猪瘟病毒蛋白在宿主细胞中的表达及其对病毒感染的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以CSFV蛋白在宿主细胞中表达为研究基础,分别研究:各蛋白在感染细胞中表达情况;在细胞中各蛋白真核表达情况;在细胞中真核表达的各蛋白对宿主细胞的影响;以及在细胞中真核表达的各蛋白对病毒感染的影响。
     为研究猪瘟病毒蛋白在感染细胞中表达情况,将原核表达的各个CSFV蛋白纯化后分别免疫昆明小鼠制备多克隆抗体血清。结果获得除P7蛋白外11个重组CSFV蛋白并制备获得高滴度抗体的免疫血清。Western-Blotting能检测到病毒各蛋白片段与预期大小的一致,其中E0、E1、E2和NS5A还以蛋白聚合体形式存在。间接免疫荧光分析(Indirect Immuno-fluorescence Assay IFA)检测显示Npro主要定位于细胞核;C、E0和NS2在细胞核亦有分布,但主要是位于细胞质中;其他蛋白则位于细胞质中;E0蛋白还在细胞膜表面有分布。结果分析表明,分布于细胞核上的CSFV蛋白可能对细胞有调控作用,而分布于细胞质内的蛋白则主要参与病毒复制、组装和增殖。
     将CSFV C株各蛋白基因以pEGFP-N1为载体构建成真核表达质粒,转染ST细胞来研究各蛋白在细胞中真核表达情况。PCR检测结果显示目的蛋白基因成功转染进入细胞,荧光显微镜观察表明除pEGFP-E1外各转染细胞中均表达了目的融合蛋白。以绿色荧光蛋白(EGFP)为标签观察重组蛋白表达情况发现各细胞间荧光分布存在一定的差异性:所有转染细胞细胞质中均能观察到荧光,但在pEGFP-N1、pEGFP-Npro、pEGFP-C和pEGFP-NS2等4个转染细胞的细胞核也有荧光分布;pEGFP-EO和pEGFP-NS3转染细胞荧光信号在细胞核周围富集,同时pEGFP-EO细胞在细胞膜表面有聚合状态荧光信号。将转染细胞进行克隆后成功获取了11个CSFV蛋白稳定表达细胞系(pEGFP-E1和pEGFP-NS3除外),Western-Blotting检测显示:Npro、C、P7、NS2和NS5B与EGFP融合表达后会发生完全切割,△E0、E0、E2和NS5A蛋白与EGFP融合表达后出现部分切割,NS4A和NS4B蛋白与EGFP未发生切割。结果分析表明,Npro和NS2通过白裂解酶的作用进行切割;NS4A和NS4B蛋白蛋白切割需要病毒蛋白酶的作用;C和NS5B则通过细胞蛋白酶作用与EGFP裂解,C和NS5B蛋白3、端含有一个细胞蛋白酶位点;△E0、E0、 E2和NS5A蛋白通过细胞蛋白酶作用会发生部分切割。细胞增殖活力检测结果发现:与正常ST细胞比较pEGFP-NS4B细胞增殖能力明显降低;pEGFP-NS2、pEGFP-NS5A和pEGFP-P7细胞增殖能力有所下降;而pEGFP-N1、pEGFP-Npro、pEGFP-EO、pEGFP-E2和pEGFP-NS4A细胞增殖正常;而pEGFP-NS5B细胞前期正常而后期下降。结果分析表明,部分病毒蛋白对宿主细胞增殖具有调控作用,主要表现为抑制作用。细胞周期测定发现pEGFP-NS4B和pEGFP-NS5B细胞出现S期停滞现象,表明NS4B和NS5B蛋白表达后会导致细胞周期S期延长。
     分别用CSFV C-株和INLY-2011野毒株感染上述蛋白细胞系,采用实时荧光定量RT-PCR方法测定不同代次细胞系中病毒含量,从而研究CSFV蛋白对病毒感染的调控作用。首先以β-Actin基因为内参成功建立起基于SYBR-Green I实时荧光定量RT-PCR方法来检测病毒含量。根据在病毒增殖过程中的作用可以将10个蛋白细胞系分为促进作用、抑制抑制和双向调控作用三类:pEGFP-Npro、pEGFP-E0和pEGFP-NS5B细胞系有促进作用,尤其是pEGFP-E0细胞;pEGFP-C、pEGFP-E2、pEGFP-NS2、pEGFP-NS4B和pEGFP-NS5A细胞有抑制作用;pEGFP-P7和pEGFP-NS4A细胞系表现双向调控作用。同时根据不同毒株在细胞系中增殖的情况差异,又可以分成特异性、非特异性及相对特异性作用三类:其中C和NS4B蛋白为特异性作用;E0、E2、P7、NS2和NS4A蛋白为非特异性作用;Npro、NS5A和NS5B蛋白为相对特异性作用。表明在病毒感染过程中CSFV蛋白可以通过病毒蛋白-病毒蛋白以及病毒蛋白-宿主细胞之间多种相互作用途径来调控病毒增殖,使病毒与宿主细胞之间的达到平衡状态而利于病毒持续性感染存在。
     通过荧光显微镜可以观察到E0-EGFP融合蛋白在细胞膜上分布,并分泌释放到细胞外,其可以通过离心方式从细胞培养基中沉淀下来。Western-Blotting检测显示,信号肽决定E0蛋白是否能够加工成熟为高度糖基化的蛋白,糖基化后的E0蛋白具有相互聚合作用和分泌功能,从而形成E0蛋白聚合物释放到细胞外。进一步研究发现,CSFV病毒粒子之间也可以相互聚形成病毒粒子聚合体,并可以通过离心方式从感染细胞培养基中沉淀下来。我们分析并推断,在CSFV感染过程中病毒粒子之间是通过E0蛋白的聚合作用而形成病毒聚合体,再依赖E0蛋白的分泌作用通过高尔基体以囊泡的形式从感染细胞中释放到细胞外,这对研究CSFV释放机制和途径具有重要意义。
In this study, we focused on the expression of CSFV proteins in host cells, which either were infected with CSFV or transfected with eukaryotic expression systems for expressing CSFV proteins. In addition, influences of CSFV proteins, which were expressed with eukaryotic expression systems, on host cells as well as virus infection were investigated.
     In order to observate CSFV proteins in infected cells, the recombinant proteins by prokaryotic expression system were used to immunize Kunming mice for preparation of polyclonal antibody against CSFV proteins. Eleven recombinant CSFV proteins were successfully recovered except P7, and a series of sera, which contained high titer antibodies against CSFV proteins, were obtained. The target viral proteins were detected in infected cells by Western-Blotting, and proteins including E0, E1, E2, and NS5A were also checked as polymeric proteins. Indirect immunofluorescence assay (IFA) revealed that Npro is located at nucleus, and C, EO and NS2both in cytoplasm and at nucleus, while the remaining proteins in cytoplasm. Unusually, Erns was also distributed on cellular membrane. These findings implied that proteins distributed at nucleus were related to a function of modulating cellar life cycle or function, while those in cytoplasm were implicated in viral replication, particle assembly, and proliferation.
     Eukaryotic expression vectors containing protein genes of CSFV C-strain were conducted with pEGFP-Nl vector to investigate the expressions of CSFV protein in ST cells. The results of PCR detection showed that the target protein genes were successfully transfected into ST cells, and the expression of recombinant CSFV proteins was observed under fluorescent microscope except pEGFP-E1cells. Taken EGFP as flag, there exited differences of the location and intensity among CSFV protein cells:EGFP was detected in cytoplasm of all positive cells, while also detected at nucleus of pEGFP-N1, pEGFP-Npro, pEGFP-C and pEGFP-NS2cells. Enrichment of recombinant protein surround the nucleus was observed in pEGFP-EO and pEGFP-NS3cells. Additionally, EO-EGFP alone can secrete out and distribute on cellular membrane. Eleven cell lines, including Npro, C,△EO, E0, E2, P7, NS2, NS4A, NS4B, NS5A, and NS5B, were obtained, while El and NS3failed. As the thesults of Western-Blotting revealed, recombinant proteins in pEGFP-Npro, pEGFP-C, pEGFP-NS2and pEGFP-NS5B cell lines were cleaved into viral proteins and EGFP completely, and those in pEGFP-AEO, pEGFP-EO, and pEGFP-E2cleaved partly, while in pEGFP-NS4A and pEGFP-NS4B detected to be un-cleaved. These results demonstrated as followed:NS4A and NS4B were cleaved by viral protease during CSFV infection; and the self protease is responsible for cleaving Npro-EGFP and NS2-EGFP; and C-EGFP and NS5B-EGFP was digested by a cellular protease, which occurred at the3-terminal of C or NS5B; while△EO-EGFP, EO-EGFP, E2-EGFP and NS5A-EGFP were partly cleaved by cellular protease, however the mechanism of regulation remains un-known. Cell proliferation detection by CCK-8kit demonstrated that, compared with ST cells, the proliferation of pEGFP-NS4B cells was obviously inhibited, and pEGFP-NS2, pEGFP-NS5A and pEGFP-P7cells slightly lagged behind, and pEGFP-N1, pEGFP-Npro, pEGFP-E0, pEGFP-E2and pEGFP-NS4A cells equally, however pEGFP-NS5B cells were equally in early stage then backward at late. These results illustrated the cellular growth can be regulated by some CSFV proteins with an inhibition. Cell cycle arrest at S-phase was observed in pEGFP-NS4B and pEGFP-NS5B cells based on cell cycle analysis by flow cytometry, and it can be concluded that both CSFV NS4B and NS5B have a capability to modulate cell cycle by prolonging cellular S-phase.
     The CSFV protein cell lines were separately infected with CSFV C-strain or HNLY-2011isolate, and the viral yield was detected by quantitative real-time RT-PCR, and then the regulation of viral proliferation by CSFV proteins was studied. A SYBR-Green I based quantitative real-time RT-PCR, which taken β-Actin as an internally control, was successfully developed for detecting CSFV yield. According to the effect on viral proliferation, these cell lines could be classified as three types:pEGFP-Npro, pEGFP-EO and pEGFP-NS5B cell lines have a promoting action (pEGFP-EO cells especially), and pEGFP-C, pEGFP-E2, pEGFP-NS2, pEGFP-NS4B and pEGFP-NS5A exhibit a negative effect, while pEGFP-P7and pEGFP-NS4A present positive and negative feedback control. Additionally, based on the difference of proliferation between CSFV C-strain and HNLY-2011strain, CSFV proteins were further clustered into three groups:C and NS4B presented as specific action, E0, E2, P7, NS2and NS4A as non-specific action, meanwhile Npro, NS5A and NS5B as relatively specific action. So it can get a conclusion that the viral proliferation can be modulated by both viral-viral and viral-celllular protein interaction networks, which may be favourable for viral intracellular survival.
     The reconbinant protein EO-EGFP was observed on the cellular manbrane of pEGFP-EO cell line, and also secreted into cells'culture, which can be precipated by centrifugation. The result of Western-blotting revealed that the signal peptide is crucial for processing EO mature and glycosylation, and the glycosylated EO has a property of polymerization to form protein aggregates and secretion out of cells. The further experiment revealed that CSFV virions can adsorb each other and aggregate into virosomes, which can be precipated from culture by centrifugation same as EO. Taken together, these results demonstrated that CSFV EO has a function of clustering virions to assemble virus clumps, and then virus clumps can be secreted out of infected cells through Golgi apparatus by means of EO secretion. This may laid a foundation for further studies of CSFV release.
引文
[1]Food and Agriculture Organization of the United Nations. The Classical Swine fever Eradication Plan for The Americas [z]. Santiago, Chile, October,2000.
    [2]Tu CC, Lu, ZJ, Li HW, Yu XL, Liu XT, Li YH, Zhang HY, Yin Z. Phylogenetic comparison of classical swine fever virus in China [J]. Virus Research,2001,81:29-37.
    [3]Jiang DL, Liu GH, Gong WJ, Li RC, Hu YF, Tu CC, Yu XL. Complete Genome Sequences of Classical Swine Fever Virus Isolates Belonging to a New Subgenotype,2.1c, from Hunan Province, China [J]. Genome Announcements,2013,1(1):e00080-12.doi: 10.1128/genomeA.00080-12.
    [4]Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA [J]. Journal of Virology,1996,70(6):3478-3487.
    [5]Kolupaeva VG, Pestova TV, Hellen CU. Ribosomal binding to the internal ribosome entry site of classical swine fever virus [J]. RNA,2000,6:1791-1807.
    [6]Yu HY, Isken O, Grassmann CW, Behrens SE. A stem-loop motif formed by the immediate 5'terminus of the bovine viral diarrhea virus genome modulates translation as well as replication of the viral RNA [J]. Journal of Virology,2000,74 (13):5825-5835.
    [7]Xiao M, Lu WW, Chen J, Wang YJ, Zhen YM, Chen JK, Li B. The necessary site for initiation of RNA synthesis in the 3'-noncoding region of classical swine fever virus genome [J]. Molecular Biology,2004,38 (2):289-297.
    [8]Konig M, Lengsfeld T, Pauly T, Stark R, Thiel HJ. Classical Swine Fever Virus: Independent Induction of Protective Immunity by Two Structural Glycoproteins [J]. Journal of Virology,1995,69 (10):6479-6486.
    [9]Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, Stadejek T, Lowings JP, Bjorklund H, Belak S. Genetic typing of classical swine fever virus [J]. Veterinary Microbiology,2000,73:137-157.
    [10]Chen N, Hu HX, Zhang ZF, Shuai JB, Jiang LL, Fang WH. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical and vaccine strains [J]. Veterinary Microbiology,2008,127:286-299.
    [11]Chen N, Li DJ, Yuan XM, Li XL, Hu HX, Zhu BL, Wan XY, Fang WH. Genetic characterization of E2 gene of classical swine fever virus by restriction fragment length polymorphism and phylogenetic analysis [J]. Virus Genes,2010,40 (3):389-396.
    [12]Luo TR, Liao SH, Wu XS, Feng L, Yuan ZX, Li H, Liang JJ, Meng XM, Zhang HY. Phylogenetic analysis of the E2 gene of classical swine fever virus from the Guangxi province of southern China [J]. Virus Genes,2011,42 (3):347-354.
    [13]Jiang DL, Gong WJ, Li RC, Liu GH, Hu YF, Ge M, Wang SQ, Yu XL, Tu CC. Phylogenetic analysis using E2 gene of classical swine fever virus reveals a new subgenotype in China [J]. Infection, Genetics and Evolution,2013:http://dx.doi.org/ 10.1016/j.meegid.2013.04.004.
    [14]Floegel-Niesmann G, Blome S, Gerb-Dulmer H, Bunzenthal C, Moennig V. Virulence of Classical Swine Fever virus isolates from Europe and other areas during 1996 until 2007 [J]. Veterinary Microbiology,2009,139:165-169.
    [15]Mittelholzer C, Moser C, Tratschin JD, Hofmann MA. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains [J]. Veterinary Microbiology,2000,74 (4):293-308.
    [16]Weesendorp E, Stegeman A, Loeffen W. Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence [J]. Veterinary Microbiology,2009,133:9-22.
    [17]Choi C, Chae C. Localization of classical swine fever virus in male gonads during subclinical infection [J]. Journal of General Virology,2002,83 (11):2717-2721.
    [18]De Smit AJ, Bouma A, Terpstra C, Van Oirschot JT. Transmission of classical swine fever virus by artificial insemination [J]. Veterinary Microbiology,1999,67 (4):239-249.
    [19]Weesendorpa E, Loeffena W, Stegeman A, De Vos C. Time-dependent infection probability of classical swine fever via excretions and secretions [J]. Preventive Veterinary Medicine,2011,98:152-164.
    [20]Weesendorp E, Backer J, Stegeman A, Loeffen W. Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion [J]. Veterinary Microbiology,2011,147:262-273.
    [21]Uttenthal A, Storgaard T, Oleksiewicz MB, De Stricker K. Experimental infection with the Paderborn isolate of classical swine fever virus in 10-week-old pigs:determination of viral replication kinectics by quantitative RT-PCR, Virus isolation and antigen ELISA [J]. Veterinary Microbiology,2003,92 (2):197-212.
    [22]Krola E, Wandzikb I, Szejab W, Grynkiewicz G, Szewczyk B. In vitro antiviral activity of some uridine derivatives of 2-deoxy sugars against classical swine fever virus [J]. Antiviral Research,2010,86 (2):154-162.
    [23]Branza-Nichita N, Durantel D, Carrouee-Durantel S, Dwek RA, Zitzmann N. Antiviral Effect of N-Butyldeoxy-nojirimycin against Bovine Viral Diarrhea Virus Correlates with Misfolding of E2 Envelope Proteins and Impairment of Their Association into E1-E2 Heterodimers [J]. Journal of Virology,2001,75 (8):3527-3536.
    [24]Wang Z, Nie YC, Wang PG, Ding MX, Deng HK. Characterization of classical swine fever virus entry by using pseudotyped viruses:El and E2 are sufficient to mediate viral entry [J]. Virology,2004,330 (1):332-341.
    [25]Hulst MM, Van Gennip HGP, Moormann RJM. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein Ems [J]. Journal of Virology,2000,74 (20): 9553-9561.
    [26]Hulst MM, Moormann RJM. Inhibition of pestivirus infection in cell culture by envelope proteins Fms and E2 of classical swine fever virus:Ems and E2 interact with different receptors [J]. Journal of General Virology,1997,78 (11):2779-2787.
    [27]Hulst MM, Van Gennip HGP, Vlot AC, Schooten E, De Smit AJ, Moormann RJM. Interaction of classical swine fever virus with membrane-associated heparan sulfate:role for virus replication in vivo and virulence [J]. Journal of Virology,2001,75(20): 9585-9595.
    [28]Van Gennip HGP, Hesselink AT, Moormann RJM, Hulst MM. Dimerisation of glycoprotein Ems of classical swine fever virus is not essential for viral replication and infection [J]. Archives of Virology,2005,150 (11):2271-2286.
    [29]Eymann-Hani R, Leifer I, McCullough KC, Summerfield A, Ruggli N. Propagation of classical swine fever virus in vitro circumventing heparin sulfate-adaptation [J]. Journal of Virological Methods,2011,176:85-95.
    [30]Li XW, Wang L, Zhao D, Zhang GP, Luo J, Deng RG, Yang YY Identification of host cell binding peptide from an overlapping peptide library for inhibition of classical swine fever virus infection [J]. Virus Genes,2011,43 (1):33-40.
    [31]Van Gennip HGP, Vlot A C, Hulst M M, De Smit AJ, Moormann RJM. Determinants of virulence of classical swine fever virus strain Brescia [J]. Journal of Virology,2004,78 (16):8812-8823.
    [32]Gomez-Villamandos JC, Ruiz-Villamor E, Bautista MJ, Sanchezb CP, Sanchez-Cordona PJ, Salgueroa FJ, Jover A. Morphological and Immunohistochemical Changes in Splenic Macrophages of Pigs Infected with Classical Swine Fever [J]. Journal of Comparative Pathology,2001,125:98-109.
    [33]Borca MV, Gudmundsdottir I, Fernandez-Sainz IJ, Holinka LG, Risatti GR. Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia [J]. Virus Research,2008,138:89-96.
    [34]Gladue DP, Zhu J, Holinka LG, Fernandez-Sainz I, Carrillo C, Prarat MV, O'Donnell V, Borca MV. Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray [J]. Virus Research,2010,151 (1):10-18.
    [35]Zaffuto KM, Piccone ME, Burrage TG, Balinsky CA, Risatti GR, Borca MV, Holinka LG, Rock DL, Afonso CL. Classical swine fever virus inhibits nitric oxide production in infected macrophages [J]. Journal of General Virology,2007,88 (11):3007-3012.
    [36]Sanchez-Cordon PJ, Nunez A, Salguero FJ, Pedrera M, De Marco MF, G6mez-Villamandos JC. Lymphocyte Apoptosis and Thrombocytopenia in Spleen during Classical Swine Fever:Role of Macrophages and Cytokines [J]. Veterinary Pathology, 2005,42 (4):477-488.
    [37]Summerfield A, Knoetig SM, Tschudin R, McCullough KC. Pathogenesis of Granulocytopenia and Bone Marrow Atrophy during Classical Swine Fever Involves Apoptosis and Necrosis of Uninfected Cells [J]. Virology,2000,272 (1):50-60.
    [38]Summerfield A, Zingle K, Inumaru S, McCullough KC. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus [J]. Journal of General Virology,2001,82 (6):1309-1318.
    [39]Carrasco CP, Rigden RC, Vincent IE, Balmelli C, Ceppi M, O. Bauhofer, Tache V, Hjertner B, McNeilly F, Van Gennip HG, McCullough KC, Summerfield A. Interaction of classical swine fever virus with dendritic cells [J]. Journal of General Virology,2004,85 (6):1633-1641.
    [40]Jamin A, Gorin S, Cariolet R, Le Potier MF, Kuntz-Simon G. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs [J]. Veterinary Research,2008,39 (1):07.
    [41]Summerfield A, Hofmann MA, McCullough KC. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection [J]. Veterinary Immunology and Immunopathology,1998,63(3):289-301.
    [42]Summerfield A, Knotig SM, Mccullough KC. Lymphocyte Apoptosis during Classical Swine Fever:Implication of Activation-Induced Cell Death [J]. Journal of Virology,1998, 72(3):1853-1861.
    [43]Lee WC, Wang CS, Chien MS. Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection [J]. Veterinary Microbiology,1999,67 (1):17-29.
    [44]Pauly T, Konig M, Thiel HJ, Saalmuller A. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes [J]. Journal of General Virology,1998,79 (1):31-40.
    [45]Suradhat S. Sada W. Buranapraditkun S. Damrongwatanapokind S. The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV) [J]. Veterinary Immunology and Immunopathology,2005,106:197-208.
    [46]Susa M, Konig M, Saalmuller A, Reddehase MJ, Thiel HJ. Pathogenesis of Classical Swine Fever:B-Lympho-cyte Deficiency Caused by Hog Cholera Virus [J]. Journal of Virology,1992,66(2):1171-1175.
    [47]Summerfielda A, McNeilly F, Walker I, Allan G, Knoetiga SM, McCullougha KC. Depletion of CD4+ and CD8high+ T-cells before the onset of viraemia during classical swine fever [J]. Veterinary Immunology and Immunopatholog,2001,78 (1):3-19.
    [48]Summerfield A, Alves M, Ruggli N, De Bruin MGM, McCullougha KC. High IFN-a responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever [J]. Journal of Interferon & Cytokinne Research,2006,26 (4):248-255.
    [49]Sanchez-Cordon PJ, Nunez A, Salguero FJ, Gomez-Villamandos JC. Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection [J]. Journal of Comparative Pathology,2005,132 (4):249-260.
    [50]Sanchez-Cordon PJ, Romero-Trevejo JL, Pedrera M, Raya AI, G6mez-Villamandos JC. The role of B cells in the immune response to pestivirus (classical swine fever virus) [J]. Journal of Comparative Pathology,2006,135 (1):32-41.
    [51]Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullougha KC. Immuno pathogenesis of classical swine fever:role of monocytic cells [J]. Immunology,1999, 97(2):359-366.
    [52]Liu J, Fan XZ, Wang Q, Xu L, Zhao QZ, Huang W, Zhou YC, Tang B, Chen L, Zou XQ, Sha S, Zhu YY. Dynamic distribution and tissue tropism of classical swine fever virus in experimentally infected pigs [J]. Virology Journal,2011,8:201.
    [53]Li S, Qu H, Hao JW, Sun JF, Guo HC, Guo CM, Sun BX, Tu CC. Proteomic analysis of primary porcine endothelial cells after infection by classical swine fever virus [J]. Biochimica et biophysica acta (BBA)-proteins and proteomics,2010,1804(9): 1882-1888.
    [54]Hsiao HJ, Liu PA, Yeh HI, Wang CY. Classical swine fever virus down- regulates endothelial connexin 43 gap junctions [J]. Archives of Virology,2010,155(7):1107-1116.
    [55]Tang QH, Zhang YM, Xu YZ, He L, Dai C, Sun P. Up-regulation of integrin β3 expression in porcine vascular endothelial cells cultured in vitro by classical swine fever virus [J]. Veterinary Immunology and Immunopathology,2010,133:237-242.
    [56]Bensaude E, Turner JLE, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T, Powell PP. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells [J]. Journal of General Virology,2004,85(4):1029-1037.
    [57]Gomez-Villamandos JC, Ruiz-Villamor E, Bautista MJ, Quezada M, Sanchez CP, Salguero FJ, Sierra MA. Pathogenesis of classical swine fever:renal haemorrhages and erythrodiapedesis [J]. Journal of Comparative Pathology,2000,123(1):47-54.
    [58]Ruiz-Villamor E, Quezada M, Bautista MJ, Romanini S, Carrasco L, Salguero FJ, Gomez-Villamandos JC. Classical swine fever:pathogenesis of glomerular damage and immunocharacterization of immunocomplex deposits [J]. Journal of Comparative Pathology,2001,124(4):246-254.
    [59]Nunez A, Gomez-Villamandos JC, Sanchez-Cordon PJ, De Marcoa MF, Pedreraa M, Salguerob FJ, Carrasco L. Expression of proinflammatory cytokines by hepatic macrophages in acute classical swine fever [J]. Journal of Comparative Pathology,2005, 133(1):23-32.
    [60]Gomez-Villamandos JC, De Leaniz IG, Nunmz A, Salguero FJ, Ruiz-Villamor E, Romero-Trevejo JL, Sanchez-Cordon PJ. Neuropathologic study of experimental classical swine fever [J]. Veterinary Pathology,2006,43(4):530-540.
    [61]Sanchez-Cordon PJ, Romanini S, Salguero FJ, Ruiz-Villamor E, Carrasco L, Gomez-Villamandos JC. A histopathologic, immunohistochemical, and ultrastructural study of the intestine in pigs inoculated with classical swine fever virus [J]. Veterinary Pathology,2003,40(3):254-262.
    [62]Gomez-Villamandos JC, Salguero FJ, Ruiz-Villamor E, Sanchez-Cordon PJ, Bautista MJ, Sierra MA. Classical Swine Fever:Pathology of Bone Marrow [J]. Veterinary Pathology, 2003.40(2):157-163.
    [63]Satoa M, Mikami O, Kobayashi M, Nakajima Y. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus [J]. Veterinary Microbiology,2000, 75(1):1-9.
    [64]Sanchez-Cordon PJ, Romanini S, Salguero FJ, Nunmz A, Bautista MJ, Jover A, Gomez-Villamandos JC. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever [J]. Journal of Comparative Pathology,2002,127(4): 239-248.
    [65]Choi C, Hwang KK, Chae C. Classical swine fever virus induces tumor necrosis factor-a and lymphocyte apoptosis [J]. Archives of Virology,2004,149(5):875-889.
    [66]Graham SP, Everett HE, Johns HL, Haines FJ, La Rocca SA, Khatri M, Wright IK, Drew T, Crooke HR. Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses [J]. Veterinary Microbiology,2010,142(1-2):34-40.
    [67]Gisler ACF, Nardi NB, Nonnig RB, Oliveira LG, Roehe PM. Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine [J]. Journal of Veterinary Medicine, Series B,1999,46(9):585-593.
    [68]Bautista MJ, Ruiz-Villamor E, Salguero FJ, Sanchez-Cordon PJ, Carrasco L, Gomez-Villamandos JC. Early Platelet Aggregation as a Cause of Throm-bocytopenia in Classical Swine Fever [J]. Veterinary Pathology,2002,39(1):84-91.
    [69]Sun JF, Shi ZX, Guo HC, Li S, Tu CC. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection [J]. Virology Journal,2011,8:107.
    [70]Gong Y, Shannon A, Westaway EG. The replicative intermediate molecule of bovine viral diarrhoea virus contains multiple nascent strands [J]. Archives of Virology,1998,143(2): 399-404.
    [71]殷震,刘景华.动物病毒学.第2版[M].北京:科学出版社,1997:652-664.
    [72]韦平,秦爱建.重要动物病毒分子生物学[M].北京:科学出版社,2008:49-55.
    [73]Stark R, Meyers G, Rumenapf T, Thiel HJ. Processing of pestivirus polyprotein:cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus [J]. Journal of virology,1993,67 (12):7088-7095.
    [74]Heimann M, Roman-Sosa G, Martoglio B, Thiel H, Rumenap T. Core Protein of Pestiviruses Is Processed at the C Terminus by Signal Peptide Peptidase [J]. Journal of virology,2006,80 (4):1915-1921.
    [75]Rumenapf T, Unger G, Strauss JH, Thiel HJ. Processing of the envelope glycoproteins of pestiviruses [J]. Journal of virology,1993,67 (6):3288-3294.
    [76]Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA, Ruggli N. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus:essential features for infectious particle formation. Virology,2007,365(2):376-89.
    [77]Zhu ZL, Wang YJ, Yu JL, Wan LZ, Chen J, Xiao M. Classical swine fever virus NS3 is an IRES-binding protein and increases IRES-dependent translation [J]. Virus Research,2010, 153(1):106-112.
    [78]Xiao M, Bai Y, Xu H, Geng XL, Chen J, Wang YJ, Chen JK, Li B. Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation [J]. Journal of General Virology,2008,89(4): 994-999.
    [79]Gong Y, Trowbridge R, Macnaughton TB, Westaway EG, Shannon AD, Gowans EJ. Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus [J]. Journal of general virology,1996,77(11): 2729-2736.
    [80]Xiao M, Wang Y, Chen J, Li B. Characterization of RNA-dependent RNA polymerase activity of CSFV NS5B proteins expressed in Escherichia coli [J]. Virus Genes,2003, 27(1):67-74.
    [81]Yi GH, Zhang CY, Cao S, Wu HX, Wang Y De novo RNA synthesis by a recombinant classical swine fever virus RNA-dependent RNA polymerase [J]. European journal of biochemistry,2003,270(24):4952-4961.
    [82]Xiao M, Chen J, Li B. RNA-dependent RNA polymerase activity of Classical swine fever virus NS5B protein expressed in natural host cells [J]. Acta Virologica,2003,47(2): 79-85.
    [83]Wen GY, Xue JN, Shen YP, Zhang CY, Pan ZS. Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase [J]. Virus research,2009,141(1):63-70.
    [84]Sheng C, Chen Y, Xiao J, Xiao Jing, Wang J, Li G Y, Chen J, Xiao M. Classical swine fever virus NS5A protein interacts with 3'-untranslated region and regulates viral RNA synthesis [J]. Virus Research,2012,163(2):636-643.
    [85]Chen Y, Xiao J, Xiao J, Sheng C, Wang J, Jia L, Zhi YM, Li GY, Chen J, Xiao M. Classical swine fever virus NS5A regulates viral RNA replication through binding to NS5B and 3'UTR [J]. Virology,2012,432(2):376-388.
    [86]Johnson CM, Perez DR, French R, Merrick WC, Donis RO. The NS5A protein of bovine viral diarrhea virus interacts with the a subunit of translation elongation factor-1 [J]. Journal of General Virology,2001,82(12):2935-2943.
    [87]Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O'Donnell V, Vepkhvadze NG, Lu Z, Risatti GR, Borca MV. Interaction between core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine [J]. Virology, 2011,412(1):68-74.
    [88]Risatti GR, Holinka LG, Lu Z, Kutish GF, Tulman ER, French RA, Sur JH. Rock DL, Borca MV. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine [J]. Virology,2005,343(1):116-127.
    [89]Von Freyburg M, Ege A, Saalmuller A, Meyers G. Comparison of the effects of RNase-negative and wild-type classical swine fever virus on peripheral blood cells of infected pigs [J]. Journal of General Virology,2004,85(7):1899-1908.
    [90]Hulst MM, Panoto FE, Hoekman A, Van Gennip HGP, Moormann RJM. Inactivation of the RNase activity of glycoprotein Ems of classical swine fever virus results in a cytopathogenic virus [J]. Journal of virology,1998,72 (1):151-157.
    [91]Tews BA, Schurmann EM, Meyers G. Mutation of Cysteine 171 of Pestivirus Ems RNase Prevents Homodimer Formation and Leads to Attenuation of Classical Swine Fever Virus [J]. Journal of virology,2009,83 (10):4823-4834.
    [92]Luo XL, Ling DW, Li T, Wan C, Zhang CY, Pan ZS. Classical swine fever virus Ems glycoprotein antagonizes induction of interferon-β by doublestranded RNA [J]. Canadian Journal of Microbiology,2009,55(6):698-704.
    [93]Luo XL, Pan RG, Wan C, Liu XF, Wu JG, Pan ZS. Glycosylation of classical swine fever virus Ems is essential for binding double-stranded RNA and preventing interferon-beta induction [J]. Virus Research,2009,146(1/2):135-139.
    [94]Bruschke CJ, Hulst MM, Moormann RJ, Van Rijn PA, Van Oirschot JT. Glycoprotein Ems of pestiviruses induces apoptosis in lymphocytes of several species [J]. Journal of virology,1997,71 (9):6692-6696.
    [95]Fetzer C, Birke Tews A, Meyers G. The carboxy-terminal sequence of the pestivirus glycoprotein Ems represents an unusual type of membrane anchor [J]. Journal of virology, 2005,79(18):11901-11913.
    [96]Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, Rock DL. The E2 Glycoprotein of Classical Swine Fever Virus Is a Virulence Determinant in Swine [J]. Journal of Virology,2005,79 (6):3787-3796.
    [97]Wensvoort G. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies [J]. Journal of general virology,1989,70(11):2865-2876.
    [98]Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield Artur. Classical Swine Fever Virus Interferes with Cellular Antiviral Defense:Evidence for a Novel Function of Npro [J]. Journal of virology,2003,77 (13):7645-7654.
    [99]Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, Hofmann MA. Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-α/β induction [J]. Virology,2005,340(2):265-276.
    [100]Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical Swine Fever Virus Npro Interacts with Interferon Regulatory Factor 3 and Induces Its Proteasomal Degradation [J]. Journal of virology,2007,81(7):3087-3096.
    [101]La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of Interferon Regulatory Factor 3 in Cells Infected with Classical Swine Fever Virus Involves the N-Terminal Protease, Npro [J]. Journal of virology,2005,79 (11): 7239-7247.
    [102]Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, Waltersperger S, Matsuno K, Liu L, Gerber M, Choi KH, Hofmann MA, Sakoda Y, Tratschin JD. Classical Swine Fever Virus Can Remain Virulent after Specific Elimination of the Interferon Regulatory Factor 3-Degrading Function of Npro [J]. Journal of virology,2009.83(2):817-829.
    [103]Bauhofer O, Summerfield A, McCullough KC, Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells [J]. Virology,2005,343(1):93-105.
    [104]Johns HL, Doceu V, Evere H, Crooke H, Charleston B, Seago J. The classical swine fever virus N-terminal protease Npro binds to cellular HAX-1 [J]. Journal of General Virology,2010,91(11):2677-2686.
    [105]Elbers K, Tautz N, Becher P, Stoll D, Rumenapf T, Thiel HJ. Processing in the pestivirus E2-NS2 Region:identification of proteins p7 and E2p7 [J]. Journal of Virology,1996, 70(6):4131-4135.
    [106]Luscombe CA, Huang Z, Murray MG, Miller M, Wilkinson J, Ewart GD. A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-a-2b and nucleoside analogues [J]. Antiviral Research,2010,86(2):144-153.
    [107]Gladue DP, Holinka LG, Largo E, Sainz IF, Carrillo C, O'Donnell V, Baker-Branstetter R, Lu Z, Ambroggio X, Risatti GR, Nieva JL, Borca MV. Classical swine fever virus p7 protein is a viroporin involved in virulence in swine [J]. Journal of Virology,2012, 86(12):6778-6791.
    [108]Lackner T, Muller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, Tautz N. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus [J]. Journal of Virology,2004,78(19):10765-10775.
    [109]Moser C, Stettler P, Tratschin JD, Hofmann MA. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus [J]. Journal of virology,1999,73(9): 7787-7794.
    [110]Gallei A, Blome S, Gilgenbach S, Tautz N, Moennig V, Becher P. Cytopathogenicity of Classical Swine Fever Virus Correlates with Attenuation in the Natural Host [J]. Journal of virology,2008,82(19):9717-9729.
    [111]Lackner T, Muller A, Konig M, Thiel HJ, Tautz N. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral auto-protease [J]. Journal of Virology, 2005,79(15):9746-9755.
    [112]Lackner T, Thiel H J, Tautz N. Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis [J]. PNAS,2006,103(5):1510-1515.
    [113]Tang QH, Guo KK, Kang K, Zhang YM, He L, Wang J. Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis [J]. Virus Genes,2011,42(3):355-362.
    [114]Tang QH, Zhang YM, Fan L, Tong G, He L, Dai C. Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress [J]. Virology Journal,2010,7:4.
    [115]Guo KK, Tang QH, Zhang YM, Kang K, He L. Identification of two internal signal peptide sequences:critical for classical swine fever virus non-structural protein 2 to translocalize to the endoplasmic reticulum [J]. Virology Journal,2011,8:236.
    [116]Gu BH, Liu C b, Juili L G, Maley DR, Gutshall LL, Feltenberger CA, Del Vecchio AM. The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication [J]. Journal of virology,2000,74(4): 1794-1800.
    [117]Wen G, Chen C, Luo X, Wang Y, Zhang C, Pan Z. Identification and characterization of the NTPase activity of classical swinefever virus (CSFV) nonstructural protein 3 (NS3) expressed in bacteria [J]. Archives of Virology,2007,152(8):1565-1573.
    [118]Wang P, Wang YJ, Zhao Y, Zhu ZL, Yu JL, Wan LZ, Chen J, Xiao M. Classical swine fever virus NS3 enhances RNA-dependent RNA polymerase activity by binding to NS5B [J]. Virus Research,2010,148:17-23.
    [119]Sheng C, Xiao M, Geng XL, Liu JY, Wang YJ, Gu FK. Characterization of interaction of classical swine fever virus NS3 helicase with 3'untranslated region [J]. Virus Research, 2007,129(1):43-53.
    [120]Xu H, Hong HX, Zhang YM, Guo KK, Deng XM, Ye GS, Yang XY. Cytopathic effect of classical swine fever virus NS3 protein on PK-15 cells [J]. Intervirology,2007,50: 433-438.
    [121]Fernandez-Sainz I, Gladue DP, Holinka LG, O'Donnell V, Gudmundsdottir I, Prarat MV, Patch JR, Golde WT, Lu Z, Zhu J, Carrillo C, Risatti GR, Borca MV. Mutations in Classical Swine Fever Virus NS4B Affect Virulence in Swine [J]. Journal of virology, 2010,84(3):1536-1549.
    [122]Gladue DP, Gavrilov BK, Holinka LG, Fernandez-Sainz IJ, Vepkhvadze NG, Rogers K, O'Donnell V, Risatti GR, Borca MV. Identification of an NTPase motif in classical swine fever virus NS4B protein [J]. Virology,2011,411(1):41-49.
    [123]Weiskircher E, Aligo J, Ning G, Konan KV. Bovine viral diarrhea virus NS4B protein is an integral membrane protein associated with Golgi markers and rearranged host membranes [J]. Virology Journal,2009,6:185.
    [124]Brass V, Bieck E, Montserret R, Benno W, Hellings JA, Blum HE, Penin F, Moradpour D. An amino-terminal amphipathic α-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A [J]. The Journal of Biological Chemistry,2002,277(10): 8130-8139.
    [125]Penin F, Brass V, Appel N, Ramboarina S, Montserret R, Ficheux D, Blum HE, Bartenschlager R, Moradpourl D. Structure and Function of the Membrane Anchor Domain of Hepatitis C Virus Nonstructural Protein 5A [J]. The Journal of Biological Chemistry,2004,279 (39):40835-40843.
    [126]Xiao M, Wang YJ, Zhu ZL, Yu JJ, Wan LZ, Chen J. Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation [J]. Journal of General Virology,2009,90(12):2923-2928.
    [127]Sheng C, Zhu ZL, Yu JL, Wan LZ, Wang YJ, Chen J, Gu FK, Xiao M. Characterization of NS3, NS5A and NS5B of classical swine fever virusthrough mutation and complementation analysis [J]. Veterinary Microbiology,2010,140:72-80.
    [128]Baginski SG, Pevear DC, Seipel M, Sun SCC, Benetatos CA, Chunduru SK, Rice CM, Collett MS. Mechanism of action of a pestivirus antiviral compound [J]. PNAS,2000,97 (14):7981-7986.
    [129]Jan Paeshuyse, Pieter Leyssen, Eric Mabery, et al. A novel, highly selective inhibitor of pestivirus replication that targets the viral RNA-dependent RNA polymerase [J]. Journal of virology,2006,80(1):149-160.
    [130]Vrancken R, Paeshuyse J, Haegeman A, Puerstinger G, Froeyen M, Herdewijn P, Kerkhofs P, Neyts J, Koenen F. Imidazo [4,5-c] pyridines inhibit the in vitro replication of the classical swine fever virus and target the viral polymerase [J]. Antiviral Research, 2008,77(2):114-119.
    [131]Vrancken R, Haegeman, Paeshuyse J, Puerstinger G, Rozenski J, Wright M, Tignon M, Le Potier MF, Neyts J, Koenen F. Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor [J]. Journal of General Virology,2009,90(6):1335-1342.
    [132]余兴龙,涂长春,徐兴然,张茂林,李作生,于师宇.猪瘟病毒兔化弱毒(HCLV)疫苗株基因组全长cDNA的克隆与序列分析[J].高技术通讯,2003,5:38--42.
    [133]白霞,李润成,余兴龙,丁建,黎满香.猪瘟病毒Ems基因RNase酶活性位点的定点突变对其原核表达的影响[J].湖南农业大学学报(自然科学版),2008,34(5):568-571.
    [134]余兴龙涂长春徐兴然张茂林,陈义祥,刘伯华.猪瘟病毒E2基因的定点突变、在大肠杆菌中的高效表达及表达产物的免疫原性[J].生物工程学报,2003,19(4):439-443.
    [135]蒋大良,余兴龙,李润成,葛猛,罗维,颜爱,李杰,刘春红,涂长春.猪瘟病毒NS3基因克隆、原核表达及间接ELISA方法初步建立[J].微生物学通报,2010,37(1):78-84.
    [136]Crowther JR. The ELISA Guidebook [M]. Totowa, New Jersey:Humana Press,2001.
    [137]Ge M, Luo W, Jiang DL, Li RC, Zhao WWi, Chen GL, Yang XD, Yu XL. Development and application of a double-antigen sandwich enzyme-linked immunosorbent assay for detection of antibodies to porcine circovirus 2 [J]. Clinical and Vaccine Immunology, 2012,19(9):1480-1486.
    [138]Wensvoort GC, Terpstra C, Bloemraad M, Van Zaane D. Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis [J]. Veterinary Microbiology,1986,12(2):101-108.
    [139]查云峰.猪瘟病毒结构和非结构蛋白的表达及反应原性研究[D].吉林:吉林大学农学部,2005.
    [140]郭东春,钱平,李祥敏,徐卓菲,姚清侠,金梅林,陈焕春.猪瘟病毒非结构蛋白NS2基因不同片段的克隆及在原核系统中的高效表达[J].中国预防兽医学报,2006,28(1):6-9.
    [141]Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher P, Thiel HJ, Rumenapf T. Biosynthesis of classical swine fever virus nonstructural Proteins [J]. Journal of Virology,2011,85 (7):3607-3620.
    [142]Thieli HJ, Stark R, Weiland E, Rumenapf T, Meyers G. Hog cholera virus:molecular composition of virions from a pestivirus [J]. Journal of Virology,1991,65(9): 4705-4712.
    [143]Grummer B, Beer M, Liebler-Tenorio E, Greiser-Wilke I. Localization of viral proteins in cells infected with bovine viral diarrhoea virus [J]. Journal of General Virology,2001, 82(11):2597-2605.
    [144]Liu JJ, Wong ML, Chang TJ. The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator [J]. Virus Research,1998,53 (1):75-80.
    [145]Hausmann Y, Roman-Sosa G, Thiel HJ, Rumenapf T. Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity [J]. Journal of Virology,2004,78(10):5507-5512.
    [146]Luo X, Pan R, Wan C, Liu X, Wu J, Pan Z. Glycosylation of classical swine fever virus Ems is essential for binding double-stranded RNA and preventing interferon-beta induction [J]. Virus Research,2009,146:135-139.
    [147]Luo XL, Ling DW, Li T, Wan C, Zhang Cy, Pan Zs. Classical swine fever virus Ems glycoprotein antagonizes induction of interferon-β by double-stranded RNA [J]. Canadian Journal of Microbiology,2009,55(6):698-704.
    [148]Moser C, Stettler P, Tratschin JD, Hofmann MA. Cytopathogenic and noncytopath-ogenic RNA replicons of classical swine fever virus [J]. Journal of Virology,1999,73(9): 7787-7794.
    [149]Branza-Nichita N, Lazar C, Dwek RA, Zitzmann N. Role of N-glycan trimming in the folding and secretion of the pestivirus protein Ems [J]. Biochemical and Biophysical Research Communications,2004,319:655-662.
    [150]Guan JL, Machamer CE, Rose JK. Glycosylation allows cell-surface transport of an anchored secretory protein [J]. Cell,1985,42:469-496.
    [151]He L, Zhang YM, Lin Z, Li WW, Wang J, Li HL. Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells [J]. Virus Genes,2012,45:274-282.
    [152]Xiao M, Zhang CY, Pan ZS, Wu HX, Guo JQ. Classical swine fever virus NS5B-GFP fusion protein possesses an RNA-dependent RNA polymerase activity [J]. Archives of Virology,2002,147 (9):1779-1787.
    [153]Yu XL, Tu CC, Li HW, Hu RL, Chen CF, Li ZS, Zhang ML, Yin Z. DNA-mediated protection against classical swine fever virus [J]. Vaccine,2001,19:1520-1525.
    [154]Vallat B, Allen GP. Manual of Diagnostic Tests and Vaccines for Terrestrial Animal,5th ed [M]. Paris, France:World Organisation for Animal Health (OIE),2004.
    [155]Li Y, Zhao JJ, Li N, Shi ZX, Cheng D, Zhu QH, Tu CC, Tong GZ, Qiu HJ. A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus [J]. Journal of Virological Methods,2007,143(1): 16-22.
    [156]Zhao JJ, Cheng D, Li N, Sun Y, Shi ZX, Zhu QH, Tu CC, Tong GZ, Qiu HJ. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of classical swine fever virus [J]. Veterinary Microbiology, 2008,126:1-10.
    [157]Pan CH, Jong MH, Huang YL, Huang TS, Chao PH, Lai SS. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of Classical swine fever virus by reverse transcription polymerase chain reaction [J]. Journal of Veterinary Diagnostic Investigation,2008,20(4):448-456.
    [158]Le Dimnaa M, Vrancken R, Koenen F, Bougeard S, Mesplede A, Hutet E, Kuntz-Simon G, Le Potier MF. Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus [J]. Journal of Virological Methods, 2008,147(1):136-142.
    [159]Risatti GR, Callahan JD, Nelson WM, Borca MV. Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay [J]. Journal of Clinical Microbiology,2003,41(1):500-505.
    [160]Oude Ophuis RJA, Morrissy CJ, Boyle DB. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay [J]. Journal of Virological Methods,2006,131(1):78-85.
    [161]Liu J, Fan XZ, Wang Q, Xu L, Zhao QZ, Huang W, Zhou YC, Tang B, Chen L, Zou XQ, Sha S, Zhu YY. Dynamic distribution and tissue tropism of classical swine fever virus in experimentally infected pigs [J]. Virology Journal,2011,8:201-210.
    [162]Belak K, Koenen F, Vanderhallen H, mittelholzer C, Feliziani F, Mia GMD, Belak S. Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations [J]. Acta Veterinaria Scandinavica, 2008,50:34, doi:10.1186/1751-0147-50-34.
    [163]徐兴然,郭焕成,史子学,夏咸柱,涂长春.通过基因组定量研究猪瘟病毒在细胞中的增殖特性[J].微生物学报,2007,47(5):800-804.
    [164]Tratschin JD, Moser C, Ruggli N, Hofmann MA. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture [J]. Journal of Virology, 1998,72 (9):7681-7684.
    [165]Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR [J]. Nature Protocols,2006,1:1559-1582.
    [166]Kenneth JL, Thomas DS. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method [J]. Methods,2001,25(4):402-408.
    [167]Tamai K, Shiina M, Tanaka N, Nakano, Yamamoto A, Kondo Y, Kakazu E, Inoue J, Fukushima K, Sano K, Ueno Y, Shimosegawa T, Sugamura K. Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway [J]. Virology,2012,422(2): 377-385.
    [168]Zhou B, Liu K, Wei JC, Mao X, Chen PY. Inhibition of replication of classical swine fever virus in a stable cell line by the viral capsid and Staphylococcus aureus nuclease fusion protein [J]. Journal of Virological Methods,2010,167(1):79-83.
    [169]Branza-Nichita N, Lazar C, Dwek RA, Zitzmann N. Role of N-glycan trimming in the folding and secretion of the pestivirus protein Ems [J]. Biochemical and Biophysical Research Communications,2004,319:655-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700