中国南海海绵共生微生物的宏基因组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海绵动物是原始、低等滤食的后生动物,它的外形能随着生活环境的变化而改变,长期以来海绵的分类问题存在较大争议。传统的海绵分类是根据海绵的骨针或骨骼来鉴定的,骨针形状完全不同的海绵很容易分类。但是有些骨针的形状相似,但是弯曲程度和长度都有细微的变化,此时,单靠骨针来分类已不可靠。通过应用生物分子标签技术(Barcode),可以为海绵的的分类提供了可靠的依据。
     利用16S rDNA克隆文库构建技术,克隆六种海绵共生微生物的16S基因片段,并将其六种海绵的细菌文库相应编号为:PBS2、PBS4、PBS5、PBS7、PBS8和PBS10,克隆数分别为240、203、288、288、288、288。用限制性内切酶MboI和BstUI对PBS2和PBS4片段进行RFLP分析,克隆文库相应的OTU为:29和21。挑选.代表性的克隆进行测序,并利用NCBI和RDP数据库进行细菌种属分析。PBS2文库主要由五大细菌门类,分别是:Actinobacteria(23个克隆,9.58%)Bacteroidetes(23个克隆,5.42%)、Firmicutes(1个克隆,0.42%)、Proteobacteria(62个克隆,25.83%)、 Cyanobacteria(137个克隆,57.08%)、未分类的细菌有4个克隆,占总克隆数的1.67%。PBS4文库共有203个克隆,主要由四大细菌门类,分别是:Actinobacteria(3个克隆,1.48%)Bacteroidetes(3个克隆,1.48%)、Proteobacteria(164个克隆,80.79%)、 Cyanobacteria(9个克隆,4.43%)、未能分类的细菌有24个克隆,占总克隆数的11.82%。
     利用宏基因组和16S rDNA文库技术,对京一海绵进行研究。京一海绵的16SrDNA基因文库共得到244个克隆,15个OTU,主要由Actinobacteria、Planctomycetes、 Proteobacteria、 Cyanobacteria共四个细菌门类组成,其中Cyanobacteria的细菌门类多达91.39%,而Actinobacteria和Planctomycetes的门类低至0.41%,Proteobacteria门类为6.56%,没有明确分类的细菌门类为1.23%。京一海绵样品的宏基因组solexa测序得到原始数据约20G,拼接得到346749个contigs,约73.52M的非冗余数据,片段的平均长度为约212bp,最长的片段为27.73kb,最短的片段为100bp。其中,65.09%的congtigs片段分布在100-149bp之间,14.69%的片段分布在150-199bp,200bp以上的片段占20.22%。这346749个片段根据RDP16S classifier分析,共176个contigs属于Archaea,占总体contigs数目的0.05%;227021个片段属于Bacteria,占总体contigs数目的65.47%;没有明确分类的片段大约有119553个,占总体contigs数目的34.48%。在176个属于Archaea的contigs中,有32个contigs属于Crenarchaeota;剩余的没有明确分类;227021个Bacteria的contigs中,15个contigs属于Actinobacteria,1个属于Bacteroidetes,937个属于Firmicutes,5个属于Planctomycetes,10个属于Proteobacteria,9个属于Cyanobacteria。
Marine sponges, usually attached to the seabed or reef, are among the oldestmetazoans. Their bodies changed when environmental conditions are altered. Usingonly morphological features to classify marine sponges is controversial. Spongespicules are useful feature in traditional classification. It is easier to classify the kindsof marine sponge with their spicules unlikeness. However, some times spicules aresimilar in shape but different in spicule curve and length. In this case, theclassification of marine sponges becomes unreliable just only depending on the spiculeshapes. Application of the barcoding technology (DNA barcoding), the classificationof marine sponges is beco分钟g more reliable.
     The16S-rRNA genes are cloned through polymerase chain reaction (PCR) viaprimer27F and1492R. The symbiotic microbial libraries of six different marinesponges are constructed with16S-rDNA clone library technology via plasmidPMD-19T. The name of the six sponges clone library is as follow: PBS2, PBS4,PBS5, PBS7, PBS8and PBS10. And analyzed clones are240,203,288,288,288and288respectively. After constructing the clone library, the inserts whichcontain the target16S rRNA gene fragment by universal primer of plasmid (M13F andRV-47) is amplified to produce enough copies. Then the restriction enzyme Mbo I andBstU I are used to digest the fragments and different operational taxonomic units (OTU)are identified. The OTUs of PBS2and PBS4are29and21. The representative clonesof different OTUs are sequenced and the types of bacteria are identified by comparingthe sequences with NCBI and RDP database. PBS2library comprises five categories ofbacteria: Actinobacteria (23clones,9.58%), Bacteroidetes (23clones,5.42%), Firmicutes (1clones,0.42%),Proteobacteria (62clones,25.83%),Cyanobacteria(137clones,57.08%), and unclassified bacteria (4clones,1.67%). PBS4librarycontain203clones, and bacteria categories are: Actinobacteria (3clones,1.48%)Bacteroidetes (3clones,1.48%), Proteobacteria (164clones,80.79%),Cyanobacteria (9clone,4.43%), unclassified bacteria(24clones,11.82%).Metagenomic approach based on next generation sequence and16S-rDNA clonedlibrary have been applied in a marine sponge sample analyses. The16S-rDNA libraryof sponge Jing1was analysed and244clones were classified into fifteen types OTU.Actinobacteria(1clones,0.41%), Planctomycetes(1clones,0.41%),Proteobacteria(16clones,6.56%), Cyanobacteria(222clones,91.39%), andunclassified bacteria(3clones,1.23%) were composed of the categories of bacteria ofjing1. The percentage of bacteria Cyanobacteria covers up to91.39%whilePlanctomycetes and Actinobacteria only occupy0.41%. Proteobacteria bacteria is6.56%, and unclassified bacteria is1.23%.
     From the sponge sample of Jing1about20GB data were collected through Illu分钟asequencer,GAⅡx. After using software to assemble,about346,749contigs,73.52MB non-redundant data were acquired. The average fragment length is212bp whilethe longest fragment is27.73kb, the shortest is100bp. Among the data,65.09%ofcontigs were distribute in the length100-149bp,14.69%of the contigs in150-199bp,over200bp length contigs is20.22%. Those contigs accord to RDP16S classifieranalysis, a total of176contigs belong to Archaea, accounting for0.05%of allcontigs;227,021contigs belong to Bacteria,accounting for65.47%; the contigs withno clear classification are about119,553, accounting for34.48%. The176contigsbelonging to Archaea, there are32contigs are Crenarchaeota; the remaining has noclear classification.227021bacteria contigs,15contigs belong to Actinobacteria,1fall within the category Bacteroidetes,937fall within the category Firmicutes,5fallwithin the category Planctomycetes,10belong to Proteobacteria,9fall in thecategory Cyanobacteria.
引文
1. A DNA barcode for land plants. Proc Natl Acad Sci U S A2009,106(31):12794-12797.
    2. Amano S, Hori I: Metamorphosis of Calcareous Sponges.1. Ultrastructure ofFree-Swimming Larvae. Invertebr Reprod Dev1992,21(2):81-90.
    3. Amano S, Hori I: Metamorphosis of a Demosponge.1. Cells and Structure of SwimmingLarva. Invertebr Reprod Dev1994,25(3):193-204.
    4. Anderson JM: Ultrastructure of Extracellular Matrix around Dissociated Sponge Cells,Microciona-Prolifera. Biological Bulletin1975,149(2):419-420.
    5. Anemaet IG, Bekker M, Hellingwerf KJ: Algal photosynthesis as the primary driver for asustainable development in energy, feed, and food production. Mar Biotechnol (NY)2010,12(6):619-629.
    6. Bano N, Hollibaugh JT: Diversity and distribution of DNA sequences with affinity toammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in theArctic Ocean. Appl Environ Microbiol2000,66(5):1960-1969.
    7. Barnes RD: Invertebrate zoology: Saunders College Pub.;1987.
    8. Bavestrello G, Bonito M, Sara M: Silica Content and Spicular Size Variation during anAnnual Cycle in Chondrilla-Nucula Schmidt (Porifera, Demospongiae) in the LigurianSea. Scientia Marina, Vol57No4Dec19931993:421-425.
    9. Bergquist PR: Sponges: University of California Press;1978.
    10. Bergquist PR: Porifera: Oxford University Press;1998.
    11. Bergquist PR: Porifera (Sponges): John Wiley&Sons, Ltd;2001.
    12. Bird C, Martinez Martinez J, O'Donnell AG, Wyman M: Spatial distribution andtranscriptional activity of an uncultured clade of planktonic diazotrophicgamma-proteobacteria in the Arabian sea. Appl Environ Microbiol2005,71(4):2079-2085.
    13. Bothe H, Tripp HJ, Zehr JP: Unicellular cyanobacteria with a new mode of life: the lackof photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol2010,192(10):783-790.
    14. Brasier M, Green O, Shields G: Ediacarian sponge spicule clusters from southwesternMongolia and the origins of the Cambrian fauna. Geology1997,25(4):303-306.
    15. Brenner DJ, Krieg NR, Garrity GM, Staley JT: Bergey's manual of systematicbacteriology: The proteobacteria: Springer;2005.
    16. Brusca RC, Brusca GJ: Invertebrates: Sinauer Associates;1990.
    17. Chandler DP, Brockman FJ, Bailey TJ, Fredrickson JK: Phylogenetic Diversity of Archaeaand Bacteria in a Deep Subsurface Paleosol. Microb Ecol1998,36(1):37-50.
    18. Cottrell MT, Waidner LA, Yu LY, Kirchman DL: Bacterial diversity of metagenomic andPCR libraries from the Delaware River. Environ Microbiol2005,7(12):1883-1895.
    19. Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A,Kolvek SJ, Hopke J, Osburne MS et al: Recombinant environmental libraries provideaccess to microbial diversity for drug discovery from natural products. Appl EnvironMicrobiol2003,69(1):49-55.
    20. Daniel R: The metagenomics of soil. Nat Rev Microbiol2005,3(6):470-478.
    21. Danovaro R, Company JB, Corinaldesi C, D'Onghia G, Galil B, Gambi C, Gooday AJ,Lampadariou N, Luna GM, Morigi C et al: Deep-sea biodiversity in the MediterraneanSea: the known, the unknown, and the unknowable. PLoS One2010,5(8):e11832.
    22. DeLong EF: Archaea in coastal marine environments. Proc Natl Acad Sci U S A1992,89(12):5685-5689.
    23. Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P: Noveltetracycline resistance determinant from the oral metagenome. Antimicrob AgentsChemother2003,47(4):1430-1432.
    24. Diener TO: Discovering viroids--a personal perspective. Nat Rev Microbiol2003,1(1):75-80.
    25. Dridi B, Raoult D, Drancourt M: Archaea as emerging organisms in complex humanmicrobiomes. Anaerobe2011,17(2):56-63.
    26. Edwards KJ, Rogers DR, Wirsen CO, McCollom TM: Isolation and characterization ofnovel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-andgamma-proteobacteria from the deep sea. Appl Environ Microbiol2003,69(5):2906-2913.
    27. Fuerst JA: The planctomycetes: emerging models for microbial ecology, evolution andcell biology. Microbiology1995,141(Pt7):1493-1506.
    28. Gehling JG, Rigby JK: Long expected sponges from the Neoproterozoic Ediacara faunaof South Australia. Journal of Paleontology1996,70(2):185-195.
    29. Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour2011,11(5):759-769.
    30. H.S.Bhamrah, Juneja K: An Introduction to Porifera: Mehra Offset Press;2001.
    31. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular biologicalaccess to the chemistry of unknown soil microbes: a new frontier for natural products.Chem Biol1998,5(10):R245-249.
    32. Hardeman F, Sjoling S: Metagenomic approach for the isolation of a novellow-temperature-active lipase from uncultured bacteria of marine sediment. FEMSMicrobiol Ecol2007,59(2):524-534.
    33. Hirose E, Murakami A: Microscopic anatomy and pigment characterization ofcoral-encrusting black sponge with cyanobacterial symbiont, Terpios hoshinota. ZoologSci2011,28(3):199-205.
    34. Hooper JNA, Soest vRWM: Systema Proifera: a guide to the classification of sponges, vol.68: Bolletino di Museo e Istituto di Biologia dell'Universita di Genova;2004.
    35. Horz HP, Conrads G: The discussion goes on: What is the role of Euryarchaeota inhumans? Archaea2010,2010:967271.
    36. Hyman LH: The invertebrates: McGraw-Hill;1959.
    37. Kelly-Borges M, Pomponi SA: A simple fool's guide to sponge classification. In: FortPierce, Fla. Harbor Branch Oceanographic Institute;1992.
    38. Koch H: Combining morphology and DNA barcoding resolves the taxonomy of WesternMalagasy Liotrigona Moure,1961(Hymenoptera: Apidae: Meliponini). AfricanInvertebrates2010,52(2):413-421.
    39. KRAUTTER M: Ecology of siliceous sponges-Application to the environmentalinterpretation of the Upper Jurassic spongefacies (Oxfordian)from Spain. Cuadernos deGeología Ibérica1998,24:233-239.
    40. Kress WJ, Erickson DL: A two-locus global DNA barcode for land plants: the codingrbcL gene complements the non-coding trnH-psbA spacer region. PLoS One2007,2(6):e508.
    41. Li CW, Chen JY, Hua TE: Precambrian sponges with cellular structures. Science1998,279(5352):879-882.
    42. Li WK, Andersen RA, Gifford DJ, Incze LS, Martin JL, Pilskaln CH, Rooney-Varga JN,Sieracki ME, Wilson WH, Wolff NH: Planktonic microbes in the gulf of maine area. PLoSOne2011,6(6):e20981.
    43. Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L: MarineBacterioplankton Diversity and Community Composition in an Antarctic CoastalEnvironment. Microb Ecol2011.
    44. Müller WEG, Diehl-Seifert B, Gramzow M, Friese U, Renneisen K, Schr der HC:Interrelation between Extracellular Adhesion Proteins and Extracellular Matrix inReaggregation of Dissociated Sponge Cells. In: International Review of Cytology. Editedby G.H. Bourne KWJ, Friedlander M, vol. Volume111: Academic Press;1988:211-229.
    45. Müller WEG,王晓红,曾令森, Schr der HC:海绵动物的演化意义及其生物硅的仿生应用.科学通报2007,52(12):1372-1381.
    46. Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J: Widefield deconvolutionepifluorescence microscopy combined with fluorescence in situ hybridization revealsthe spatial arrangement of bacteria in sponge tissue. J Microbiol Methods2000,40(2):125-134.
    47. Maugeri TL, Lentini V, Gugliandolo C, Italiano F, Cousin S, Stackebrandt E: Bacterial andarchaeal populations at two shallow hydrothermal vents off Panarea Island (EolianIslands, Italy). Extremophiles2009,13(1):199-212.
    48. Mercurio M, Corriero G, Scalera Liaci L, Gaino E: Silica content and spicule sizevariations in Pellina semitubulosa (Porifera: Demospongiae). Marine Biology2000,137(1):87-92.
    49. Michelland RJ, Monteils V, Combes S, Cauquil L, Gidenne T, Fortun-Lamothe L:Comparison of the archaeal community in the fermentative compartment and faeces ofthe cow and the rabbit. Anaerobe2010,16(4):396-401.
    50. Montalvo N, Mohamed N, Enticknap J, Hill R: Novel actinobacteria from marine sponges.Antonie Van Leeuwenhoek2005,87(1):29-36.
    51. Muller WE, Zahn RK, Kurelec B, Lucu C, Muller I, Uhlenbruck G: Lectin, a possible basisfor symbiosis between bacteria and sponges. J Bacteriol1981,145(1):548-558.
    52. Muller WEG: Molecular Phylogeny of Metazoa (Animals)-Monophyletic Origin.Naturwissenschaften1995,82(7):321-329.
    53. Muller WEG: The origin of metazoan complexity: Porifera as integrated animals. IntegrComp Biol2003,43(1):3-10.
    54. Muller WEG, Muller IM, Gamulin V: On the Monophyletic Evolution of the Metazoa.Braz J Med Biol Res1994,27(9):2083-2096.
    55. Muller WEG, Muller IM, Rinkevich B, Gamulin V: Molecular Evolution-Evidence for theMonophyletic Origin of Multicellular Animals. Naturwissenschaften1995,82(1):36-38.
    56. Muller WEG, Schroder HC, Skorokhod A, Bunz C, Muller IM, Grebenjuk VA: Contributionof sponge genes to unravel the genome of the hypothetical ancestor of Metazoa(Urmetazoa). Gene2001,276(1-2):161-173.
    57. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y:Distribution, phylogenetic diversity and physiological characteristics ofepsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol2005,7(10):1619-1632.
    58. Negandhi K, Blackwelder PL, Ereskovsky AV, Lopez JV: Florida reef sponges harborcoral disease-associated microbes. Symbiosis2010,51(1):117-129.
    59. Newman DJ, Cragg GM: Microbial antitumor drugs: Natural products of microbialorigin as anticancer agents. Curr Opin Invest Dr2009,10(12):1280-1296.
    60. Newman DJ, Hill RT: New drugs from marine microbes: the tide is turning. J IndMicrobiol Biotechnol2006,33(7):539-544.
    61. Norse EA: Maintaining the World's Marine Biological Diversity. Bulletin of MarineScience1995,57(1):10-13.
    62. Opatkiewicz AD, Butterfield DA, Baross JA: Individual hydrothermal vents at AxialSeamount harbor distinct subseafloor microbial communities. FEMS Microbiol Ecol2009,70(3):413-424.
    63. Osinga R, Armstrong E, Grant Burgess J, Hoffmann F, Reitner J, Schumann-Kindel G:Sponge–microbe associations and their importance for sponge bioprocess engineering.Hydrobiologia2001,461(1):55-62.
    64. Ozima M, Yin QZ, Podosek FA, Miura YN: Toward understanding early Earth evolution:prescription for approach from terrestrial noble gas and light element records in lunarsoils. Proc Natl Acad Sci U S A2008,105(46):17654-17658.
    65. Piel J: A polyketide synthase-peptide synthetase gene cluster from an unculturedbacterial symbiont of Paederus beetles. Proc Natl Acad Sci U S A2002,99(22):14002-14007.
    66. Proksch P: Defensive roles for secondary metabolites from marine sponges andsponge-feeding nudibranchs. Toxicon1994,32(6):639-655.
    67. Prothero DR, Dott J, Dott RH: Evolution of the Earth: McGraw-Hill;2009.
    68. Purdy KJ: The distribution and diversity of Euryarchaeota in termite guts. Adv ApplMicrobiol2007,62:63-80.
    69. Rachel R, Wyschkony I, Riehl S, Huber H: The ultrastructure of Ignicoccus: evidence fora novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea2002,1(1):9-18.
    70. Rappe MS, Giovannoni SJ: The uncultured microbial majority. Annu Rev Microbiol2003,57:369-394.
    71. REISWIG HM: PARTICLE FEEDING IN NATURAL POPULATIONS OF THREEMARINE DEMOSPONGES. Biol Bull1971,141(3):568-591.
    72. Reiswig HM: Water transport, respiration and energetics of three tropical marinesponges. Journal of Experimental Marine Biology and Ecology1974,14(3):231-249.
    73. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA,Lynch BA, MacNeil IA, minor C et al: Cloning the soil metagenome: a strategy foraccessing the genetic and functional diversity of uncultured microorganisms. ApplEnviron Microbiol2000,66(6):2541-2547.
    74. Ruppert EE, Fox RS, Barnes RD: Invertebrate Zoology: a Functional EvolutionaryApproach. In: Invertebrate Zoology: a Functional Evolutionary Approach. vol.7. Belmont,CA: Thomson: Brooks/Cole;2004:76-97.
    75. Ruzicka R, Gleason DF: Latitudinal variation in spongivorous fishes and theeffectiveness of sponge chemical defenses. Oecologia2008,154(4):785-794.
    76. Schafer G, Krulwich TA, Poole RK, Padan E, Konings WN, Skulachev V, Fillingame RH,Matin A, Dimroth P, Booth IR et al: How can archaea cope with extreme acidity? NovartFdn Symp1999,221:131-151.
    77. Schmitt S, Wehrl M, Bayer K, Siegl A, Hentschel U: Marine sponges as models forcommensal microbe-host interactions. Symbiosis2007,44(1-3):43-50.
    78. Schulz HN, Jorgensen BB: Big bacteria. Annu Rev Microbiol2001,55:105-137.
    79. Seberg O, Petersen G: How Many Loci Does it Take to DNA Barcode a Crocus? PLoSOne2009,4(2):e4598.
    80. Shi Y, Zhang Y, Yang H:[Phylogenetic analysis of symbiotic archaea in the gut ofReticulitermes chinensis Snyder]. Wei Sheng Wu Xue Bao2009,49(12):1655-1659.
    81. Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH: Large-scaleproduction of pharmaceuticals by marine sponges: Sea, cell, or synthesis? Biotechnologyand Bioengineering2005,90(2):201-222.
    82. Smith GJ, Muscatine L: Cell cycle of symbiotic dinoflagellates: variation in G1phase-duration with anemone nutritional status and macronutrient supply in theAiptasia pulchella–Symbiodinium pulchrorum symbiosis. Marine Biology1999,134(3):405-418.
    83. Smolker R, Richards A, Connor R, Mann J, Berggren P: Sponge Carrying by Dolphins(Delphinidae, Tursiops sp.): A Foraging Specialization Involving Tool Use? Ethology1997,103(6):454-465.
    84. Stackebrandt E, Goodfellow M: Nucleic acid techniques in bacterial systematics: Wiley;1991.
    85. Stevens H, Stubner M, Simon M, Brinkhoff T: Phylogeny of Proteobacteria andBacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol Ecol2005,54(3):351-365.
    86. Suttle CA: Marine viruses--major players in the global ecosystem. Nat Rev Microbiol2007,5(10):801-812.
    87. Takai K, Nakamura K: Archaeal diversity and community development in deep-seahydrothermal vents. Curr Opin Microbiol2011,14(3):282-291.
    88. Thakur NL, Muller WEG: Biotechnological potential of marine sponges. Current Science2004,86(11):1506-1512.
    89. Thomas NA, Bardy SL, Jarrell KF: The archaeal flagellum: a different kind ofprokaryotic motility structure. FEMS Microbiol Rev2001,25(2):147-174.
    90. Uriz MJ, Turon X, Becerro MA, Agell G: Siliceous spicules and skeleton frameworks insponges: Origin, diversity, ultrastructural patterns, and biological functions. MicroscRes Techniq2003,62(4):279-299.
    91. Uriz MJ, Turon X, Becerro MA, Agell G: Siliceous spicules and skeleton frameworks insponges: origin, diversity, ultrastructural patterns, and biological functions. MicroscRes Tech2003,62(4):279-299.
    92. van-Soest R, Boury-Esnault N, Hooper J, Voogd Nd, Rützler K, Alvarez B, Hajdu E, PiseraA, Vacelet J, Manconi R et al: World Porifera database. Available online athttp://wwwmarinespeciesorg/porifera2011.
    93. Voigt O, Erpenbeck D, Worheide G: Molecular evolution of rDNA in early divergingMetazoa: first comparative analysis and phylogenetic application of complete SSUrRNA secondary structures in Porifera. BMC Evol Biol2008,8:69.
    94. Wang GY, Graziani E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, AndersenRJ, Davies J: Novel natural products from soil DNA libraries in a streptomycete host.Org Lett2000,2(16):2401-2404.
    95. Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, Allen P, Fields K, Porter MJ, ZokFW, Hansma PK et al: Hierarchical assembly of the siliceous skeletal lattice of thehexactinellid sponge Euplectella aspergillum. J Struct Biol2007,158(1):93-106.
    96. Webster NS, Hill RT: The culturable microbial community of the Great Barrier Reefsponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Marine Biology2001,138(4):843-851.
    97. Whitford MF, Teather RM, Forster RJ: Phylogenetic analysis of methanogens from thebovine rumen. BMC Microbiol2001,1:5.
    98. Whitman WB, Coleman DC, Wiebe WJ: Prokaryotes: the unseen majority. Proc NatlAcad Sci U S A1998,95(12):6578-6583.
    99. Whittaker RH: New concepts of kingdoms or organisms. Evolutionary relations arebetter represented by new classifications than by the traditional two kingdoms. Science1969,163(863):150-160.
    100. Wilkinson CR: Microbial associations in sponges. III. Ultrastructure of the<i>insitu</i> associations in coral reef sponges. Marine Biology1978,49(2):177-185.
    101. Woese CR: There must be a prokaryote somewhere: microbiology's search for itself.Microbiol Rev1994,58(1):1-9.
    102. Woese CR, Fox GE: Phylogenetic structure of the prokaryotic domain: the primarykingdoms. Proc Natl Acad Sci U S A1977,74(11):5088-5090.
    103. Woese CR, Kandler O, Wheelis ML: Towards a natural system of organisms: proposalfor the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A1990,87(12):4576-4579.
    104. Wommack KE, Colwell RR: Virioplankton: viruses in aquatic ecosystems. Microbiol MolBiol Rev2000,64(1):69-114.
    105. Zafrilla B, Martinez-Espinosa RM, Alonso MA, Bonete MJ: Biodiversity of Archaea andfloral of two inland saltern ecosystems in the Alto Vinalopo Valley, Spain. Saline Systems2010,6:10.
    106.方再光:中国南海海绵Pachychalina sp.和Suberites sp.体内真细菌、古细菌多样性研究.2004.
    107.任淑仙:无脊椎动物学:北京大学出版社;2007.
    108.李志勇,何丽明,蒋群:海绵共附生细菌种群组成的PCR-DGGE基因指纹分析.生物技术通报2006(1):61-63.
    109.李越中,陈琦:海洋微生物资源多样性.生物工程进展1998,18(4):34-40.
    110.林永成:海洋微生物及其代谢产物:化学工业出版社现代生物技术与医药科技出版中心;2003.
    111.姜云垒,冯江:动物学:高等教育出版社;2006.
    112.薛松:海绵活性天然产物分类及结构确定.2003.
    113.鲍时翔,黄慧琴:海洋微生物学:中国海洋大学出版社;2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700