-3-3 proteins:a number of functions for a numbered protein. Sci STKE.2005:re10.
    Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S. (2002). Cloning an iron-regulated metal transporter from rice. J Exp Bot.53:1677-1682.
    Bunney TD, van Walraven HS, and de Boer AH. (2001).14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. PNAS.98:4249-4254.
    Cao A, Jain A, Baldwin JC, and Raghothama KG. (2007). Phosphate differentially regulates 14-3-3 family members and GRF9 plays a role in Pi-starvation induced responses. Planta.226:1219-1230.
    Chancy RL, and PF Bell. (1987). Complexity of iron nutrition:lessons for plant-soil interaction research. J. Plant Nutr.10:963-994.
    Chaney RL, Brown LC, Tiffin JC. (1972). Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol.50:203-213.
    Chang-Sik Oh, Kerry F. Pedley, and Gregory B Martina. (2010). Tomato 14-3-3 Protein 7 Positively Regulates Immunity-Associated Programmed Cell Death by Enhancing Protein Abundance and Signaling Ability of MAPKKKa. Plant Cell.22: 260-272.
    Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao FJ Ueno D, Ma JF. (2007). Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol.145:1647-1657.
    Chen Z, Fu H, Liu D, Chang PF, Narasimhan M, Ferl R, Hasegawa PM, and Bressan RA. (1994). A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C. Plant J.6:729-740.
    Chelysheva VV, Smolenskaya IN, Trofimova MC, Babakov AV, and Muromtsev GS. (1999). Role of the 14-3-3 proteins in the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress. FEBS Lett.456:22-26.
    Colangelo EP, and Guerinot ML. (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell.16:3400-3412.
    Cohen CK, Garvin DF, and Kochian LV. (2004). Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta.218:784-792.
    Connolly EL, Fett JP, Guerinot ML. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell.14:1347-1357.
    Cohen CK, Fox TC, Garvin DF, Kochian LV. (1998). The Role of Iron-Deficiency Stress Responses in Stimulating Heavy Metal Transport in Plants. Plant Physiol.116: 1063-1072.
    Curie C, Alonso JM, Le Jean M. (2000). Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Bio chem J.347:749-755.
    Cotelle V, Meek SEM, Provan F, MilneFC, Morrice N, MacKintosh C.(2000). 14-3-3 s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsiscells. EMBO J.19:2869-2876.
    Curie C, Briat J F. (2003). Iron transport and signaling in plants. Annu Rev Plant Biol.54:183-206.
    Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S. (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J.24:4041-4051
    Dakora FD, Phillips DA. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil.245:35-47
    Daugherty CJ, Rooney MF, Miller PW, Ferl RJ. (1996).Molecular organization and tissue-specific expression of an Arabidopsis 14-3-3 gene. Plant Cell.8:1239-1248.
    de Boer A H. (2002). Plant 14-3-3 proteins assist ion channels and pumps. Biochem. Soc. Trans.30:416-421.
    de Boer A H. (2007).14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J.49:289-301
    de Vetten NC, Lu G, Ferl RJ. (1992). A maize protein associated with the G-box binding complex has homology to hain regula-tory proteins. Plant Cell.4:1295-1307.
    de Vetten NC, and Ferl RJ. (1994). Two genes encoding GF14 (14-3-3) proteins in Zea mays:Structure, expression, and potential regulation by the G-box binding complex. Plant Physiol.106:1593-1604.
    Eckhardt U, Marques AM, and Buckhout TJ. (2001). Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol. Biol.45:437-448.
    Emi T, Kinoshita T, and Shimazaki K. (2001). Specific binding of vfl4-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean. Plant Physiol.125:1115-1125.
    Finkelstein RR, Gampala SS, Rock CD. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell.14:S15-S45
    Eckhardt U, Mas Marques A, Buckhout TJ. (2001). Two iron regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol. Biol.45:437-448.
    Eide D, Broderius M, Fett J, Guerinot ML. (1996).A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS.93: 5624-5628.
    Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, and Martin GB. (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J.36:905-917.
    Feng H, An F, Zhang S, Ji Z, Ling HQ,and Zuo J. (2006). Light-regulated, tissue and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6. Plant Physiol.140:1345-1354.
    Fox TC, Shaff JE, Grusak MA, Norwell WA, Chen Y, Chaney RL, and Kochian LV. (1996). Direct measurement of 59Fe-labeled Fe2+influx in roots of Pisum sativum using a chelator buffer system to control free Fe2+in solution. Plant Physiol. 111:93-100.
    Guerinot ML, and Yi Y. (1994). Iron:Nutritious, noxious, and not readily available. Plant Physiol.104:815-820.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Thomine S, Lelievre F, Debarbieux E. (2003). AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 34:685-695.
    Hausser A, Storz P, Link G, Stoll H, Liu YC, Altman A, Pfizenmaier K, and Johannes FJ. (1999). Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J. Biol. Chem.274:9258-9264..
    Hell R, Stephan UW. (2003). Iron uptake, trafficking and homeostasis in plants. Planta.216:541-551.
    Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, and Mori S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol.119:471-479.
    Himmelbach A, Yang Y, Grill E.(2003). Relay and control of abscisic acid signaling. Curr.Opin. Plant Biol.6:470-479.
    Hirsch S, Aitken A, Bertsch U, Soll J.(1992). A plant homologue to mammalian brain 14-3-3 protein and protein kinase C inhibitor. FEBS Lett.296:222-224.
    Hong Ding, Lihong Duan, Huilan Wu, Rongxin Yang, Hongqing Ling, Wen-Xue Li, Fusuo Zhang. (2009). Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Physiol Plantarum 136:274-283.
    Hopkins BG, Jolley VD, and Brown JC. (1992). Plant utilization of iron solubilized by oat phytosiderophore. J Plant Nutr.15:1599-1612.
    Ishimaru Y, Suzuki M. Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S,Takahashi M, Nakanishi H, Mori S, and Nishizawa NK. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J.45:335-346.
    Isgarashi D, Ishida S, Fukazawa J, Takahashi Y. (2001).14-3-3 proteins regulate interacellular localization of the BZIP transcriptional activator RSG. Plant Cell. 13:2483-2497
    Ishida S, Yuasa T, Nakata M, Takahashi Y. (2008). A tobacco calcium-dependent protein kinase,CDPKl,regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell.20:3273-3288.
    Jahn T, Fuglsang AT, Olsson A, Briintrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG, Larsson C. (1997).The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell.9:1805-1814.
    Jin CW, He YF, Tang CX, Wu P, and Zheng SJ. (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ. 29:888-897.
    Jin CW, Li GX, Yu XH, Zheng SJ. (2010). Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot.105:835-841
    Kidou S, Umeda M, Kato A, and Uchimiya H. (1993). Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol. Biol.21:191-194.
    Konagaya K, Matsushita Y, Kasahara M, Nyunoya H. (2004). Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of Tobacco mosaic virus. J Gen Plant Pathol.70:221-231.
    Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol.40:37-44.
    Landsberg EC. (1982). Transfer cell formation in the root epidermis:a prerequisite for Fe-efficiency? J Plant Nutr.5:415-432.
    Landsberg EC. (1994). Transfer cell formation in sugar beet roots induced by latent Fe deficiency. Plant Soil.165:197-205
    Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S. (1999). Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy Ⅱ) in graminaceous plants. Plant Physiol.121:947-956.
    Lanquar V, Lelievre F, Bolte S. (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24:4041-4051.
    Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. (2009).Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150:786-800.
    Ling HQ, Bauer P, Bereczky Z, Keller B, and Ganal M. (2002). The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. PNAS. 99:13938-13943.
    Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P. (2011). Interaction between the bHLH transcription factor FIT and EHTYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell.23(5):1815-29.
    Lindsay WL, and Schwab AP. (1982). The chemistry of iron in soils and its availability to plants. J Plant Nutr.135-147.
    Li J, and Chory J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell.90:929-938.
    Li P, Qi JL, Wang L, Huang QN, Han ZH, and Yin LP. (2006). Functional expression of MxIRT1, from Malus xiaojinensis, complements an iron uptake deficient yeast mutant for plasma membrane targeting via membrane vesicles trafficking process. Plant Sci.171:52-59.
    Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, and Lid dington R. (1995). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature.376:191-194.
    Liu YL, M Schiff. (2002a). Virus-induced gene silencing in tomato. Plant J. 31(6):777-786.
    Liu YL., M Schiff. (2002b). Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J.30(4):415-429.
    Li X, Li C. (2004). Is ethylene involved in regulation of root ferric reductase activity of dicotyledonous species under iron deficiency? Plant Soil.261:147-153.
    Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem.286:5446-5454.
    Nussberger S, Gollan JL, Hediger MA. (1997). Cloning and characterization of amammalian proton coupled metal-ion transporter. Nature.388:482-488.
    Marschner H. (1995). Mineral Nutrition of Plants, Academic Press.2nd edn. ed.
    Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A. (1993). Dissolution of ferric phosphate by alfalfa(Medicago sativa L.) root exudates. Pant Soil.155-156:75-78.
    Mukherjee I, Campbell NH, Ash JS, Connolly EL. (2006) Expression profiling of the Arabidopsis ferric chelatereductase (FRO) gene family reveals differential regulation by iron and copper. Planta.223:1178-1190.
    Michael A Turnage, Nooduan Muangsan, Charles G Peele, Dominique Robertson. (2002). Gemini virus-based vectors for gene silencing in Arabidopsis. Plant J. 30:107-114.
    Moore BE, Perez VJ. (1967).Physiological and biochemical aspects of nervous integration. Biochem Biophys Res Commun.19:739-744.
    Mori S. (1999). Iron acquisition by plants. Curr. Opin. Plant Biol.2:250-253.
    May T, Soll J. (2000).14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell.12:53-64.
    Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T. (2006). A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J.46:563-572.
    Olsen RA, Clark RB, and Bennett JH. (1981). The enhancement of soil fertility by plant roots. Am. Scientist.69:378-384.
    Pan SQ, Sehnke PC, Ferl RJ, and Gurley WB. (1999). Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex. Plant Cell.11:1591-1602.
    Robinson NJ, Proctor CM, Connolly EL, and Guerinot ML. (1999). A ferric-chelate reductase for iron uptake from soils. Nature.397:694-697.
    Robinson RC, Mejillano M, Le VP, Burtnick LD, Yin HL, Choe S. (1999). Domain movement in gelsolin:a calcium-activated switch. Science.286:1939-1942.
    Roberts MR, Salinas J, and Collinge DB. (2002).14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol.50:1031-1039.
    Romheld V, Marschner H. (1986). Mobilization of iron in the rhizosphere of different plant species. Adv in Plant Nutri.2:155-204.
    Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, and Larsson C. (2000). Evolution of the 14-3-3 protein family:does the large number of isoforms in multicellular organisms reflect functionalspecificity? J. Mol. Evol.51:446-458.
    Ryu H, Cho H, Kim K, and Hwang I. (2010a). Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol. Cells.29:283-290.
    Santi S, Cesco S, Varanini Z, and Pinton R. (2005). Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol. Biochem.43:287-292.
    Santi S, Schmidt W. (2008). Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J Exp Bot.59:697-704.
    Santi S, Schmidt W. (2009).Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol.183(4):1072-1084.
    Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N. (2004). ZmYSl functions as a proton-coupled symporter for phytosiderophore and nicotianamine-chelated metals. J Bio Chem.279:9091-9096.
    Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS. (2007).14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J.49:289-301.
    Schoonheim PJ, Costa Pereira DD, De Boer AH. (2009). Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ.32:439-447.
    Sehnke PC, Henry R, Cline K, Ferl RJ. (2000). Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiology.122:235-242.
    Shin R, Jez JM, Basra A, Zhang B, Schachtman DP. (2011).14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett.585:143-147.
    Sivitz A, Grinvalds C, Barberon M, Curie C, Vert G. (2011). Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency response. Plant J.66:1044-1052.
    Staiger D. (2002). Chemical strategies for iron acquisition in plants. Angew Chem Int Ed Engl.41:2259-2264.
    Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C. (1999). Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell. 11:2379-2392.
    Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, and Mori S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology.19:466-469.
    Testerink C, Van Der Meulen RM, Oppedijk BJ, de bore AH, Heimovaara-Dijkstra S, Kijne JW, and Wang M. (1999).Differences in spatial expression between 14-3-3 isoforms in germinating barley embryos. Plant Physiol.121:81-87.
    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. (2006). A NAC gene regulating senescence improves grain Protein, zinc, and iron content in wheat. Science.314:1298-1301.
    van Hemert MJ, Steensma HY, van Heusden GP. (2001).14-3-3 proteins:key regulators of cell division, signalling and apoptosis. Bioessays.23:936-946.
    Vert G, Briat JF, and Curie C. (2001). Arabidopsis IRT2 gene encodes a root-periphery transporter. Plant J.26:181-189.
    Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell.14:1223-1233.
    Waters BM, Blevins DG, Eide DJ. (2002). Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol.129:85-94.
    Wang YH, Garvin DF, Kochian LV. (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots:evidence for cross-talk and root/rhizosphere-mediated signals. Plant Physiol.130:1361-1370.
    Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E, and Colicelli J. (2002). The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol. Cell Biol.22:916-926.
    Wei Feng Xu, Wei Ming Shi. (2007). Mechanisms of salt tolerance in transgenic Arabidopsis thaliana constitutively overexpressing the tomato 14-3-3 protein TFT7. Plant Soil.301:17-28.
    Wei Feng Xu, Wei Ming Shi, Li Guo Jia, Jian Sheng Liang, Jian Hua.(2012). TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress.Plant Cell Environ.DOI:10.1111/j. 1365-3040.2012.02497.x
    Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ. (2005). Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol.46:1505-1514.
    Xu WF, Shi WM. (2006). Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots:analysis by real-time RT-PCR. Ann Bot.98:965-974.
    Yaffe, M. B. (2004). Master of all things phosphorylated. Biochem. J.379:el-e2. Yan J,Wang J, and Zhang H. (2002). An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidationmetabolism. Plant J.29:193-202.
    Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD. (2004). Over expression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol.45:1007-1014.
    Yin Y, Vafeados D, Tao Y, Yokoda T, Asami T, and Chory J. (2005). A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis..Cell.120:249-259.
    Yi Y, and Guerinot ML. (1996). Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10:835-844.
    Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res.18:385-397.
    Yuan YX, Zhang J, Wang DW, Ling HQ. (2005). AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res.15:613-621.
    Zhang ZT, Zhou Y, Li Y, Shao SQ, Li BY, Shi HY. (2010). Interactome analysis of the six cotton 14-3-3 s that are preferentially expressed in fibres and involved in cell elongation. J Exp Bot.61:3331-3344.
    Zhao T, Ling HQ. (2007). Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato. Plant Cell Environ.30:518-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700