重组鹅IL-17对鹅细小病毒VP3黏膜免疫增强作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物传染病原的传播与侵染大多数都通过消化道和呼吸道为主要的侵入途径,因此动物机体的黏膜免疫系统在抵抗致病微生物的入侵中体现出十分重要的作用。对黏膜免疫系统的有效刺激需要满足两个基本条件,一是疫苗中的抗原能够有效地被传递到黏膜淋巴组织,二是安全有效的黏膜佐剂加强免疫应答。免疫佐剂是本身不具备抗原性,掺入疫苗制剂后能促进疫苗抗原特异性免疫应答的物质。近年来的研究发现,新型Th细胞——Th17所分泌的主要效应因子IL17,具有强大的招募激活中性粒细胞,以及促进T细胞反应的作用,是宿主抵抗特殊病原体的重要而独特的细胞因子。
     目前相对于哺乳动物黏膜免疫的研究,禽类黏膜免疫的研究相对缓慢,而且大部分研究都集中在鸡的相关研究。本研究首次克隆东北白鹅IL-17、CD4和CD8α基因,以真核表达的东北白鹅IL-17作为黏膜免疫佐剂与鹅细小病毒(GPV)的衣壳蛋白VP3病毒样粒子联合免疫,或东北白鹅IL-17与VP3融合表达后免疫东北白鹅,通过检测体液免疫和细胞免疫的多项指标对免疫效果进行评价,证实东北白鹅IL-17作为黏膜免疫佐剂可以有效诱导机体黏膜免疫和系统免疫,对小鹅瘟的防治及开发有效的黏膜疫苗具有十分积极的意义。
     1东北白鹅IL-17、CD4和CD8α基因的克隆及序列分析
     首先,从东北白鹅的胸腺组织中提取总RNA,经过SMART反转录酶合成双链cDNA,经PCR分别获得东北白鹅IL-17、CD4和CD8α基因,将扩增基因克隆至克隆载体并测序。
     用DNAMAN6.03软件将测序的结果分别在美国国立生物技术信息中心(NCBI)的上进行Blast分析,与数据库中的序列进行相似性的比对。可以确定所克隆的基因为东北白鹅IL-17、CD4、CD8α基因,将序列提交至NCBI并获得登录号。确认克隆正确的东北白鹅IL-17、CD4和CD8α基因翻译成蛋白后用ClustalX2.1分别和NCBI中已经发表的各个物种的蛋白质序列进行蛋白序列同源性分析,然后再应用MEGA5.0生物软件程序以Neighbor-joining算法构建生物进化树。分别应用在线分析软件SignalP4.1Server和TMHMM Server v.2.0对东北白鹅IL-17、CD4和CD8α蛋白进行信号肽、跨膜区的预测分析,以便于进行下一步对成熟的东北白鹅IL-17(mGoIL-17)和东北白鹅CD4、CD8α胞外区的表达。
     2mGoIL-17、东北白鹅CD4和CD8α胞外区原核表达及多克隆抗体的制备
     根据东北白鹅IL-17的信号肽分析结果以及东北白鹅CD4和CD8α的胞外区的分析结果,设计表达引物扩增得到mGoIL-17、东北白鹅CD4和CD8α的胞外区,连接至pET-32a或pET-30a载体,然后转化至大肠杆菌Rosetta感受态细胞,IPTG诱导表达蛋白。采用Ni-NTAHis柱纯化方法纯化蛋白,免疫新西兰白兔制备多抗血清,通过western blot确定血清的反应性,为后续试验奠定基础。
     3mGoIL-17和mGoIL-17融合GPV-VP3的真核表达及活性的测定
     将pEASY-Blunt-mGoIL-17质粒通过双酶切得到IL17基因,克隆至pFastBac HTB载体。设计融合PCR引物,将mGoIL-17与GPV-VP3基因融合,并引入一段柔性Linker(G4S)3,将所获得的融合基因克隆至pFastBac HTB载体。将获得的重组转移载体质粒pFastBac HTB-mGoIL-17和pFastBacHTB-mGoIL17-VP3分别转化大肠杆菌DH10Bac感受态细胞,通过蓝白斑和三种抗生素(卡那霉素、四环素、庆大霉素)筛选,最终获得重组杆粒DNA。
     参照FuGENE HD产品说明书将纯化的重组杆粒转染处于对数生长期的Sf9细胞,继续培养,直至出现明显细胞病变。收集培养上清,即为原代种毒(P1)。将P1代种毒以1:10的比例接种于对数生长期的单层Sf9细胞,27°C培养至90%的细胞出现病变时,收集培养上清,提取重组杆状病毒DNA进行PCR鉴定。将经过鉴定正确的重组杆状病毒P1代进行四次连续传代扩增,以提高重组杆状病毒的效价。应用SDS-PAGE及Western blot检测重组蛋白的表达。采用Ni-NTA His柱纯化的方法纯化mGoIL-17和mGoIL17-VP3重组蛋白。
     制备鹅胚成纤维细胞,接种至6孔板中,分别加入1μg、5μg、10μg、20μg、50μg的mGoIL-17或者mGoIL17-VP3,以PBS作为对照。RT-PCR检测结果显示,以PBS为对照的中没有检测到鹅IL-6和IL-8的mRNA,而依次加入1-50μg的mGoIL-17/mGoIL17-VP3的试验组则可以检测到鹅IL-6和IL-8的mRNA。
     4mGoIL-17黏膜佐剂效应的评估
     从黑龙江省平山某养鹅场购进140只1月龄东北白鹅。共分7组,每组20只,分别点眼和滴鼻免疫VP3、IFN-α+VP3、LTB+VP3、mGoIL17+VP3、mGoIL17-VP3和PBS,肌肉注射商品化疫苗作为对照。每周每组采血(10份)分离血清以检测血清中免疫球蛋白(Ig)含量的变化和血清中和抗体效价。隔周每组杀东北白鹅(2只)分别取呼吸道和消化道灌洗液用以检测灌洗液中Ig的含量,分离外周血淋巴细胞用以检测CD4和CD8细胞的变化。结果显示,(1) mGoIL-17+VP3组和mGoIL17-VP3组与疫苗组有相似的抗体消长规律,在抗体的整体水平上疫苗组>mGoIL17-VP3组>mGoIL-17组>其它组,其中疫苗组、mGoIL17-VP3组和mGoIL-17组之间的差异不显著,均显著高于其他实验组;(2)各免疫组血清的中和抗体效价的变化趋势大体相同,在第7周抗体效价最高。其中mGoIL17-VP3组、mGoIL-17+VP3组、LTB组和疫苗组之间的差异不显著,均显著高于其他实验组;(3)间接ELISA检测呼吸道灌洗液中总Ig抗体,mGoIL-17+VP3组和mGoIL17-VP3组与其他组别有显著的差异性,说明mGoIL-17+VP3和mGoIL17-VP3在刺激呼吸道产生抗体的效果较明显;(4)间接ELISA检测消化道灌洗液中总Ig抗体,mGoIL-17+VP3组和mGoIL17-VP3组显著高于其他组别。说明mGoIL-17+VP3和mGoIL17-VP3在免疫远端的消化道也能起到刺激产生特异性抗体的作用;(5)分离的外周血淋巴细胞用细胞ELISA的方法检测各试验组间CD4+细胞含量的差异,IFN-α组、mGoIL-17+VP3组、mGoIL17-VP3组和疫苗组与对照组相比均能引起外周血淋巴细胞含量的增加,而LTB组不能引起显著的CD4+细胞含量的改变;(6)分离的外周血淋巴细胞用细胞ELISA的方法检测各试验组间CD8+细胞含量的差异,只有mGoIL-17+VP3组、mGoIL17-VP3组和疫苗组能引起外周血淋巴细胞含量的增加,而IFN-α组和LTB组不能引起显著的CD8+细胞含量的改变。
The mucosal surfaces of the gastrointestinal and respiratory tracts represent the principalportals of entry for most pathogens. Therefore the animal mucosal immune system plays a veryimportant role in the resistance to the invasion of pathogenic microorganisms. Effectivestimulation of the mucosal immune system needs to two basic conditions. First, the antigen in thevaccine can be effectively delivered to the mucosal lymphoid tissue; the second is a safe andeffective mucosal adjuvant to enhance the immune response. Immune adjuvant does not have theantigenicity, but it can promote vaccine antigen-specific immune response when incorporated intovaccine formulations. Until recently, IL-17-producing effector T helper cells, called Th17cells,have been discovered and characterized. IL17is an important and unique cytokine resistance tospecific pathogens. Because IL-17induces neutrophil trafficking to the site of inflammation, aswell as the promotion of the T cell response.
     Relative to the study of mammalian mucosal immune, poultry mucosal immunity is relativelyslow, and most studies have focused on the study of the chicken. In this study, IL-17, CD4andCD8α gene of goose were cloned from thymocytes. The recombinant GoIL-17(rGoIL-17)expressed in baculovirus expression system was used as a mucosal immune adjuvant combinedwith goose parvovirus (GPV) VP3virus-like particles, or goose IL-17and VP3fusion expressionto immunize geese. The results showed that the goose IL-17as mucosal immune adjuvants caneffectively induce the body's mucosal immune and system immune. It has a very positive sense ofgosling plague prevention and the development of effective mucosal vaccine.
     1cloning and sequence analysis of goose IL-17, CD4and CD8α gene
     cDNA was synthesized with total RNA from goose thymus by using SMART (SwitchingMechanism at5’ End of RNA Transcript) Reverse Transcriptase. IL-17, CD4and CD8α specificprimers were designed according to the sequence of chicken IL-17(Genbank ID: NM_204460.1),duck CD4(Genbank ID: AF378701), and duck CD8α (Genbank ID: AF378373), which were usedto amplify the whole real sequence of goose IL-17with touchdown PCR. Amplified fragmentswere inserted into the pEASY-Blunt vector, and sent to the Genomics Institute for sequencing.
     Sequences were initially analyzed using Blast search to confirm the correct gene was cloned.The sequences were submitted to NCBI and get a registration number, respectively. The CLUSTALW program was used to align the sequences and a phylogenetic tree was also created using the Neighbour-Joining method within the software MEGA5. The online software SignalP4.1Serverand TMHMM Server v.2.0were used to analyze signal peptide, transmembrane region predictionof IL-17, CD4and CD8α protein, in order to express mature extracellular region of goose IL-17(mGoIL-17) and geese CD4, CD8α.
     2Prokaryotic expression of mGoIL-17and goose CD4, CD8α extracellular domain andpreparation of polyclonal antibody
     According to signal peptide analysis of goose IL-17, and extracellular area analysis of gooseCD4and CD8α, the expression primers were designed. The PCR fragment was digested andligated into the pET32a expression vector. The vector was transformed into an E. coli Rosetta(DE3) pLysS strain, and the expression of recombinant protein was induced by IPTG. Therecombinant protein was purified with Ni-NTA His column. After purification, the recombinantprotein was immunized into rabbits to generate antiserum. The immunoreactivity of antiserum wasdetermined by Western blot. The antiserum was the foundation of the follow-up test.
     3Eukaryotic expression and activity determination of the mGoIL-17and mGoIL-17fusionGPV-VP3protein
     After digestion of pEASY-Blunt-mGoIL-17, the mGoIL-17fragment was ligated into thepFastBac HTB donor vector of the baculovirus expression system. The fusion fragment ofGPV-VP3, mGoIL-17, and the insertion of a flexible Linker (G4S)3was obtained by fusion PCRmethod. The fusion gene was sub-cloned into pFastBac HTB donor vector. The recombinantvectors were then transformed into DH10BAC bacterial cells. The final recombinant bacmidDNAs were obtained by blue and white, and three antibiotics (kanamycin, tetracycline, gentamicin)screening. Positive recombinant bacmid were used to transfect Sf9insect cells of logarithmicphase. All procedures were performed according to the manufacturer’s manual. The transfectedcells were continued to train until significant cytopathic. The culture supernatants were collected,namely, the primary generation virus (P1). P1virus was inoculated monolayer Sf9cells with1:10dilution, and cultured at27°C until90%CPE of the cells. The culture supernatants were collectedand the recombinant baculovirus DNA were extracted for identification by PCR. Recombinantbaculovirus underwent four rounds of amplification (72h each) by infecting Sf9monolayers togenerate of high titer recombinant virus. Proteins expression was analyzed on SDS-PAGE andwestern blot. The recombinant protein was purified with Ni-NTA His column.
     The goose embryo fibroblasts were prepared from10-day-old goose embryo. Cells (1×107)were stimulated with1μg,5μg,10μg,20μg and50μg of rGoIL-17for12h in a DMEM medium.The PBS was used as control. The biological activities of rGoIL-17were assessed by RT-PCR. Theresults showed that, refold mGoIL-17/mGoIL17-VP3induced synthesis of IL-6and IL-8mRNArather than the control, and the expression of geese IL-6and IL-8was positively correlated withmGoIL-17/mGoIL17-VP3dose.
     4Assessment of the immunity effect of mGoIL-17mucosal adjuvant
     1401-month-old Northeast White Geese were purchased from a goose farm in pingshan ofHeilongjiang Province. The geese were divided into seven groups, n=20, respectively. The geesewere immunized with VP3, IFN-α+VP3, LTB+VP3, mGoIL17+VP3, fusion mGoIL17-VP3andPBS through eye and intranasal immunization, and immunized with the commercialization vaccinethrough intramuscular immunization as a positive control. Each set of blood (10parts) werecollected weekly to detect the titer changes of serum immunoglobulin (Ig) and neutralizingantibody. Two geese each group were killed every other week, and the respiratory andgastrointestinal lavage fluid were collected for detection of lavage Ig, and peripheral bloodlymphocytes were separated to detect the change of CD4and CD8cells. The results showed that,(1), mGoIL-17+VP3group mGoIL17-VP3group and the vaccine group had the similar antibodydynamic, and the overall level of the antibodies was vaccine group> mGoIL17-VP3group>mGoIL-17group> other groups;(2), The trend of neutralizing antibody titer of each group wassubstantially the same, as the highest antibody titer was in the7th week. mGoIL17-VP3andmGoIL-17+VP3group were much the same, and both higher than the vaccine group;(3), Total Igantibodies titer of respiratory lavage detected with indirect ELISA had significant differences withother groups, indicating that mGoIL-17+VP3and mGoIL17-VP3could obviously irritate theairways to produce antibodies;(4), Total Ig antibodies titer of gastrointestinal lavage detected withindirect ELISA had significant differences with other groups, indicating that mGoIL-17+VP3andmGoIL17-VP3could also play a role of stimuli of specific antibodies in immune distal digestivetract;(5), The differences of CD4+cell content among each group were tested by cell ELISA fromisolated peripheral blood lymphocyte cell. Compared with control group, IFN-α, mGoIL-17+VP3,mGoIL17-VP3, and the vaccine group could cause the increase of the content of peripheral bloodlymphocytes, but LTB group could not;(6), The differences of CD8+cell content among eachgroup were tested by cell ELISA from isolated peripheral blood lymphocyte cell. Compared withcontrol group, only mGoIL-17+VP3, mGoIL17-VP3, and the vaccine group could cause theincrease of the content of peripheral blood lymphocytes, but IFN-α and LTB group could not.
引文
[1]DAVISON F, KASPERS B, SCHAT K A. Avian Immunology [M].London:Elsevier,2008
    [2]文其乙,崔治中.家禽黏膜免疫在抗感染反应中的作用[J].养禽与禽病防治,2000,(10):10-11
    [3]李春松,戴晋军,李彪.家禽的黏膜免疫研究及功能[J].国外畜牧学(猪与禽),2012,184(07):75-77
    [4]苏平,宫晓红,魏可峰等.家禽的黏膜免疫及其功能[J].山东畜牧兽医,2008,139(08):33-38
    [5]HERMANS D, PASMANS F, HEYNDRICKX M,et al. A tolerogenic mucosal immune responseleads to persistent Campylobacter jejuni colonization in the chicken gut [J].Critical Reviewsin Microbiology,2012,38(1):17-29
    [6]JOHANSEN F E, BRAATHEN R, BRANDTZAEG P. Role of J chain in secretoryimmunoglobulin formation [J].Scandinavian Journal of Immunology,2000,52(3):240-248
    [7]MUIR W I, BRYDEN W L, HUSBAND A J. Immunity, vaccination and the avian intestinaltract [J].Developmental and Comparative Immunology,2000,24(2-3):325-342
    [8]de GEUS E D, REBEL J M J, VERVELDE L. Induction of respiratory immune responses in thechicken; implications for development of mucosal avian influenza virus vaccines[J].Veterinary Quarterly,2012,32(2):75-86
    [9]SMIALEK M, TYKALOWSKI B, STENZEL T,et al. Local immunity of the respiratory mucosalsystem in chickens and turkeys [J].Polish Journal of Veterinary Sciences,2011,14(2):291-297
    [10]WALKER R I. New strategies for using mucosal vaccination to achieve more effectiveimmunization [J].Vaccine,1994,12(5):387-400
    [11]HERMISTON M L, GORDON J I. Organization of the crypt-villus axis and evolution of itsstem cell hierarchy during intestinal development [J].American Journal ofPhysiology-Gastrointestinal and Liver Physiology,1995,268(5):G813-G822
    [12]OLAH I, NAGY N, MAGYAR A,et al. Esophageal tonsil: a novel gut-associated lymphoidorgan [J].Poultry Science,2003,82(5):767-770
    [13]KITAGAWA H, SHIRAISHI S, IMAGAWA T,et al. Ultrastructural characteristics andlectin‐binding properties of M cells in the follicle‐associated epithelium of chicken caecaltonsils [J].Journal of Anatomy,2000,197(4):607-616
    [14]JEURISSEN S H, WAGENAAR F, JANSE E M. Further characterization of M cells ingut-associated lymphoid tissues of the chicken [J].Poultry Science,1999,78(7):965-972
    [15]OLáH I, GLICK B. Meckel's diverticulum. I. Extramedullary myelopoiesis in the yolk sac ofhatched chickens (Gallus domesticus)[J].The Anatomical Record,1984,208(2):243-252
    [16]KITAGAWA H, SHIRAISHI S, IMAGAWA T,et al. Ultrastructural characteristics andlectin‐binding properties of M cells in the follicle‐associated epithelium of chicken caecaltonsils [J].Journal of Anatomy,2000,197(4):607-616
    [17]LILLEHOJ H S. Analysis of Eimeria acervulina-induced changes in the intestinal Tlymphocyte subpopulations in two chicken strains showing different levels of susceptibility tococcidiosis.[J].Research in Veterinary Science,1994,56(1):1
    [18]G BEL T W, KASPERS B, STANGASSINGER M. NK and T cells constitute two major,functionally distinct intestinal epithelial lymphocyte subsets in the chicken.[J].InternationalImmunology,2001,13(6):757
    [19]VERVELDE L, JEURISSEN S. Postnatal development of intra-epithelial leukocytes in thechicken digestive tract: phenotypical characterization in situ [J].Cell and Tissue Research,1993,274(2):295-301
    [20]LILLEHOJ H S, MIN W, DALLOUL R A. Recent progress on the cytokine regulation ofintestinal immune responses to Eimeria [J].Poultry Science,2004,83(4):611-623
    [21]VERVELDE L, JEURISSEN S. Postnatal development of intra-epithelial leukocytes in thechicken digestive tract: phenotypical characterization in situ [J].Cell and Tissue Research,1993,274(2):295-301
    [22]IMHOF B A, DUNON D, COURTOIS D,et al. Intestinal CD8αα and CD8αβ intraepitheliallymphocytes are thymus derived and exhibit subtle differences in TCRβ repertoires [J].TheJournal of Immunology,2000,165(12):6716-6722
    [23]LEBACQ-VERHEYDEN A, VAERMAN J P, HEREMANS J F. A possible homologue ofmammalian IgA in chicken serum and secretions [J].Immunology,1972,22(1):165
    [24]BIENENSTOCK J, PEREY D Y, GAULDIE J,et al. Chicken γA: physicochemical andimmunochemical characteristics [J].The Journal of Immunology,1973,110(2):524-533
    [25]SATO S, KIYONO H. The mucosal immune system of the respiratory tract [J].Current Opinionin Virology,2012,2(3):225-232
    [26]KOSKELA K, KOHONEN P, NIEMINEN P,et al. Insight into lymphoid development by geneexpression profiling of avian B cells [J].Immunogenetics,2003,55(6):412-422
    [27]GAUNSON J E, PHILIP C J, WHITHEAR K G,et al. The cellular immune response in thetracheal mucosa to Mycoplasma gallisepticum in vaccinated and unvaccinated chickens inthe acute and chronic stages of disease [J].Vaccine,2006,24(14):2627-2633
    [28]GAUNSON J E, PHILIP C J, WHITHEAR K G,et al. Lymphocytic infiltration in the chickentrachea in response to Mycoplasma gallisepticum infection [J].Microbiology,2000,146(5):1223-1229
    [29]JAVED M A, FRASCA S, ROOD D,et al. Correlates of immune protection in chickensvaccinated with Mycoplasma gallisepticum strain GT5following challenge with pathogenicM. gallisepticum strain Rlow [J].Infection and Immunity,2005,73(9):5410-5419
    [30]BRANDTZAEG P. Molecular and cellular aspects of the secretory immunoglobulin system[J].Apmis,1995,103(1‐6):1-19
    [31]BRANDTZAEG P, JAHNSEN F L, FARSTAD I N,et al. Mucosal Immunology of the UpperAirways: An Overviewa [J].Annals of the New York Academy of Sciences,1997,830(1):1-18
    [32]SNOECK V, PETERS I R, COX E. The IgA system: a comparison of structure and function indifferent species [J].Veterinary Research,2006,37(3):455-467
    [33]JAYAWARDANE G, SPRADBROW P B. Mucosal immunity in chickens vaccinated with theV4strain of Newcastle disease virus [J].Veterinary Microbiology,1995,46(1):69-77
    [34]TAKADA A, KIDA H. Protective immune response of chickens against Newcastle disease,induced by the intranasal vaccination with inactivated virus [J].Veterinary Microbiology,1996,50(1):17-25
    [35]GAUNSON J E, PHILIP C J, WHITHEAR K G,et al. Lymphocytic infiltration in the chickentrachea in response to Mycoplasma gallisepticum infection [J].Microbiology,2000,146(5):1223-1229
    [36]杨倩,毛卫华,黄国庆等.巴氏杆菌弱毒苗和鸡新城疫弱毒苗饮水免疫蛋鸡后分泌型免疫球蛋白A细胞的分布[J].中国畜禽传染病,1998,(06):21-23
    [37]舒翠莉,彭虹,王华等.滴鼻免疫有效的诱导黏膜及系统免疫反应[J].微生物学免疫学进展,2001,(04):40-44
    [38]JAKOBSEN H, JONSDOTTIR I. Mucosal vaccination against encapsulated respiratorybacteria-New potentials for conjugate vaccines?[J].Scandinavian Journal of Immunology,2003,58(2):119-128
    [39]BAUMANN U. Mucosal vaccination against bacterial respiratory infections [J].Expert Reviewof Vaccines,2008,7(8):1257-1276
    [40]HOLMGREN J, CZERKINSKY C. Mucosal immunity and vaccines [J].Nature Medicine,2005,11S (4):S45-S53
    [41]金光明,王珏,宁康建等.黏膜免疫学与动物疫病防制研究进展[J].中国农学通报,2005,(04):21-23+79
    [42]NEUTRA M R, KOZLOWSKI P A. Mucosal vaccines: the promise and the challenge[J].Nature Reviews Immunology,2006,6(2):148-158
    [43]FUJKUYAMA Y, TOKUHARA D, KATAOKA K,et al. Novel vaccine development strategiesfor inducing mucosal immunity [J].Expert Review of Vaccines,2012,11(3):367-379
    [44]SCOTTI N, RYBICKI E P. Virus-like particles produced in plants as potential vaccines[J].Expert Review of Vaccines,2013,12(2):211-224
    [45]LIU F X, GE S Q, LI L,et al. Virus-like particles: potential veterinary vaccine immunogens[J].Research in Veterinary Science,2012,93(2):553-559
    [46]SALYAEV R K, RIGANO M M, REKOSLAVSKAYA N I. Development of plant-basedmucosal vaccines against widespread infectious diseases [J].Expert Review of Vaccines,2010,9(8SI):937-946
    [47]BOYAKA P N, MCGHEE J R. Cytokines as adjuvants for the induction of mucosal immunity[J].Advanced Drug Delivery Reviews,2001,51(1-3):71-79
    [48]HARROD T, MARTIN M, RUSSELL M W. Long-term persistence and recall of immuneresponses in aged mice after mucosal immunization [J].Oral Microbiology and Immunology,2001,16(3):170-177
    [49]WILKINSON J, ROOD D, MINIOR D,et al. Immune response to a mucosally administeredaflatoxin B-1vaccine [J].Poultry Science,2003,82(10):1565-1572
    [50]MCNEAL M M, VANCOTT J L, CHOI A,et al. CD4T cells are the only lymphocytes neededto protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6protein and the adjuvant LT(R192G)[J].Journal of Virology,2002,76(2):560-568
    [51]LYCKE N. Targeted vaccine adjuvants based on modified cholera toxin [J].Current MolecularMedicine,2005,5(6):591-597
    [52]BAUDNER B C, MORANDI M, GIULIANI M M,et al. Modulation of immune response togroup C meningococcal conjugate vaccine given intranasally to mice together with the LTK63mucosal adjuvant and the trimethyl chitosan delivery system [J].Journal of InfectiousDiseases,2004,189(5):828-832
    [53]ROBERTS M, BACON A, RAPPUOLI R,et al. A mutant pertussis toxin molecule that lacksADP-ribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant forintranasally delivered proteins.[J].Infection and Immunity,1995,63(6):2100-2108
    [54]ULRICH J T, MYERS K R. Vaccine Design: Monophosphoryl lipid A as an adjuvant [M]Springer,1995
    [55]CHILDERS N K, MILLER K L, TONG G,et al. Adjuvant activity of monophosphoryl lipid Afor nasal and oral immunization with soluble or liposome-associated antigen [J].Infection andImmunity,2000,68(10):5509-5516
    [56]MARTIN M, MICHALEK S M, KATZ J. Role of innate immune factors in the adjuvantactivity of monophosphoryl lipid A [J].Infection and Immunity,2003,71(5):2498-2507
    [57]TOKUNAGA T, YAMAMOTO H, SHIMADA S,et al. Antitumor activity of deoxyribonucleicacid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization,and antitumor activity [J].Journal of the National Cancer Institute,1984,72(4):955-962
    [58]BODE C, ZHAO G, STEINHAGEN F,et al. CpG DNA as a vaccine adjuvant [J].Expert Reviewof Vaccines,2011,10(4SI):499-511
    [59]MCCLUSKIE M J, DAVIS H L. Oral, intrarectal and intranasal immunizations using CpG andnon-CpG oligodeoxynucleotides as adjuvants [J].Vaccine,2000,19(4):413-422
    [60]WEERATNA R D, MCCLUSKIE M J, XU Y,et al. CpG DNA induces stronger immuneresponses with less toxicity than other adjuvants [J].Vaccine,2000,18(17):1755-1762
    [61]KLINMAN D M. Immunotherapeutic uses of CpG oligodeoxynucleotides [J].Nature ReviewsImmunology,2004,4(4):248-257
    [62]KRIEG A M, YI A, MATSON S,et al. CpG motifs in bacterial DNA trigger direct B-cellactivation [J].Nature,1995,374(6522):546-549
    [63]KLINMAN D M, YI A, BEAUCAGE S L,et al. CpG motifs present in bacteria DNA rapidlyinduce lymphocytes to secrete interleukin6, interleukin12, and interferon gamma[J].Proceedings of the National Academy of Sciences,1996,93(7):2879-2883
    [64]WEINER G J. CpG oligodeoxynucleotide-based therapy of lymphoid malignancies[J].Advanced Drug Delivery Reviews,2009,61(3):263-267
    [65]TAKESHITA F, GURSEL I, ISHII K J,et al. Signal transduction pathways mediated by theinteraction of CpG DNA with Toll-like receptor9[J].Seminars in Immunology,2004,16(1):17-22
    [66]MUTWIRI G, PONTAROLLO R, BABIUK S,et al. Biological activity of immunostimulatoryCpG DNA motifs in domestic animals [J].Veterinary Immunology and Immunopathology,2003,91(2):89-103
    [67]余协中,王红宁,黄勇等.细胞因子类佐剂在黏膜免疫中的作用[J].动物医学进展,2007,(S1):30-33
    [68]MIN W, LILLEHOJ H S, BURNSIDE J,et al. Adjuvant effects of IL-1β, IL-2, IL-8, IL-15,IFN-α, IFN-γ,TGF-β4and lymphotactin on DNA vaccination against Eimeria acervulina[J].Vaccine,2001,20(1):267-274
    [69]NUNBERG J H, DOYLE M V, YORK S M,et al. Interleukin2acts as an adjuvant to increasethe potency of inactivated rabies virus vaccine [J].Proceedings of the National Academy ofSciences,1989,86(11):4240-4243
    [70]METZGER D W. Interleukin-12as an adjuvant for induction of protective antibody responses[J].Cytokine,2010,52(1-2SI):102-107
    [71]BOYAKA P N, MARINARO M, JACKSON R J,et al. IL-12is an effective adjuvant forinduction of mucosal immunity [J].The Journal of Immunology,1999,162(1):122-128
    [72]BLISS J, Van CLEAVE V, MURRAY K,et al. IL-12, as an adjuvant, promotes a T helper1cell,but does not suppress a T helper2cell recall response.[J].The Journal of Immunology,1996,156(3):887-894
    [73]FUJIHASHI K, KOGA T, van GINKEL F W,et al. A dilemma for mucosal vaccination:efficacy versus toxicity using enterotoxin-based adjuvants [J].Vaccine,2002,20(19):2431-2438
    [74]江海燕,王希良.黏膜疫苗佐剂研究进展[J].免疫学杂志,2006,(S1):97-100+104
    [75]蒙学莲,景志忠.新型免疫佐剂的研究及其在人兽共患病疫苗中的应用[J].国际免疫学杂志,2007,(06):418-421
    [76]HARRINGTON L E, HATTON R D, MANGAN P R,et al. Interleukin17-producing CD4(+)effector T cells develop via a lineage distinct from the T helper type1and2lineages[J].Nature Immunology,2005,6(11):1123-1132
    [77]PARK H, LI Z X, YANG X O, et al. A distinct lineage of CD4T cells regulates tissueinflammation by producing interleukin17[J].Nature Immunology,2005,6(11):1133-1141
    [78]WEAVER C T, HARRINGTON L E, MANGAN P R, et al. Th17: an effector CD4T celllineage with regulatory T cell ties [J].Immunity,2006,24(6):677-688
    [79]LAAN M, L TVALL J, CHUNG K F,et al. IL‐17‐induced cytokine release in human bronchialepithelial cells in vitro: role of mitogen‐activated protein (MAP) kinases [J].British Journal ofPharmacology,2001,133(1):200-206
    [80]E ROUVIER M L M M. CTLA-8, cloned from an activated T cell, bearing AU-rich messengerRNA instability sequences, and homologous to a herpesvirus saimiri gene [J].The Journal ofImmunology,1993,150(12):5445-5456
    [81]HYMOWITZ S G, FILVAROFF E H, YIN J P,et al. IL-17s adopt a cystine knot fold: structureand activity of a novel cytokine, IL-17F, and implications for receptor binding [J].EmboJournal,2001,20(19):5332-5341
    [82]PAPPU R, RAMIREZ-CARROZZI V, SAMBANDAM A. The interleukin-17cytokine family:critical players in host defence and inflammatory diseases [J].Immunology,2011,134(1):8-16
    [83]KENNEDY J, ROSSI D L, ZURAWSKI S M, et al. Mouse IL-17: A Cytokine PreferentiallyExpressed by αβTCR+CD4+CD8+T Cells [J].Journal of Interferon&Cytokine Research,1996,16(8):611-617
    [84]MIN W I, LILLEHOJ H S. Isolation and characterization of chicken interleukin-17cDNA[J].Journal of Interferon and Cytokine Research,2002,22(11):1123-1128
    [85]YOO J, JANG S I, KIM S,et al. Molecular characterization of duck interleukin-17[J].Veterinary Immunology and Immunopathology,2009,132(2-4):318-322
    [86]ALBANESI C, CAVANI A, GIROLOMONI G. IL-17is produced by nickel-specific Tlymphocytes and regulates ICAM-1expression and chemokine production in humankeratinocytes: synergistic or antagonist effects with IFN-γ and TNF-α [J].The Journal ofImmunology,1999,162(1):494-502
    [87]CHEN Y, LANGRISH C L, MCKENZIE B,et al. Anti–IL-23therapy inhibits multipleinflammatory pathways and ameliorates autoimmune encephalomyelitis [J].Journal ofClinical Investigation,2006,116(5):1317-1326
    [88]LANGRISH C L, CHEN Y, BLUMENSCHEIN W M,et al. IL-23drives a pathogenic T cellpopulation that induces autoimmune inflammation [J].The Journal of Experimental Medicine,2005,201(2):233-240
    [89]KOENDERS M I, LUBBERTS E, OPPERS-WALGREEN B,et al. Blocking of interleukin-17during reactivation of experimental arthritis prevents joint inflammation and bone erosion bydecreasing RANKL and interleukin-1[J].The American Journal of Pathology,2005,167(1):141-149
    [90]NAKAE S, NAMBU A, SUDO K,et al. Suppression of immune induction of collagen-inducedarthritis in IL-17-deficient mice [J].The Journal of Immunology,2003,171(11):6173-6177
    [91]BETTELLI E, CARRIER Y J, GAO W D,et al. Reciprocal developmental pathways for thegeneration of pathogenic effector T(H)17and regulatory T cells [J].Nature,2006,441(7090):235-238
    [92]KOLLS J K, LINDEN A. Interleukin-17family members and inflammation [J].Immunity,2004,21(4):467-476
    [93]NUMASAKI M, FUKUSHI J, ONO M, et al. Interleukin-17promotes angiogenesis and tumorgrowth [J].Blood,2003,101(7):2620-2627
    [94]TARTOUR E, FOSSIEZ F, JOYEUX I,et al. Interleukin17, a T-cell-derived cytokine,promotes tumorigenicity of human cervical tumors in nude mice [J].Cancer Research,1999,59(15):3698-3704
    [95]HIRAHARA N, NIO Y, SASAKI S,et al. Reduced invasiveness and metastasis of Chinesehamster ovary cells transfected with human interleukin-17gene [J].Anticancer Research,2000,20(5A):3137-3142
    [96]JOVANOVIC D V, Di BATTISTA J A, MARTEL-PELLETIER J,et al. IL-17stimulates theproduction and expression of proinflammatory cytokines, IL-β and TNF-α, by humanmacrophages [J].The Journal of Immunology,1998,160(7):3513-3521
    [97]WOLTMAN A M, DE HAIJ S, BOONSTRA J G,et al. Interleukin-17and CD40-ligandsynergistically enhance cytokine and chemokine production by renal epithelial cells[J].Journal of the American Society of Nephrology,2000,11(11):2044-2055
    [98]LUZZA F, PARRELLO T, MONTELEONE G,et al. Up-regulation of IL-17is associated withbioactive IL-8expression in Helicobacter pylori-infected human gastric mucosa [J].TheJournal of Immunology,2000,165(9):5332-5337
    [99]BROXMEYER H E. Is interleukin17, an inducible cytokine that stimulates production ofother cytokines, merely a redundant player in a sea of other biomolecules?[J].The Journal ofExperimental Medicine,1996,183(6):2411-2415
    [100]FERRETTI S, BONNEAU O, DUBOIS G R, et al. IL-17, produced by lymphocytes andneutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15as apossible trigger [J].The Journal of Immunology,2003,170(4):2106-2112
    [101]SHIN H C K, BENBERNOU N, ESNAULT S,et al. EXPRESSION OF IL-17IN HUMANMEMORY CD45RO+T LYMPHOCYTES AND ITS REGULATION BY PROTEIN KINASEA PATHWAY [J].Cytokine,1999,11(4):257-266
    [102]SUTTON C, BRERETON C, KEOGH B, et al. A crucial role for interleukin (IL)-1in theinduction of IL-17–producing T cells that mediate autoimmune encephalomyelitis [J].TheJournal of Experimental Medicine,2006,203(7):1685-1691
    [103]HAPPEL K I, ZHENG M, YOUNG E, et al. Cutting edge: roles of Toll-like receptor4andIL-23in IL-17expression in response to Klebsiella pneumoniae infection [J].The Journal ofImmunology,2003,170(9):4432-4436
    [104]MICHEL M, KELLER A C, PAGET C, et al. Identification of an IL-17–producing NK1.1negiNKT cell population involved in airway neutrophilia [J].The Journal of ExperimentalMedicine,2007,204(5):995-1001
    [105]LOCKHART E, GREEN A M, FLYNN J L. IL-17production is dominated by γδ T cellsrather than CD4T cells during Mycobacterium tuberculosis infection [J].The Journal ofImmunology,2006,177(7):4662-4669
    [106]KOENEN H J, SMEETS R L, VINK P M,et al. Human CD25highFoxp3pos regulatory T cellsdifferentiate into IL-17–producing cells [J].Blood,2008,112(6):2340-2352
    [107]DUBIN P J, KOLLS J K. IL-23mediates inflammatory responses to mucoid Pseudomonasaeruginosa lung infection in mice [J].American Journal of Physiology-Lung Cellular andMolecular Physiology,2007,292(2):L519-L528
    [108]SHIBATA K, YAMADA H, HARA H,et al. Resident Vδ1+γδ T cells control early infiltrationof neutrophils after Escherichia coli infection via IL-17production [J].The Journal ofImmunology,2007,178(7):4466-4472
    [109]MIYAMOTO M, PRAUSE O, SJ STRAND M,et al. Endogenous IL-17as a mediator ofneutrophil recruitment caused by endotoxin exposure in mouse airways [J].The Journal ofImmunology,2003,170(9):4665-4672
    [110]YE P, GARVEY P B, ZHANG P,et al. Interleukin-17and lung host defense against Klebsiellapneumoniae infection.[J].American Journal of Respiratory Cell and Molecular Biology,2001,25(3):335
    [111]SHELLITO J E, ZHENG M Q, YE P,et al. Effect of Alcohol Consumption on Host Release ofInterleukin‐17During Pulmonary Infection With Klebsiella pneumoniae [J].Alcoholism:Clinical and Experimental Research,2001,25(6):872-881
    [112]YE P, RODRIGUEZ F H, KANALY S,et al. Requirement of interleukin17receptor signalingfor lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophilrecruitment, and host defense [J].The Journal of Experimental Medicine,2001,194(4):519-528
    [113]CARUSO R, FINA D, PAOLUZI O A,et al. IL‐23‐mediated regulation of IL‐17production inHelicobacter pylori‐infected gastric mucosa [J].European Journal of Immunology,2008,38(2):470-478
    [114]LUZZA F, PARRELLO T, MONTELEONE G,et al. Up-regulation of IL-17is associated withbioactive IL-8expression in Helicobacter pylori-infected human gastric mucosa [J].TheJournal of Immunology,2000,165(9):5332-5337
    [115]MIZUNO T, ANDO T, NOBATA K,et al. Interleukin-17levels in Helicobacter pylori-infectedgastric mucosa and pathologic sequelae of colonization [J].World Journal of Gastroenterology,2005,11(40):6305
    [116]SEBKOVA L, PELLICANò A, MONTELEONE G,et al. Extracellular signal-regulatedprotein kinase mediates interleukin17(IL-17)-induced IL-8secretion in Helicobacterpylori-infected human gastric epithelial cells [J].Infection and Immunity,2004,72(9):5019-5026
    [117]JOVANOVIC D V, Di BATTISTA J A, MARTEL-PELLETIER J,et al. IL-17stimulates theproduction and expression of proinflammatory cytokines, IL-β and TNF-α, by humanmacrophages [J].The Journal of Immunology,1998,160(7):3513-3521
    [118]BAMBA S, ANDOH A, YASUI H,et al. Matrix metalloproteinase-3secretion from humancolonic subepithelial myofibroblasts: role of interleukin-17[J].Journal of Gastroenterology,2003,38(6):548-554
    [119]COOPER A M, KIPNIS A, TURNER J,et al. Mice lacking bioactive IL-12can generateprotective, antigen-specific cellular responses to mycobacterial infection only if the IL-12p40subunit is present [J].The Journal of Immunology,2002,168(3):1322-1327
    [120]KHADER S A, PEARL J E, SAKAMOTO K,et al. IL-23compensates for the absence ofIL-12p70and is essential for the IL-17response during tuberculosis but is dispensable forprotection and antigen-specific IFN-γ responses if IL-12p70is available [J].The Journal ofImmunology,2005,175(2):788-795
    [121]CRUZ A, KHADER S A, TORRADO E,et al. Cutting edge: IFN-γ regulates the induction andexpansion of IL-17-producing CD4T cells during mycobacterial infection [J].The Journal ofImmunology,2006,177(3):1416-1420
    [122]KHADER S A, BELL G K, PEARL J E,et al. IL-23and IL-17in the establishment ofprotective pulmonary CD4+T cell responses after vaccination and during Mycobacteriumtuberculosis challenge [J].Nature Immunology,2007,8(4):369-377
    [123]WU Q, MARTIN R J, RINO J G,et al. IL-23-dependent IL-17production is essential inneutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasmapneumoniae infection [J].Microbes and Infection,2007,9(1):78-86
    [124]KLEINSCHEK M A, MULLER U, BRODIE S J,et al. IL-23enhances the inflammatory cellresponse in Cryptococcus neoformans infection and induces a cytokine pattern distinct fromIL-12[J].The Journal of Immunology,2006,176(2):1098-1106
    [125]RUDNER X L, HAPPEL K I, YOUNG E A,et al. Interleukin-23(IL-23)-IL-17cytokine axisin murine Pneumocystis carinii infection [J].Infection and Immunity,2007,75(6):3055-3061
    [126]HENINGER E, HOGAN L H, KARMAN J,et al. Characterization of the Histoplasmacapsulatum-induced granuloma [J].The Journal of Immunology,2006,177(5):3303-3313
    [127]HUANG W, NA L, FIDEL P L,et al. Requirement of interleukin-17A for systemicanti-Candida albicans host defense in mice [J].Journal of Infectious Diseases,2004,190(3):624-631
    [128]ZELANTE T, De LUCA A, BONIFAZI P,et al. IL‐23and the Th17pathway promoteinflammation and impair antifungal immune resistance [J].European Journal of Immunology,2007,37(10):2695-2706
    [129]ACOSTA-RODRIGUEZ E V, RIVINO L, GEGINAT J,et al. Surface phenotype and antigenicspecificity of human interleukin17–producing T helper memory cells [J].Nature Immunology,2007,8(6):639-646
    [130]BOZZA S, FALLARINO F, PITZURRA L,et al. A crucial role for tryptophan catabolism atthe host/Candida albicans interface [J].The Journal of Immunology,2005,174(5):2910-2918
    [131]MONTAGNOLI C, FALLARINO F, GAZIANO R, et al. Immunity and tolerance toAspergillus involve functionally distinct regulatory T cells and tryptophan catabolism [J].TheJournal of Immunology,2006,176(3):1712-1723
    [132]ROMANI L, PUCCETTI P. Controlling pathogenic inflammation to fungi [J].Expert Reviewof Anti-Infective Therapy,2007,5(6):1007-1017
    [133]ROMANI L, FALLARINO F, De LUCA A, et al. Defective tryptophan catabolism underliesinflammation in mouse chronic granulomatous disease [J].Nature,2008,451(7175):211-215
    [134]KELLY M N, KOLLS J K, HAPPEL K,et al. Interleukin-17/interleukin-17receptor-mediatedsignaling is important for generation of an optimal polymorphonuclear response againstToxoplasma gondii infection [J].Infection and Immunity,2005,73(1):617-621
    [135]RUTITZKY L I, DA ROSA J R L, STADECKER M J. Severe CD4T cell-mediatedimmunopathology in murine schistosomiasis is dependent on IL-12p40and correlates withhigh levels of IL-17[J].The Journal of Immunology,2005,175(6):3920-3926
    [136]YAO Z, FANSLOW W C, SELDIN M F,et al. Herpesvirus Saimiri encodes a new cytokine,IL-17, which binds to a novel cytokine receptor [J].Immunity,1995,3(6):811-821
    [137]KNAPPE A, HILLER C, NIPHUIS H, et al. The interleukin-17gene of herpesvirus saimiri[J].Journal of Virology,1998,72(7):5797-5801
    [138]PATERA A C, PESNICAK L, BERTIN J,et al. Interleukin17modulates the immune responseto vaccinia virus infection [J].Virology,2002,299(1):56-63
    [139]YE P, RODRIGUEZ F H, KANALY S,et al. Requirement of interleukin17receptor signalingfor lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophilrecruitment, and host defense [J].The Journal of Experimental Medicine,2001,194(4):519-528
    [140]YE P, GARVEY P B, ZHANG P, et al. Interleukin-17and lung host defense againstKlebsiella pneumoniae infection.[J].American Journal of Respiratory Cell and MolecularBiology,2001,25(3):335
    [141]FOSSIEZ F, DJOSSOU O, CHOMARAT P, et al. T cell interleukin-17induces stromal cellsto produce proinflammatory and hematopoietic cytokines.[J].The Journal of ExperimentalMedicine,1996,183(6):2593-2603
    [142]HAPPEL K I, ZHENG M, YOUNG E, et al. Cutting edge: roles of Toll-like receptor4andIL-23in IL-17expression in response to Klebsiella pneumoniae infection [J].The Journal ofImmunology,2003,170(9):4432-4436
    [143]AUJLA S J, CHAN Y R, ZHENG M, et al. IL-22mediates mucosal host defense againstGram-negative bacterial pneumonia [J].Nature Medicine,2008,14(3):275-281
    [144]CHAN Y R, LIU J S, POCIASK D A,et al. Lipocalin2is required for pulmonary host defenseagainst Klebsiella infection [J].The Journal of Immunology,2009,182(8):4947-4956
    [145]ZHANG Z, CLARKE T B, WEISER J N. Cellular effectors mediating Th17-dependentclearance of pneumococcal colonization in mice [J].The Journal of Clinical Investigation,2009,119(7):1899
    [146]UMEMURA M, YAHAGI A, HAMADA S,et al. IL-17-mediated regulation of innate andacquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerininfection [J].The Journal of Immunology,2007,178(6):3786-3796
    [147]WU Q, MARTIN R J, RINO J G,et al. IL-23-dependent IL-17production is essential inneutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasmapneumoniae infection [J].Microbes and Infection,2007,9(1):78-86
    [148]ZHANG X, GAO L, LEI L,et al. A MyD88-dependent early IL-17production protects miceagainst airway infection with the obligate intracellular pathogen Chlamydia muridarum[J].The Journal of Immunology,2009,183(2):1291-1300
    [149]WEAVER C T, HARRINGTON L E, MANGAN P R,et al. Th17: an effector CD4T celllineage with regulatory T cell ties [J].Immunity,2006,24(6):677-688
    [150]ZHENG Y, VALDEZ P A, DANILENKO D M,et al. Interleukin-22mediates early hostdefense against attaching and effacing bacterial pathogens [J].Nature Medicine,2008,14(3):282-289
    [151]KOSKINEN R, LAMMINMAKI U, TREGASKES C A,et al. Cloning and modeling of thefirst nonmammalian CD4[J].Journal of Immunology,1999,162(7):4115-4121
    [152]KOTHLOW S, MANNES N K, SCHAERER B,et al. Characterization of duck leucocytes bymonoclonal antibodies [J].Developmental and Comparative Immunology,2005,29(8):733-748
    [153]LUHTALA M, TREGASKES C A, YOUNG J R,et al. Polymorphism of chicken CD8-alpha,but not CD8-beta [J].Immunogenetics,1997,46(5):396-401
    [154]GU Z, SU Z, JANSON J. Urea gradient size-exclusion chromatography enhanced the yield oflysozyme refolding [J].Journal of Chromatography a,2001,918(2):311-318
    [155]魏双施,王艺萌,王巍等.重组鸡IFN-α的高效表达与一步复性和纯化[J].中国兽医科学,2010,(04):415-420
    [156]JU H, WEI N, WANG Q,et al. Goose parvovirus structural proteins expressed by recombinantbaculoviruses self-assemble into virus-like particles with strong immunogenicity in goose[J].Biochemical and Biophysical Research Communications,2011,409(1):131-136
    [157]CARROLL K, LANNON B, O'KENNEDY R. Optimal fixation of cells for use in solid-phaseELISA [J].Journal of Immunological Methods,1990,129(1):71-76
    [158]RIZZA P, CAPONE I, MORETTI F, et al. IFN-alpha as a vaccine adjuvant: recent insightsinto the mechanisms and perspectives for its clinical use [J].Expert Review of Vaccines,2011,10(4Sp. Iss. SI):487-498
    [159]TOUGH D F, BORROW P, SPRENT J. Induction of bystander T cell proliferation by virusesand type I interferon in vivo [J].Science,1996,272(5270):1947-1950
    [160]Le BON A, ETCHART N, ROSSMANN C, et al. Cross-priming of CD8+T cells stimulatedby virus-induced type I interferon [J].Nature Immunology,2003,4(10):1009-1015
    [161]Le BON A, SCHIAVONI G, D'AGOSTINO G, et al. Type I interferons potently enhancehumoral immunity and can promote isotype switching by stimulating dendritic cells in vivo[J].Immunity,2001,14(4):461-470
    [162]COUCH R B, ATMAR R L, CATE T R, et al. Contrasting effects of type I interferon as amucosal adjuvant for influenza vaccine in mice and humans [J].Vaccine,2009,27(39):5344-5348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700