小麦白粉菌应答小分子RNA的分离、鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA(miRNA)是一类具有调控作用的非编码小分子RNA,其长度多在20至24nt之间。miRNA通常于转录后水平对基因表达起调控作用,它在植物的生长发育过程中发挥着关键性的作用。同时,越来越多的证据表明寄主小分子RNA在植物免疫反应的过程中同样起着重要的作用。小麦是重要的农作物,具有很高的经济价值,虽然小麦中克隆的miRNA越来越多,但人们对其在小麦白粉病抵抗过程中的作用却知道不多。研究miRNA在白粉菌抵抗过程中的作用十分重要,揭示其机理对于提高小麦白粉病抗病育种的效率有着积极的作用。热激蛋白9(0Hsp90)是真核生物和原核生物中普遍存在的分子伴侣,它在信号传导、蛋白质折叠、蛋白降解以及生长发育方面都发挥着重要的作用。细胞质Hsp90在植物体对病原菌的抵抗过程中有重要的作用,高等植物中效应子触发的免疫(effector-triggered immunity,ETI)是由细胞内免疫受体R蛋白介导的,许多R蛋白的功能发挥是在细胞质Hsp90协助下完成的。
     本研究以用高通量测序的方法发掘白粉菌响应小分子RNA,发现在白粉菌侵染条件下有38个显著表达差异的miRNA,其中包括22个已知和16个新的miRNA。其中,miR396的测序结果用Northern杂交得到了很好的重复,所以我们对其进行了一系列的功能分析:
     ⑴为了发掘小麦中响应白粉菌侵染的miRNA,我们对白粉菌处理前后小麦幼叶构建的小分子RNA文库进行高通量测序,并用Northern杂交的方法对其中的部分miRNA的应答进行验证,两种检测方法下miR396的响应模式一致。
     ⑵为了验证小麦中miRNA的靶基因,我们构建了小麦PmA/北京837和北京837两叶期幼苗经白粉菌处理后多个时间点混合样品的degradome文库,共检测到了232个miRNA的靶基因。这是小麦中首次采用Degradome测序的方法分析miRNA靶基因。
     ⑶Degradome测序的结果显示小麦中miR396的靶基因之一是Hsp90,5’RACE证实miR396可以切割TaHsp90.2和TaHsp90.3的mRNA,证明TaHsp90.2和TaHsp90.3确实是miR396的靶基因。
     ⑷为了分析小麦3类Hsp90基因的功能,我们采用了病毒诱导的基因沉默系统,发现TaHsp90.2和TaHsp90.3在小麦白粉病抗性途径中也发挥重要作用。
     本研究通过对白粉菌接种前后的小分子RNA文库进行深度测序分析,发掘响应白粉菌的miRNA。通过病毒介导的基因沉默系统对其靶基因进行功能分析发现,两个Hsp90基因参与小麦白粉病抵抗。结合Hsp90在小麦条锈抗性途径中作用的研究,本研究拓展了这两个基因的在抗病过程中的功能,揭示了一条miRNA介导小麦抵抗白粉菌的作用机制。
MicroRNAs (miRNAs) are small regulatory noncoding RNAs varying in length between20and24nucleotides. They play a key role during plant development by negatively regulating gene expression atthe posttranscriptional level. Moreover, increasing evidence indicates that host small RNAs also play acritical role during the plant immune responses. Wheat is one of the most important crops with higheconomic value. More and more miRNAs have been discovered in wheat, but functions of thesemiRNAs on resistance to powdery mildew (PM) have rarely been disclosed. It is important to study themiRNAs roles in PM resistance which may facilitate more efficient strategy in wheat breeding forresistance to PM. Heat shock proteins90s (Hsp90s) are ubiquitous molecular chaperones in the cells ofeukaryta and eubacteria. They play key roles in signal transduction, protein folding, protein degradation,as well as growth and developmental programs. Cytosolic Hsp90proteins have also been found to playimportant roles in plant immune responses to pathogens. Pathogen effector-triggered immunity (ETI) inhigher plants is known to be mediated by intracellular immune receptors-R proteins. Many R proteinshave been found to be functionally dependent on cytosolic Hsp90s.
     In this study, to discover and analyze important small RNAs responsive to PM in wheat, wesequenced the wheat small RNAs libraries before and after Bgt inoculation. A total of38miRNAs wereobtained, including22known and16novel miRNAs. The sequencing results of miR396were repeatedby Northern blot, so we characterized the function of miR396, the main results are as following:
     ⑴To discover miRNAs response to PM,6small RNA libraries using the young leaf of wheatinoculated with PM were constructed. The expression patterns of some miRNAs are confirmed bynorthern blot, miR396responses the same way under the two detection methods.
     ⑵To comprehensively investigate small RNA targets, a degradomelibraries derived from themixture tissues of young leaf before and after Bgt inoculation of wheat was constructed and used forsequencing. Two hundreds and thirty-two genes targeted were detected in our degradome libraries. It isthe first time in wheat using degradome sequencing analysis of the target genes of miRNAs.
     ⑶Degradome sequencing results showed that Hsp90is the target genes of miR396in wheat, andthis result is confirmed using5’ RACE, which confirms the result that TaHsp90.2and TaHsp90.3is thetarget genes of miR396.
     ⑷To study functions of three classes of wheat Hsp90genes, virus-induced gene silencing system(VIGS) was used to analyze and the result showed that TaHsp90.2and TaHsp90.3also play importantroles in the wheat PM resistance pathway.
     Our studies discovered miRNAs responsive to PM by small RNA deep sequencing of librariesderived from tissues inoculated with PM. VIGS assays showed that miR396targets two Hsp genes thatare involved in PM resistance. Combined with previous studies that Hsp90genes play important roles inthe stripe rust resistance pathway of wheat, the function of the these genes and unraveled an miRNAmediated PM resistancec mechanism in wheat were expanded in this study.
引文
1. Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J. Endogenous siRNA and miRNA targetsidentified by sequencing of the Arabidopsis degradome. Current Biology,2008,18:758-762.
    2. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H.DRB4-dependent TAS3trans-acting siRNAs control leaf morphology through AGO7. CurrentBiology,2006,16:927-932.
    3. Agorio A, Vera P. ARGONAUTE4is required for resistance to Pseudomonas syringae inArabidopsis. The Plant Cell,2007,19:3778-3790.
    4. Aida M, Tasaka M. Genetic control of shoot organ boundaries. Current Opinion in Plant Biology,2006,9:72-77.
    5. Allen E, Xie Z, Gustafson A M, Carrington J C. MicroRNA-directed phasing during rans-actingsiRNA biogenesis in plants. Cell,2005,121:207-221.
    6. Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C. Evolution of microRNAgenes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics,2004,36:1245-1246.
    7. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNAand its APETALA2-like target genes. The Plant Cell,2003,15:2730-2741.
    8. Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi M A,Lagrange T, Voinnet O. Argonaute quenching and global changes in Dicer homeostasis caused by apathogen-encoded GW repeat protein. Genes&Development,2010,24:904-915.
    9. Baulcombe D C. Fast forward genetics based on virus-induced gene silencing. Current Opinion inPlant Biology,1999,2:109-113.
    10. Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1is an RNA slicer that selectivelyrecruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciencesthe United States of America,2005,102:11928-11933.
    11. Baumberger N, Tsai C H, Lie M, Havecker E, Baulcombe D C. The Polerovirus silencingsuppressor P0targets ARGONAUTE proteins for degradation. Current Biology,2007,17:1609-1614.
    12. Ben Amor B, Wirth S, Merchan F, Laporte P, Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A,Lucas A, Deragon J M, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAsinvolved in Arabidopsis differentiation and stress responses. Genome Research,2009,19:57-69.
    13. Bent A F, Mackey D. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply ofquestions. Annual Review of Phytopathology,2007,45:399-436.
    14. Bompfünewerer A F, Flamm C, Fried C, Fritzsch G, Hofacker I L, Lehmann J, Missal K, Mosig A,Müller B, Prohaska S J, Stadler B M R, Stadler P F, Tanzer A, Washietl S, Witwer C. Evolutionarypatterns of non-coding RNAs. Theory in Biosciences,2005,123:301-369.
    15. Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair ofnatural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123:1279-1291.
    16. Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V. The Polerovirus F boxprotein P0targets ARGONAUTE1to suppress RNA silencing. Current Biology,2007,17:1615-1621.
    17. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier J P, Niebel A, Crespi M, Frugier F.MicroRNA166controls root and nodule development in Medicago truncatula. The Plant Journal,2008,54:876-887.
    18. Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A, Morel J B, Crété P, Chen X. VaucheretH, Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development andsiRNA controlling transgene silencing and virus resistance. Current Biology,2003,13:843-848.
    19. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode ofaction. Nature Reviews Molecular Cell Biology,2009,10:141-148.
    20. Bruun-Rasmussen M, Madsen C T, Jessing S, Albrechtsen M. Stability of Barley stripe mosaicvirus-induced gene silencing in barley. Molecular Plant-Microbe Interactions,2007,20:1323-1331.
    21. Buker S M, Iida T, Bühler M, Villén J, Gygi S P, Nakayama J, Moazed D. Two different argonautecomplexes are required for siRNA generation and heterochromatin assembly in fission yeast.Nature Structural&Molecular Biology,2007,14:200-207.
    22. Burch-Smith T M, Anderson J C, Martin G B, Dinesh-Kumar S P. Applications and advantages ofvirus-induced gene silencing for gene function studies in plants. The Plant Journal,2004,39:734-746.
    23. Chellappan P, Jin H. Discovery of plant microRNAs and shortinterfering RNAs by deep parallelsequencing. Methods in Molecular Biology,2009,495:121-132.
    24. Chen X. MicroRNA metabolism in plants. Current Topics in Microbiology and Immunology,2008,320:117-136.
    25. Chiu M H, Chen I H, Baulcombe D C, Tsai C H. The silencing suppressor P25of Potato virus Xinteracts with Argonaute1and mediates its degradation through the proteasome pathway.Molecular Plant,2010,11:641-649.
    26. Chuck G, Candela H, Hake S. Big impacts by small RNAs in plant development. Current Opinionin Plant Biology2009,12:81-86.
    27. Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4microRNA controls sexdetermination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet. NatureGenetics,2007,39:1517-1521.
    28. Cokus S J, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C D, Pradhan S, Nelson S F,Pellegrini M, Jacobsen S E. Shotgun bisulphite sequencing of the Arabidopsis genome revealsDNA methylation patterning. Nature,2008,452:215-219.
    29. Csorba T, Lózsa R, Hutvágner G, Burgyán J. Polerovirus protein P0prevents the assembly of smallRNA-containing RISC complexes and leads to degradation of ARGONAUTE1. The Plant Journal,2010,62:463-472.
    30. Deleris A, Gallego-Bartolome J, Bao J, Kasschau K D, Carrington J C, Voinnet O. Hierarchicalaction and inhibition of plant Dicer-like proteins in antiviral defense. Science,2006,313:68-71.
    31. Diaz-Pendon J A, Li F, Li W X, Ding S W. Suppression of antiviral silencing by cucumber mosaicvirus2b protein in Arabidopsis is associated with drastically reduced accumulation of three classesof viral small interfering RNAs. The Plant Cell,2007,19:2053-2063.
    32. Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencingpathways in virulent Agrobacterium tumefaciens infections. Nature Genetics,2006,382:258-263.
    33. Dunoyer P, Lecellier C H, Parizotto E A, Himber C, Voinnet O. Probing the microRNA and smallinterfering RNA pathways with virus-encoded suppressors of RNA silencing. The Plant Cell,2004,16:1235-1250.
    34. Elkashef S, Ding S W. Possible new RNA intermediate in RNA silencing. Nature ChemicalBiology,2009,5:278-279.
    35. Ellendorff U, Fradin E F, Jonge R, Thomma B P. RNA silencing is required for Arabidopsisdefence against Verticillium wilt disease. Journal of Experimental Botany,2009,60:591-602.
    36. Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan A, LawT F, Grant S R, Dangl J L, Carrington J C. High-throughput sequencing of ArabidopsismicroRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE,2007,2: e219.
    37. Fang Y D, Spector D L. Identification of nuclear dicing bodies containing proteins for microRNAbiogenesis in living Arabidopsis plants. Current Biology,2007,17:818-823.
    38. Fujioka Y, Utsumi M, Ohba Y, Watanabe Y. Location of a possible miRNA processing site inSmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiology,2007,48:1243-1253.
    39. Fusaro A F, Matthew L, Smith N A, Curtin S J, Dedic-Hagan J, Ellacott G A, Watson J M, Wang MB, Brosnan C, Carroll B J, Waterhouse P M. RNA interference-inducing hairpin RNAs in plants actthrough the viral defence pathway. European Molecular Biology Organization reports,2006,7:1168-1175.
    40. Gasciolli V, Mallory A C, Bartel D P, Vaucheret H. Partially redundant functions of ArabidopsisDICER-like enzymes and a role for DCL4in producing trans-acting siRNAs. Current Biology,2005,15:1494-1500.
    41. German M A, Luo S J, Schroth G, Meyers B C, Green P J. Construction of Parallel Analysis ofRNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome.Nature Protocols,2009,4:356-362.
    42. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y. Interaction withhost SGS3is required for suppression of RNA silencing by tomato yellow leaf curl virus V2protein. Proceedings of the National Academy of Sciences the United States of America,2008,105:157-161.
    43. Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M,Voinnet O. Nuclear import of CaMV P6is required for infection and suppression of the RNAsilencing factor DRB4. The European Molecular Biology Organization Journal,2008,27:2102-2112.
    44. He X F, Fang Y Y, Feng L, Guo H S. Characterization of conserved and novel microRNAs andtheir targets, including aTuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA inBrassica. FEBS Letters,2008,582:2445-2452.
    45. Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby I E, Sundar S,Jarmolowski A, Shirasu K, Lacomme C. Virus-induced gene silencing-based functionalcharacterization of genes associated with powdery mildew resistance in barley. Plant Physiology,2005,138:2155-2164.
    46. Hewezi T, Howe P, Maier T R, Baum T J. Arabidopsis small RNAs and their targets during cystnematode parasitism. Molecular Plant-Microbe Interactions,2008,21:1622-1634.
    47. Holzberg S, Brosio P, Gross C, Pogue G P. Barley stripe mosaic virus induced gene silencing in amonocot plant. The Plant Journal,2002,30:315-327.
    48. Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398expression inArabidopsis. Planta,2009,229:1009-1014.
    49. Jin H, Zhu J K. A viral suppressor protein inhibits host RNA silencing by hooking up withArgonautes. Genes&Development,2010,24:853-856.
    50. Jin H. Endogenous small RNAs and antibacterial immunity in plants. FEBS Letters,2008,582:2679-2684.
    51. Jones J D, Dangl J L. The plant immune system. Nature,2006,444:323-329.
    52. Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. AnnualReview of Plant Physiology,2006,57:19-53.
    53. Jones-Rhoades M W, Bartel D P. Computational identification of plant MicroRNAs and theirtargets, including a stress-induced miRNA. Molecular Cell,2004,14:787-799.
    54. Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C. P1/HC-Pro, aviral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction.Developmental Cell,2003,4:205-217.
    55. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAsin Arabidopsis. Genes&Development,2007,21:3123-3134.
    56. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu J K, Staskawicz B J, Jin HL. A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the NationalAcademy of Sciences the United States of America,2006,103:18002-18007.
    57. Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity throughARGONAUTE1. Nature,2004,428:81-84.
    58. Krishna P, Gloor G. The Hsp90family of proteins in Arabidopsis thaliana. Cell Stress Chaperones,2001,6:238-246.
    59. Kumagai M H, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill L K. Cytoplasmic inhibitionof carotenoid biosynthesis with virusderived RNA. Proceedings of the National Academy ofSciences the United States of America,1995,92:1679-1683.
    60. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1and HYL1is important forefficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA,2006,12:206-212.
    61. Lee R C, Feinbaum R L, Ambros V. The C elegans heterochronic gene lin-4encodes small RNAswith antisense complementarity to lin-14. Cell,1993,75:843-854.
    62. Lee Y, Ahn C, Han J J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim V N. Thenuclear RNase III Drosha initiates microRNA processing. Nature,2003,425:415-419.
    63. Lewsey M G, Carr J P. Effects of DICER-like proteins2,3and4on cucumber mosaic virus andtobacco mosaic virus infections in salicylic acid-treated plants. Journal of General Virology,2009,90:3010-3014.
    64. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou J M. Identification of microRNAs involved inpathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiology,2010,152:2222-2231.
    65. Lu S F, Sun Y H, Amerson H, Chiang V L. MicroRNAs in loblolly pine (Pinus taeda L.) and theirassociation with fusiform rust gall development. The Plant Journal,2007,51:1077-1098.
    66. Lu S F, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus. The Plant Journal,2008,55:131-151.
    67. Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression of earlyauxin response genes. The Plant Cell,2005,17:1360-1375.
    68. Mallory A C, Vaucheret H. Functions of microRNAs and related small RNAs in plants. NatureGenetics,2006,38: S31-S36.
    69. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke A J. RNA-mediated chromatin-basedsilencing in plants. Current Opinion in Cell Biology,2009,21:367-376.
    70. Meyer P, Prodromou C, Hu B. Strctural and functional analysi s of the middle segment of Hsp90:implications for ATP hydrolysis and client protein and cochaperone interactions. Molecular Cell,2003,11:647-658.
    71. Moldovan D, Spriggs A, Yang J, Pogson B J, Dennis E S, Wilson IW. HypoxiaresponsivemicroRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of ExperimentalBotany,2009,61:165-177.
    72. Montgomery T A, Howell M D, Cuperus J T, Li D, Hansen J E, Alexander A L, Chapman E J,Fahlgren N, Allen E, Carrington J C. Specificity of ARGONAUTE7-miR390interaction and dualfunctionality in TAS3trans-acting siRNA formation. Cell,2008,133:128-141.
    73. Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T. The dsRNA-binding protein DRB4interactswith the Dicer-like protein DCL4in vivo and functions in the trans-acting siRNA pathway. PlantMolecular Biology,2007,63:777-785.
    74. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D G. A plantmiRNA contributes to antibacterial resistance by repressing auxin signaling. Science,2006,312:436-439.
    75. Navarro L, Jay F, Nomura K, He S Y, Voinnet O. Suppression of the microRNA pathway bybacterial effector proteins. Science,2008,321:964-967.
    76. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between themiR164a and CUC2genes controls leaf margin serration in Arabidopsis. The Plant Cell,2006,18:2929-2945.
    77. Kutter C, Schob H, Stadler M, Meins F, Si-Ammour A. MicroRNA-mediated regulation ofstomatal development in Arabidopsis. The Plant Cell,2007,19:2417-2429.
    78. Padmanabhan C, Zhang X, Jin H. Host small RNAs are big contributors to plant innate immunity.Current Opinion in Plant Biology,2009,12:465-472.
    79. Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C. Weigel D. Control of leafmorphogenesis by microRNAs. Nature,2003,425:257-63.
    80. Pavet V, Quintero C, Cecchini N M, Rosa A L, Alvarez M E. Arabidopsis displays centromericDNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonassyringae. Molecular Plant-Microbe Interactions,2006,19:577-587.
    81. Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S. SGS3and SGS2/SDE1/RDR6arerequired for juvenile development and the production. Genes&Development,2004,18:2368-2379.
    82. Petty I T, Hunter B G, Wei N, Jackson A O. Infectious barley stripe mosaic virus RNA transcribedin vitro from full-length genomic cDNA clones. Virology,1989,171:342-349.
    83. Picard D. Heat shock protein90, a chaperone for folding and regulation. Cellular and MolecularLife Sciences,2002,59:1640-1648.
    84. Pruss G J, Nester E W, Vance V. Infiltration with Agrobacterium tumefaciens induces host defenseand development-dependent responses in the infiltrated zone. Molecular Plant-MicrobeInteractions,2008,21:1528-1538.
    85. Qu F, Ye X, Morris T J. Arabidopsis DRB4, AGO1, AGO7, and RDR6participate in aDCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of theNational Academy of Sciences the United States of America,2008,105:14732-14737.
    86. Rakhshandehroo F, Takeshita M, Squires J, Palukaitis P. The influence of RNA-dependent RNApolymerase1on potato virus Y infection and on other antiviral response genes. MolecularPlant-Microbe Interactions,2009,22:1312-1318.
    87. Ratcliff F, Harrison B D, Baulcombe D C. A similarity between viral defense and gene silencing inplants. Science,1997,276:1558-1560.
    88. Reyes J L, Chua N H. ABA induction of miR159controls transcript levels of two MYB factorsduring Arabidopsis seed germination. The Plant Journal,2007,49:592-606.
    89. Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction ofplantmicroRNA targets. Cell,2002,110:513-520.
    90. Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annual Review ofPlant Biology,2009,60:485–510.
    91. Schirmer E C, Glover J R, Singer M A, Lindquist S. Hsp100/Clp proteins: a common mechanismexplains diverse functions. Trends in Biochemical Sciences,1996,21:289-296.
    92. Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virusinduced gene-silencingsystem for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rustresistance pathway. Plant Physiology,2005,138:2165-2173.
    93. Sindhu A, Chintamanani S, Brandt A S, Zanis M, Scofield S R, Johal G S. A guardian of grasses:specific origin and conservation of a unique disease-resistance gene in the grass lineage.Proceedings of the National Academy of Sciences the United States of America,2008,105:1762-1767.
    94. Souret F F, Kastenmayer J P, Green P J. AtXRN4degrades mRNA in Arabidopsis and its substratesinclude selected miRNA targets. Molecular Cell,2004,15:173-183.
    95. Stokes T L, Richards E J. Induced instability of two Arabidopsis constitutive athogen-Responsealleles. Proceedings of the National Academy of Sciences the United States of America,2002,99:7792-7796.
    96. Sunkar R, Chinnusamy V, Zhu J H, Zhu J K. Small RNAs as big players in plant abiotic stressresponses and nutrient deprivation. Trends in Plant Science,2007,12:301-309.
    97. Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutasegenes in Arabidopsis is mediated by downregulation ofmiR398and important for oxidative stresstolerance. The Plant Cell,2006,18:2051-2065.
    98. Taipale M, Jarosz D F, Lindquist S. Hsp90at the hub of protein homeostasis: emerging mechanisticinsights. Nature Reviews Molecular Cell Biology,2010,11:515-528.
    99. Takahashi A, Casais C, Ichimura K, Shirasu K. Hsp90interacts with RAR1and SGT1and isessential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the NationalAcademy of Sciences the United States of America,2003,100:11777-11782.
    100. Terasawa K, Minami M, Minami Y. Constantly updated knowledge of Hsp90. The Journal ofBiochemistry,2005.137:443-447.
    101. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel DP, Crété P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs.Molecular Cell,2004,16:69-79.
    102. Voinnet O. Origin, Biogenesis and Activity of Plant MicroRNAs. Cell,2009,136:669-687.
    103. Wang G F, Wei X N, Fan R C, Zhou H B, Wang X P, Yu C M, Dong L L, Dong Z Y, Wang X J,Kang Z S, Ling H Q, Shen Q H, Wang D W, Zhang X Q. Molecular analysis of common wheatgenes encoding three types of cytosolic heat shock protein90(Hsp90): functional involvement ofcytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist,2011,191:418-431.
    104. Wang X B, Wu Q, Ito T, Cillo F, Li W X, Chen X, Yu J L. Ding S W, RNAi-mediated viralimmunity requires amplification of virusderived siRNAs in Arabidopsis thaliana. Proceedings ofthe National Academy of Sciences the United States of America,2010,107:484-489.
    105. Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156and its target SPL3. Development,2006,133:3539-3547.
    106. Xie Z, Fan B, Chen C, Chen Z. An important role of an inducible RNA-dependent RNApolymerase in plant antiviral defense. Proceedings of the National Academy of Sciences the UnitedStates of America,2001,98:6516-6521.
    107. Xie Z X, Allen E, Fahlgren N, Calamar A, Givan S A. Carrington J C. Expression of ArabidopsismiRNA genes. Plant Physiology,2005,138:2145-2154.
    108. Yang Z, Ebright YW, Yu B, Chen X. HEN1recognizes21-24nt small RNA duplexes and depositsa methyl group onto the2’ OH of the3’ terminal nucleotide. Nucleic Acids Research,2006,34:667-675.
    109. Yamasaki H, Abdel-Ghany S E, Cohu C M, Kobayashi Y, Pilon M, Shikanai T. The mechanism ofadaptation to copper deficient conditions via microRNA in Arabidopsis. Plant and Cell Physiology,2007,48: S106-S106.
    110. Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu J K, Sun Q. Non-coding small RNAsresponsive to abiotic stress in wheat. Functional&Integrative Genomics,2010,10:187-190.
    111. Zhang B H, Stellwag E J, Pan X P. Large-scale genome analysis reveals unique features ofmicroRNAs. Gene,2009,443:100-109.
    112. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, CoffeyM, Jin H. Bacteria-responsive microRNAs regulate plant innate immunity by modulating planthormone networks. Plant Molecular Biology,2011,76:205-6.
    113. Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D, Zhang X.Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence fortheir participation in the wheat hypersensitive response to stripe rust fungus infection. The PlantJournal,2007,52:420-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700