CarMV和IFV衣壳结构、SrMV柱状内含体的电子显微镜三维重构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒不但严重威胁人类健康和生命,还引起农作物及禽、畜和经济动物的流行性病害,造成严重的经济损失。对于病毒的研究一直是结构生物学和病理学研究的重要课题。运用传统电子显微学技术和现代结构生物学技术研究病毒蛋白聚合物的三维结构对了解这些蛋白如何发挥生物学功能,病毒如何完成生命周期具有重要意义。本文运用冷冻电镜单颗粒技术研究了麝香石竹斑驳病毒(Carnation mottle virus,CarMV)和家蚕传染性软化病病毒(Infectious flacherie virus,IFV)的三维空间结构;运用常规超薄切片电镜技术和电子断层成像技术研究了高粱花叶病毒(Sorghum mosaic virus,SrMV)柱状内含体(cylindrical inclusion,CI)的结构以及与胞间连丝的相互联系。得到以下研究结果:
     运用I-ELISA检测、核酸测序、SDS-PAGE蛋白电泳以及免疫吸附电镜等多种技术鉴定了CarMV云南分离物。细胞病理学观察和免疫金标记定位发现CarMV散布在寄主细胞的细胞质和液泡中,不形成内含体,没有明显的细胞病变特征,叶绿体和线粒体发生病变式膨胀,外壳蛋白在叶绿体中有分布。比较了PEG沉淀法、氯化铯密度梯度离心法和超滤法对该病毒精提纯的效果,探索了适用于冷冻电镜特殊要求的CarMV提纯方法和条件,通过氯化铯密度梯度离心法得到了适用于冻电镜三维重构研究的CarMV精提纯样品。运用冷冻电镜结合单颗粒技术研究了pH7.0的CarMV粒子,得到了分辨率为18(?)的衣壳三维立体结构,经eotest检验并以FSC的数据做图观察其曲线有收敛趋势,证明了重构的可靠性。CarMV病毒衣壳直径为354(?),3次对称轴周围有贯穿衣壳的孔洞,亚基(subunit)排列松散。将该结果已报道的CarMV晶体结构进行比较,结果发现二者在剖分数(T值)、衣壳表面突起的数量以及衣壳的层数上存在差异。冷冻电镜结果显示水溶液状态下CarMV的T=1,表面突起为60个,为双层衣壳;而晶体学结果报道晶体状态下CarMV的T=3,表面突起为90个,为单层衣壳。在对前人报道的番茄丛矮病毒科(Tombusviridae)和南方菜豆花叶病毒属(Sobemovirus)成员晶体学数据进行比较研究中,运用‘PROSITE’软件分析了植物病毒二十面体衣壳蛋白S结构域特征肽,结合对该特征肽的拓扑学结构所进行的研究分析,发现了一些共同特征:保守序列排列方式不是连续而是间隔的;间隔距离和保守性位点的位置严格保守;位点内保守性较宽松,氨基酸性质相同即可。
     分离鉴定并提纯了IFV。运用冷冻电镜结合单颗粒技术研究了IFV粒子,得到分辨率为17(?)的衣壳三维立体结构,经eotest检验并以FSC的数据做图观察其曲线有收敛趋势,证明了重构的可靠性。重构结果显示IFV粒子遵循二十面体P=3对称规则,直径为302.4(?),衣壳厚度为15(?)。三维密度图显示IFV衣壳粒子表面光滑,无毛刺和突起。将IFV衣壳三维结构与亲缘关系较接近的蟋蟀麻痹病毒(CrPV)(昆虫类小RNA病毒)和人类鼻病毒(HRV14)、门戈病毒(Mengovirus)、脊髓灰质炎病毒(Poliovirus)和口蹄疫病毒(FMDV)(脊椎动物小RNA病毒)的衣壳三维结构作比较,发现IFV衣壳的三维结构更接近CrPV。运用‘phyre’肽链折叠预测工具得到了IFV-VP2、IFV-VP3的肽链折叠结构,并将预测结果同CrPV晶体结构的肽链进行比较,发现相似度较高。从IFV粒子光滑的表面缺乏明显的沟壑来看,IFV逃避寄主追踪并不是采用类似“峡谷”假说的机制,而是另一种目前未知的机制。
     运用常规超薄切片电镜观察结合ET三维重构技术研究了SrMV侵染的玉米叶片细胞中柱状内含体(CI)超微结构以及与胞间连丝之间的相互联系。结果显示:细胞质中分布了大量柱状内含体,其基部与粗面内质网或细胞膜相连,线状病毒粒子纵向排列在柱状体的蛋白板上;在侵染早期CI垂直于细胞壁,基部通过细胞膜与胞间连丝相连,每个CI的中央轴芯和辐射状排列的蛋白板可与多个胞间连丝通道相连,胞间连丝直径明显增大,并有线状病毒样粒子通过CI与胞间连丝连接通道穿越的现象;CI与胞间连丝的连接也存在于维管束组织中,游离的CI存在于筛管内。对厚切片(200nm)进行ET三维重构得到的三维立体模型证实了CI的结构以及与胞间连丝的连接关系。通过对该模型进行分割、渲染,结合超薄切片电镜观察所得到的结果进行CI生物学功能分析,我们初步认为:(1) Potyvirus的柱状内含体在病毒胞间运动中起着重要辅助作用,CI能定向连接胞间连丝,帮助纵向定位在CI蛋白板上的病毒粒子完成胞间运动。(2) CI中央的孔道并不是由单独的结构部件所组成,单个CI可以同时连接几个胞间连丝通道,输送多个病毒粒子;一旦胞间运动完成后则脱离细胞壁,游离于细胞质中。(3)筛管与伴胞及其他细胞间的转运也是依靠CI辅助,病毒的长距离运输可能是以完整粒子形式进行的。
Viruses not only do harm to human health, but also infect crops and breeding animals,causing severe economic losing. Structure studies of viruses are important subjects instructural biology and cell pathology. Using traditional experimental methods of electronmicroscopy (EM) combined with structural biological methods to study three dimensionalstructure of virus protein polymers can help us known how these protein polymers exertbiological function, and how viruses complete their life cycle. We report the structuralstudies of virus protein polymers by using cryo-electron microscopy and three dimensionalreconstruction to study the capsids structure of Carnation mottle virus (CarMV) andInfectious flacherie virus (IFV); traditional ultra thin section and electron tomography wereused to study the cylindrical inclusion (CI) structure of Sorghum mosaic virus (SrMV) andthe relationship between CI and plasmodesma (PD).
     Using multiple methods such as I-ELISA?, nucleic acid sequencing, SDS-PAGE andimmunolabelling in EM, we identified CarMV Yunnan isolation. CarMV particles werefound to be districbuted in cytoplasm and vacuole in EM. CarMV have no cell inclusion incytoplasm and no obvious cytopathological change can be found. The chloroplast andmitochondria of host cell badly swell after CarMV infection. The capsid proteins of CarMVdistributing in chloroplast. By comparing the purification effect of three subtle purificationmethods such as PEG deposition, CsCl density gradient centrifugation and centrifugal filter,we find that CsCl density gradient centrifugation can purified virions suitable for cryoelectron microscopy study. Using cryo-electron microscopy combined with single particlereconstruction method, we obtained the resolution of 18(?) for the capsid structure of CarMVin pH7.0 solution.. After eotest calculation and checking the convergence of FSC curve, weconfirm that the reconstruction is reliable. The diameter of CarMV capsid is 354(?). Thereare shell perforative chanels near 3-fold axis. The arrangement of subunits is incompact. Bycomparing this structural result with the reported crystal structure, we find differences on Tnumber, number of spikes in the surface of the shell and numbers of capsid shell, The cryoEM result of CarMV in solution show T=1, there are 60 spikes in the surface and there aretwo layers of shell. The structure of crystalloid CarMV show T=3, there are 90 spikes in thesurface and there is only one layer of shell. The crystal structures of Tombusviridae andSobemovirus were cpmpared using program 'PROSITE' combined with structural analysis,we find that the 'plant virus icosahedral capsid protein S region signature' motif hascommon chracteristics: the array of conservative sequences is not successive but distant; thedistances between key sites are strict conservative; the amino acids within key sites are notstrict conservative.
     We purified IFV particles. Using cryo-electron microscopy combined with single particlereconstruction method, the capsid structure of IFV capsid was studied and the resolution of17(?) was obtained. After eotest calculation and checking the convergence of FSC curve, weconfirm that the reconstruction is reliable. The diameter of IFV capsid is 302.4(?), thethickness of shell is 15(?). Three dimensional density map show the subunits of IFV followthe P=3 icosahedral symmetry folding pattern. The capsid shell surface of IFV is smoothwithout spikes or protrudes. By comparing the IFV structures with insect picorna (-like) virus CrPV and picornavirus HRV14, Mengovirus, poliovirus, FMDV, we find that the IFVresembles to CrPV in lacking of 'Rossmann canyon', indicating that the mechanism of IFVescaping from host immunity system tracing is different from the mechanism discovered inHRV14 reported as 'Rossmann canyon'. Using program 'phyre', we predict the polypeptidefolding pattern of IFV-VP2 and IFV-VP3 subunit. The polypeptide topology of these twoIFV subunits and the their location at the capsid surface resemble to CrPV's.
     The CI structure of SrMV and the relationship between CI and plasmodesma (PD) inSrMV infected maize cell were studied by using traditional ultra thin section and electrontomography. The following results were obtained: many CIs distribute in cytoplasm, thebase part of CI conjunct with ER or cell membrane; linear virus particles disposedlengthwise on the plates of CI; the CI in early infecting stage connect with cell wallvertically, the base of CI connect with PD; there are multiple passageways of virus betweenCI and PD, not only through the central channel of CI; the diameter of PD is enlarged; theCI bodies and the connection of CI and PD are also exist in vascular bundle cells. Threedimensional model of CI obtained by ET reconstruction method also confirmed therelationship between CI and PD. After segmentation and rending to the model, thebiological function of CI were predicted: (a) The cylindrical inclusion of potyviruses playsan important role in virus transportation between cells. CI can help virus lengthwise locatingin its plate and then pass through PD. (b) The central channel of CI is not composed ofindependent configurable components. One single CI can connect with multiple PD tocompose multiple channels to transport viruses. Once the virus transportation finished, CIdisengage cell wall and dissociate in cytoplasm. (c) The virus transportation in companioncell and sieve tube cell is depend on CI. Long distance transportation of virus is by thepattern of intact virus particles.
引文
陆奇能,朱宏杰,洪健,等.一株传染性软化病病毒的分离和鉴定[J].病毒学报,2007,23:143-147.
    王大能,陈勇,隋森芳.电子显微学在结构生物学研究中的新进展[J].电子显微学报,2003,22:449-456.
    王继科,曲连东.病毒形态结构与结构参数[M].北京:中国农业出版社,2000:55-82.
    张景强,卢忻英,张勤奋.结构生物学的新进展[J].物理,2001,407-412.
    Abad-Zapatero, C., S.S. Abdel-Meguid, J.E. Johnson, et al. Structure of southern bean mosaic virus at 2.8 (?) resolution[J]. Nature, 1980, 286:33-38.
    Acharya, R., E. Fry, D. Stuart, et al. The three-dimensional structure of foot-and-mouth disease virus at 2.9(?) resolution[J]. Nature, 1989, 337:709-716.
    Adrian,M.,J.Dubochet, et al. Cryo-electron microscopy of viruses[J]. Nature, 1984,308:32-36.
    Andrews, J. H., and T.A. Shalla. The origin, development, and conformation of amorphous inclusion body components in tobacco etch virus-infected cells[J]. Phytopathology, 1974, 64:1234-1243.
    Ayuzawa C. Studies on the infectious fiacherie of the silkworm, Bombyxmori L.I. Purification of the virus and its sonic properties[J]. J.Se.Sci.Jpn., 1972, 41(5):338-344.
    Baker, T.S.,R.H.Cheng, A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy[J]. J.Struct.Biol, 1996,116:120-130.
    Baker, T.S., and J.E. Johnson. Low resolution meets high: towards a resolution continuum from cells to atoms[J]. Current Opinion Struc. Biol., 1996, 6:585-594.
    Baker, T.S., N.H. Olson, S.D. Fuller, et al. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs[J]. Microbiol.Mol. Biol.Rev, 1999,63:862-922.
    Baumeister, W., R. Grimm, J. Walz. Electron tomography of molecules and cells[J]. Trends in cell biology, 1999, 9:81-85.
    Bottcher, B., and R.A. Crowther. Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus[J]. Structure, 1996, 4:387-394.
    Bottcher,B.,S.A.Wynne, et al. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy[J].Nature, 1997,386:88-91.
    Cai, H., B.H. Kong, J.Y. Liu, et al., Studies on carnation virus disease and integrated management in Kunming[J]. Journal of Yunnan Agricultural University, 2001, 16(3): 18-19.
    Carrington, J.C., Jensen, P.E. and Schaad, M.C. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement[J]. Plant J., 1998, 14: 393-400.
    Casper, D., and A. Klug. Physical principles in the constrcuction of regular viruses[J]. Cold Spring Harbor Symp. Quant. Biol., 1962, 27:1-24.
    Castillo, S.G., J.F. Marcos, V. Pallas, et al. Inence of the plant growing conditions on the translocation routes and systemic infection of carnationmottle virus in Chenopodium quinoa plants[J]. Physiological and Molecular Plant Pathology, 2001, 58:229-238.
    Cheng, R.H., N.H. Olson, and T.S. Baker. Cauliflower mosaic virus: a 420 subunit (T=7), multilayer structure[J]. Virology, 1992, 186:655-668.
    Chiu,W., K.H.Downing , et al.Cryoprotection in electron microscopy[J]. Journal of microscopy, 1986,141:385-391.
    Conway,J.F.,N.Cheng, et al. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy[J]. Nature, 1997,386:91-94.
    Crowther.R.A.,L.Amos, et al. Three-dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs[J].Nature,1970a,226:421-425.
    Crowther,R.A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs[C]. Phil. Trans. R. Soc. Lond. Ser. B261, 1970b:221-230.
    Crowther,R.A.,D.DeRosier,A.Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy[C]. Proc. R. Soc. Lond. Ser. A317, 1970c:319-340.
    DeRosier, D. Who needs crystals[J]. Nature, 1997,386:26-27.
    DeRosier,D.,A.Klug, Reconstruction of three-dimensional structures from electron micrographs[J]. Nature,1968,217:130-134.
    Dolja, V.V., Koonin, E.V., 1991. Phytogeny of capsid proteins of small icosahedral RNA plant viruses[J]. J. Gen. Virol., 72:1481-1486.
    Dubochet,J.,J.Lepault,et al. Electron microscopy of frozen water and aqueous solutions[J]. Journal of microscopy, 1982, 128:219-237.
    Dubochet,J.,M.Adiran, et al. Cryo-electron microscopy of vitrified specimens[J]. Q.Rev.Biophys, 1988,21:129-228.
    Durham, A., D. Hendry, and M. Wechmar. Does calcium ion binding control plant virus disassembly[J]. Virology, 1977,77:524-533.
    Edwardson, J.R., D.E. Purcifull, R.G. Christie. Structure of cytoplasmic inclusions in plants infected with rod-shaped viruses[J]. Virology, 1968, 34:250-263.
    Edwardson, J. R. Inclusion bodies[J]. Arch. Virol. Suppl., 1992, 5:25-30.
    Erickson, J.W. Rossmann, M.G.. Assembly and crystallization of a T=l icosahedral particle from trypsinized southern ben mosaic virus coat protein[J]. Virology, 1982, 116:128-136.
    Erickson, J.W., A.M. Silva, M.R. Murthy, et al. The structure of a T=1 icosahedral empty particle from southern bean mosaic virus[J]. Science, 1985, 229:625-629.
    Fox, J.M., G. Wang, J.A. Speir, et al. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction[J]. Virology, 1998, 244:212-218.
    Fuller,S.D.,S.J.Butcher, R.H. Cheng, et al. Three-dimensional reconstruction of icosahedral particles: the uncommon line[J]. J.Struct.Biol, 1996,116:48-55.
    Gomez de Cedron, M., Osaba, L., Lopez, L. et al. Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement[J]. Virus Res., 2006, 116: 136-145.
    Guo, D., ML. Rajamaki, M. Saarma, et al.. Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system[J]. J Gen Virol, 2001, 82:935-939.
    Halperin, I., B. Ma, H. Wolfson, et al. Principles of docking: an overview of search algorithms and a guide to scoring functions[J]. Proteins, 2002, 47:409-443.
    Harrison, S.C., Olson, A.J., Schutt, C.E., et al. 1978. Tomato bushy stunt virus at 2.9 A resolution[J]. Nature, 276:368-373.
    Hashimoto Y, Kawase S. Characteristics of structural proteins on infectious flacherie virus from the silkworm, Bombyx mori [J]. J. Invertbr Pathol., 1983,41:68-76.
    Hashimoto Y, Watanabe A, Kawase S. Preliminary studies of terminal structures of infectious flacherie virus RNA [J]. Microbiologica., 1984,7:91-96.
    Hashimoto Y, Watanabe A , Kawase S. Evidence for the Presence of a Genome - linked Protein in Infectious Flacherie[J]. Virus. Arch. Virol., 1986, 90:301-312.
    Henderson, R., P. Unwin. Three-dimensional model of purple membrane obtained by electron microscopy[J]. Nature, 1975, 257:28-31.
    Hogle, J.M., Kirchhausen, T., Harrison, S.C.. Divalent cation sites in tomato bushy stunt virus: difference maps at 2.9 A resolution[J]. J. Mol. Biol., 1983, 171:95-100.
    Hogle, J.M., Chow, M., Filman, D.J.. Three-dimensional structure of poliovirus at 2.9 A resolution[J]. Science, 1985,229: 1358-1365.
    Hogle, J.M., Maeda, A., Harrison, S.C.. Structure and assembly of turnip crinkle virus I : X-ray crystallographic structure analysis at 3.2 A resolution[J]. J. Mol. Biol., 1986, 191:625-638.
    Hoppe, W., J. Gassmann, et al. Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron microscope[J]. Hoppe Seylers Z Physiol. Chem., 1974, 355:1483-1487.
    Hsu, C.H., O.P. Sehgal, and E.E. Pickett. Stabilizing effect of divalent metal ions on virions of southern bean mosaic virus[J]. Virology, 1976, 69:587-595.
    Hsu, C.H., P. Singh, W. Ochoa, et al. Characterization of polymorphism displayed by the protein mutants of tomato bushy stunt virus[J]. Virology, 2006, 349:222-229.
    Isawa H, Asano K, Sahara K et al. Analysis of genetic information of an insect picona- like virus, infectious flacherie virus of silkwornrevidence for evolutionary relationships among insect, mammalian and plant picona( - like) viruses [J]. Arch. Virol., 1998,143:127-143.
    Jiang, X.F., H. Jayaram, M. Kumar, et al. Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication[J]. J. Virol., 2006, 80:10829-10835.
    Jiang, W., Baker, M.L., Jakana, J., Weigele, P.R., King, J., Chiu, W., 2008. Backbone structure of the infectious §15 virus capsid revealed by electron cryomicroscopy. Nature, 451:1130-1134.
    Kitajima, E.W. Cytopathology of viruses affecting corn and some legume crops in Latin America[J]. Fitopatol. Brasil, 1979,4:241.
    Klug,A., D.DeRosier, Optical filtering of electron micrographs:Reconstruction of one-sided images[J].Nature, 1966,212:29-32.
    Krass,C.J., R.E. Ford. Ultrastructure of corn systemically infected with maize dwarf mosaic virus[J]. Phytopathology, 1969,59:431-439.
    Kumar, A., VS. Reddy, V. Yusibov, et al. The structure of Alfalfa Mosaic Virus capsid protein assembled as a T=l icosahedral particle at 4.0A resolution[J]. J. Virol., 1997, 71:7911-7916.
    Lain S., J.L. Riechmann, M.T. Martin, et al. Homologous potvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins[J]. Gene, 1989, 82:357-362.
    Langenberg, W. G.. Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections[J]. J. Struct. Biol., 1993, 110:188-195.
    Lawson, R.H. and S.S. Hearon. The association of pinwheel inclusions with plasmodesmata[J]. Virology, 1971,44:454-456.
    Liang, Y.Y., Eugene, Y. IMIRS: A high-resolution 3D reconstruction package intergrated with a relation image database[J]. Journal of Structural Biology, 2002, 137: 292-304.
    L(?) pez, L., Urzainqui, A., Dom(?)nguez, E. et al.. Identification of an N-terminal domain of the plum pox potyvirus Cl RNA helicase involved in self-interaction in a yeast two-hybrid system[J]. J Gen Virol, 2001,82:677-686.
    Lu, G.Y., Z.H. Zhou, M.L. Baker, et al. Structure of double-shelled rice dwarf virus[J]. J. Virol., 1998, 72:8541-8549.
    Lucic, V, F. Forster, and W. Baumeister. Structural studies by electron tomography: from cells to molecules[J]. Annu. Rev. Biochem., 2005, 74:833-865.
    Lucic, V, A. Leis, and W. Baumeister. Cryo-electron tomography of cells: connecting structure and function[J]. Histochem. Cell Biol., 2008, 130:185-196.
    Luo, M., G. Vriend, G. Kamer, et al. The atomic structure of mengo virus at 3.0A resolution[J]. Science, 1987,235:182-191.
    Ludtke S J, Baldwin P R, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions[J]. J Struct Biol, 1999, 128:82-97.
    Luther PK: Sample shrinkage and radiation damage. In Electron Tomography. Edited by Frank J. New York: Plenum Press; 1992:39-60.
    Martelli, G.P., and M. Russo. Unusual cytoplasmic inclusions induced by water-melon mosaic virus[J].Virology, 1976,72:352.
    Martelli, G.P., and M. Russo. Plant virus inclusion bodies[J]. Adv. Virus Res., 1977, 21:175.
    McEwen, B.F., and M. Marko. The emergence of electron tomography as an important tool for investigating cellular ultrastructure[J]. J. Histochem. Cytochem., 2001, 49:553-563.
    Morgunova, E.Y., Dauter, Z., Stuart, D.I., et al. The atomic structure of carnation mottle virus capsid protein[J]. FEBS. Letters, 1994, 338:267-271.
    Oda, Y., Saeki, K., Takahashi, Y., et al. Crystal structure of tobacco necrosis virus at 2.25 A resolution[J]. J. Mol. Biol., 2000, 300:153-169.
    Olson, A.J., Bricogne,G., Harrison, S.C. Structure of tomato bushy stunt virus IV: the virus particle at 2.9 A resolution[J].J. Mol. Biol., 1983, 171:61-93.
    Olson, A.J., Kolatkar, P.R., Oliveira, M.A. et al. Structure of a human rhinovirus complexed with its receptor molecule[J]. Proc. Natl. Acad. Sci.USA., 1993, 90:507-511.
    Opalka, N., Tihova, M., Brugidou, C, et al. Structure of native and expanded sobemoviruses by electroncryo-microscopy and image reconstruction[J]. J. Mol. Biol. , 2000, 303:197-211.
    Orzechowski, M., E. Tama. Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations[J]. Biophys J., 2008, 95:5692-5705.
    Pesavento, J.B., Crawford, S.E., Roberts, E., et. al., Ph-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization[J]. J. Virol., 2005, 79:8572-8580.
    Porta, C, G. Wang, H. Cheng, et al. Direct imaging of interactions between an icosahedral virus and conjugate Fab fragments by cryoelectron microscopy and X-ray crystallography[J]. Virology, 1994, 204:777-788.
    Qu, C, Liljas, L., Opalka, et al. 3D domain swapping of a molecular switch for quasi-equivalent symmetry modulates the stability of an icosahedral virus[J]. Structure, 2000, 8:1095-1103.
    Razzak, A.A., T. Guiraud, M. Peypelut, et al. Involvement of the cylindrical inclusion protein in the overcoming of an eI F-4E mediated resistance against lettuce mosaic potyvirus[J]. Mol. Plant Pathol., 2009, 10:109-113.
    Richardson, J.S., 1977. P-Sheet topology and the relatedness of proteins. Nature. 268:495-500.
    Roberts, I. M., Wang, D., Findlay, K. et al.. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement[J]. Virology, 1998,245: 173-181.
    Robinson, I.K., Harrison, S.C. Structure of the expanded state of tomato bushy stunt virus[J]. Nature, 1982,297:563-568.
    Rodriguez-Cerezo, E., K. Findlay, J.G. Shaw, et al.. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells[J]. Virology, 1997, 236:296-306.
    Rossmann, M.G., Abad-Zapatero, M.R., Murthy, N., Liljas, L.T. Structural compasisons of some small spherical plant viruses. J. Mol. Biol., 1983a, 165:711-736.
    Rossmann, M.G., Arnold, E., Erickson, J.W., et al.. Structure of a human common cold virus and functional relationship to other picornaviruses[J]. Nature, 1985, 317:145-153.
    Rossmann M. G., Johnson J. E., 1989a. Icosahedral RNA virus structure. Annu Rev Biochem, 58:533-573.
    Rossmann M.G. The canyon hypothesis - hiding the host cell receptor attachment site on a viral surface from immune surveillance[J]. J. Biol. Chem., 1989b, 264:14587-14590.
    Rossmann M G, Viral cell recognition and entry[J]. Protein Sci, 1994, 3:1712-1725.
    Sherman, M.B., Guenther, R.H., Tama, F., et al. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release[J]. J. Virol., 2006, 80:10359-10406.
    Singh, S., R. Rothnagel, V. Prasad, et al. Expression of Tobacco Ringspot Virus capsid protein and satellite RNA in insect cells and three-dimensional of Tobacco Ringspot Virus-like particles[J]. Virology, 1995,213:472-481.
    Smith, T.J., E. Chase, T. Schmidt, et al. The structure of Cucumber Mosaic Virus and comparison to Cowpea Chlorotic Mottle Virus[J]. J. Virol., 2000, 74:7578-7586.
    Stewart,M.,G.Vigers. Electron microscopy of frozen-hydrated biological material[J]. Nature, 1986,319:631-635.
    Sorger, P.K., Stockley, P.G, Harrison, S.C.. Structure and assembly of turnip crinkle virus Ⅱ : mechanism of reassembly in vitro[J]. J. Mol. Biol. , 1986, 191:639-658.
    Tama, F., O. Miyashita, and C.L. Brooks. Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis[J]. J. Mol. Biol., 2004, 337:985-999.
    Tate, J., Liljas, L., Scotti, P., The crystal structure of cricket paralysis virus:the first view of a new family[J]. Nature Strut. Biol., 1999, 6: 765-774.
    Taylor,K.A.,R.M.Glaeser. Electron diffraction of frozen, hydrated protein crystal[J]. Science, 1974, 186:1036-1037.
    Thuman-Commike and W.Chiu (2000) ."Reconstruction principles of icosahedrai viruses structure determination using electron cryomicroscopy."[J]. Micron 31 (6): 687-711.
    Verkhovskaya, R.G., I.A. Andreev, N.O. Kalinina, et al. Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants[J]. J. Gen. Virol., 2008, 89:829-838.
    Wang, G, C. Porta, Z.G. Chen, et al. Identification of a Fab interaction footprint site on an icosahedrai virus by cryoelectron microscopy and X-ray crystallography[J]. Nature, 1992, 355:275-278.
    Wikoff, W.R., C.J. Tsai, G. Wang, et al. The structure of cucumber mosaic virus: cryoelectron microscopy: X-ray crystallography, and sequence analysis[J]. Virology, 1997, 232:91-97.
    Winkler, F.K., Schutt, C.E., Harrison, S.C., et al. 1977. Tomato bushy stunt virus at 5.5 A resolution[J]. Nature, 265:509-513.
    Zhang J Q, Feng J X, Liang Y Y, et al. Three-dimensional structure of the Chinese Sacbrood bee virus[J]. Science in China (Series C), 2001, 44:443-449.
    蔡红,吴建宇,段永嘉,等.香石竹斑驳病毒的初步研究:I病毒的生物学及病理学变化[J].云南农业大学学报,1999,14:158-161.
    刘伟,张成良.香石竹斑驳病毒检疫技术进展[J].植物检疫,1991,5:64-65.
    沈学仁,沈菊英,龚祖埙,等.上海地区香石竹班驳病毒的理化特性[J].上海农业学报,1992,8:30-35.
    张爱平.聚乙二醇沉淀法部分提纯香石竹斑驳病毒[J].上海农业学报,1992,8:88-90.
    朱水芳,叶寅,赵丰,等.黄瓜花叶病毒外壳蛋白进入叶绿体与症状发生的关系[J].植物病理学报,1992.22:229-233.
    Cai, H., B.H. Kong, J.Y. Liu, et al., Studies on carnation virus disease and integrated management in Kunming[J]. Journal of Yunnan Agricultural University, 2001, 16(3):18-19.
    Castillo, S.G., J.F. Marcos, V. Pallas, and M.A. Sanchez-Pina. In£uence of the plant growing conditions on the translocation routes and systemic infection of carnationmottle virus in Chenopodium quinoa plants[J]. Physiological and Molecular Plant Pathology, 2001, 58:229-238.
    Canizares, M.C., J.F. Marcos, and V. Pallas. Molecular variability of twenty-one geographically distinct isolates of Carnation mottle virus (CarMV) and phylogenetic relationships within the Tombusviridae family[J]. Arch. Virol., 2001, 146:2039-2051.
    Doan, D.N., K. C. Lee, P. Laurinmaki, et al. Three- dimensional reconstruction of hibiscus chlorotic ringspot virus[J]. J. Struct. Biol., 2003,144:253-261.
    Dolja, V.V., Koonin, E.V., 1991. Phylogeny of capsid proteins of small icosahedral RNA plant viruses[J]. J. Gen. Virol., 72:1481-1486.
    Durham, A., D. Hendry, and M. Wechmar. Does calcium ion binding control plant virus disassembly[J]. Virology, 1977, 77:524-533.
    Erickson, J.W. Rossmann, M.G., 1982. Assembly and crystallization of a T=1 icosahedral particle from trypsinized southern ben mosaic virus coat protein. Virology, 116:128-136.
    Guilley, H., J.C. Carrington, E. Balazs, et al. Nucleotide sequence and genome organization of carnation mottle virus RNA[J], Nucleic Acids Res., 1985, 13:6663-6667.
    Hogle, J.M., Kirchhausen, T., Harrison, S.C.. Divalent cation sites in tomato bushy stunt virus: difference maps at 2.9 A resolution[J]. J. Mol. Biol., 1983, 171:95-100.
    Hsu, C.H., O.R Sehgal, and E.E. Pickett. Stabilizing effect of divalent metal ions on virions of southern bean mosaic virus[J]. Virology, 1976, 69:587-595.
    Hull, R. The stabilization of the particles of turnip rosette virus and of other members of the southern bean mosaic virus group[J]. Virology, 1977a, 79:58-66.
    Hull, R.. The banding behaviour of the viruses of southern bean mosaic virus group in gradients ofcaesium sulphate[J]. Virology, 1977b, 79:50-57.
    Morris, T.J., J.C. Carrington. Carnation mottle virus and viruses with similar properties[M]. In:Koenig R ed. The Plant Viruses Vol.3., 1988, New York: Plenum Press:73-112.
    Offei, S.K., R.S. Coffin, R.H. Courts. The tobacco necrosis virus p7a protein is a nucleic acid-binding protein[J]. J. Gen. Viro., 1995, 76:1493-1496.
    Opalka, N., Tihova, M, Brugidou, C, et al. Structure of native and expanded sobemoviruses by electron cryo-microscopy and image reconstruction[J]. J. Mol. Biol., 2000, 303:197-211.
    Palukaitis, P., M.J. Roossinck, R.G. Dietzgen et al. Cucumber mosaic virus[M]. In: Maramorosch K, Murphy FA., Shatkin AJ eds. Advances in virus research, Vol. 41. San Diego: Academic Press, 281-348.
    Robinson, I.K., Harrison, S.C., 1982. Structure of the expanded state of tomato bushy stunt virus. Nature, 297:563-568.
    Russo M, A. Di Franco, G.P. Martelli. Cytopathology in the identification and classification of tombusviruses[J]. Intervirology, 1990,28:134-143.
    Sherman, M.B., Guenther, R.H., Tama, F., et al. Removal of divalent cations induces structural transitionsin red clover necrotic mosaic virus, revealing a potential mechanism for RNA release[J]. J. Virol. , 2006,80:10359-10406.
    Singh, H.P., V. Hallan, G. Raikhy, et al. Characterization of an Indian isolate of Carnation mottle virus infecting carnations[J]. Current Science, 2005, 88:594-601.
    李鲲鹏.冷冻电镜技术与冷冻电镜图象去噪研究[D].中山大学博士学位论文,张景强,广州,中山大学,2005年5月.
    张勤奋.SARS CoV和BmCPV-Mab/Fab复合物的电子显微学研究[D].中山大学博士学位论文,张景强,广州,中山大学,2004年4月.
    Abad-Zapatero, C., S.S. Abdel-Meguid, J.E. Johnson, et al. Structure of southern bean mosaic virus at 2.8(?) resolution[J]. Nature, 1980, 286:33-38.
    Acharya, R., E. Fry, D. Stuart, et al. The three-dimensional structure of foot-and-mouth disease virus at 2.9(?) resolution[J]. Nature, 1989, 337:709-716.
    Baker, T.S., N.H. Olson, S.D. Fuller, et al. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs[J]. Microbiol.Mol. Biol.Rev, 1999,63:862-922.
    Bhuvaneshwari, M., Subramanya, H.S., Gopinath, K., et al.. Structure of sesbania mosaic virus at 3 (?) resolution[J]. Structure, 1995, 3:1021-1030.
    Casper, D., and A. Klug. Physical principles in the constrcuction of regular viruses[J]. Cold Spring Harbor Syrup. Quant. Biol., 1962, 27:1-24.
    Crowther, R.A.,L.Amos, et al. Three-dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs[J].Nature, 1970a,226:421-425.
    Crowther, R.A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs[C]. Phil.Trans.R.Soc.Lond.Ser.B261,1970b:221-230.
    Crowther, R.A.,D.DeRosier, A.Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy[C]. Proc.R.Soc.Lond.Ser.A317, 1970c:319-340.
    Doan, D. N., K. C. Lee, P.Laurinmaki, et al. Three- dimensional reconstruction of hibiscus chlorotic ringspot virus[J]. J. Struct. Biol., 2003, 144:253-261.
    Dolja, V.V., Koonin, E.V., 1991. Phylogeny of capsid proteins of small icosahedral RNA plant viruses[J]. J. Gen. Virol., 72:1481-1486.
    Dubochet,J.,J.Lepault,et al.Electron microscopy of frozen water and aqueous solutions[J]. Journal of microscopy, 1982, 128:219-237.
    Dubochet,J.,M.Adiran, et al. Cryo-electron microscopy of vitrified specimens[J]. Q.Rev.Biophys, 1988,21:129-228.
    Erickson, J.W. Rossmann, M.G.. Assembly and crystallization of a T=l icosahedral particle from trypsinized southern ben mosaic virus coat protein[J]. Virology, 1982, 116:128-136.
    Erickson, J.W., A.M. Silva, M.R. Murthy, et al. The structure of a T=l icosahedral empty particle from southern bean mosaic virus[J]. Science, 1985, 229:625-629.
    Frank, J., 2006. Three-dimensional electron microscopy of macromolecular assemblies[M]. Oxford university press, Oxford, UK, p. 124-142.
    Fuller, S.D. The T=4 envelope of sindbis virus is organized by interactions with a complementary T=3 capsid[J]. Cell, 1987,48:923-934.
    Harrison, S.C., Olson, A.J., Schutt, C.E., et al. Tomato bushy stunt virus at 2.9 A resolutionfJ]. Nature, 1978,276:368-373.
    Hogle, J.M., Maeda, A., Harrison, S.C.. Structure and assembly of turnip crinkle virus I : X-ray crystallographic structure analysis at 3.2 A resolution[J]. J. Mol. Biol., 1986, 191:625-638.
    Hsu, C.H., O.P. Sehgal, and E.E. Pickett. Stabilizing effect of divalent metal ions on virions of southern bean mosaic virus[J]. Virology, 1976, 69:587-595.
    Hsu, C.H., P. Singh, W. Ochoa, et al. Characterization of polymorphism displayed by the protein mutants of tomato bushy stunt virus[J]. Virology, 2006, 349:222-229.
    Hull, R.. The banding behaviour of the viruses of southern bean mosaic virus group in gradients of caesium sulphate[J]. Virology, 1977, 79:50-57.
    Hull, R.. The stabilization of the particles of turnip rosette virus and of other members of the southern bean mosaic virus group[J]. Virology, 1977, 79:58-66.
    Ke, J.Y., T. Schmidt, E. Chase, et al. Structure of cowpea mottle virus: a consensus in the genus Carmovirus[J]. Virology, 2004, 321:349-358.
    Lee, S.K., Hacker, D.L.. In vitro analysis of an RNA binding site within the N-terminal 30 amino acids of the southern cowpea mosaic virus coat protein[J]. Virology, 2001, 286:317-327.
    Ludtke S J, Baldwin P R, Chiu W. EMAN: semi automated software for high-resolution single-particle reconstructions^]. J Struct Biol, 1999, 128:82-97.
    Morgunova, E.Y., Dauter, Z., Stuart, D.I., et al. The atomic structure of carnation mottle virus capsid protein[J]. FEBS. Letters, 1994, 338:267-271.
    Offei, S.K., R.S. Coffin, R.H. Courts. The tobacco necrosis virus p7a protein is a nucleic acid-binding protein[J]. J. Gen. Viro., 1995, 76:1493-1496.
    Oda, Y., Saeki, K., Takahashi, Y, et al. Crystal structure of tobacco necrosis virus at 2.25 A resolution[J]. J. Mol. Biol. , 2000, 300:153-169.
    Opalka, N., Tihova, M., Brugidou, C, et al. Structure of native and expanded sobemoviruses by electron cryo-microscopy and image reconstruction[J]. J. Mol. Biol., 2000, 303:197-211.
    Plevka, P., Tars, K., Zeltins, A., et al.. The three-dimensional structure of ryegrass mottle virus at 2.9 A resolution^]. Virology, 2007, 369:364-374.
    Qu, C, Liljas, L., Opalka, et al. 3D domain swapping of a molecular switch for quasi-equivalent symmetry modulates the stability of an icosahedral virus[J]. Structure, 2000, 8:1095-1103.
    Richardson, J.S., 1977. p-Sheet topology and the relatedness of proteins. Nature. 268:495-500.
    Robinson, I.K., Harrison, S.C.. Structure of the expanded state of tomato bushy stunt virus[J]. Nature, 1982,297:563-568.
    Rossmann, M.G., C. Abad-Zapatero, M.A. Hermodson, et al. Subunit interactions in southern bean mosaic virus[J]. J. Mol. Biol., 1983, 166:37-83.
    Sangita, V., G L. Lokesh, P. S. Satheshkumar, et al.. T=l Capsid Structures of Sesbania Mosaic Virus Coat Protein Mutants: Determinants of T=3 and T=l Capsid Assembly[J]. J. Mol. Biol. , 2004, 342:987-999.
    Savithri, H.S., Erickson, J.W.. The Self-assembly of the Cowpea strain of southern bean mosaic virus: formation of T=l and T=3 nucleoprotein particles[J]. Virology, 1983, 126:328-335.
    Sherman, M.B., Guenther, R.H., Tama, F, et al. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release[J]. J. Virol. , 2006,80:10359-10406.
    Silva, A.M., M.G. Rossmann,. Refined structure of southern bean mosaic virus at 2.9 A resolution[J]. J. Mol. Biol., 1987, 197:69-87.
    Sorger, P.K., Stockley, P.G., Harrison, S.C.. Structure and assembly of turnip crinkle virus Ⅱ: mechanism of reassembly in vitro[J].J. Mol. Biol., 1986, 191:639-658.
    Stockley, P.G., Kirsh, L., Chow, P., et al.. Structure of turnip crinkle virus Ⅲ: identification of a unique coat protein dimer[J]. J. Mol. Biol., 1986, 191:721-725.
    Tars, K., Zeltins, A., Liljas, L.. The three-dimensional structure of cocksfoot mottle virus at 2.7 A resolution[J]. Virology, 2003, 310:287-297.
    Winkler, F.K., Schutt, C.E., Harrison, S.C., et al. 1977. Tomato bushy stunt virus at 5.5 A resolution[J]. Nature, 265:509-513.
    李鲲鹏.冷冻电镜技术与冷冻电镜图象去噪研究[D].中山大学博士学位论文,张景强,广州,中山大学,2005年5月.
    陆奇能,朱宏杰,洪健,等.一株传染性软化病病毒的分离和鉴定[J].病毒学报,2007,23:143-147.
    苘娜娜,陆奇能,金伟,等.家蚕传染性软化病病毒(桐乡株)VP1基因片段的克隆及序列分析[J].昆虫学报,2007,50:1016-1021.
    张勤奋.SARS CoV和BmCPV-Mab/Fab复合物的电子显微学研究[D].中山大学博士学位论文,张景强,广州,中山大学,2004年4月.
    Acharya, R., E. Fry, D. Stuart, et al. The three-dimensional structure of foot-and-mouth disease virus at 2.9(?) resolution[J]. Nature, 1989, 337:709-716.
    Baker, T.S., N.H. Olson, S.D. Fuller, et al. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs[J]. Microbiol. Mol. Biol.Rev, 1999,63:862-922.
    Frank, J., 2006. Three-dimensional electron microscopy of macromolecular assemblies[M]. Oxford university press, Oxford, UK, p. 124-142.
    Hashimoto Y, Kawase S. Characteristics of structural proteins on infectious flacherie virus from the silkworm, Bombyx mori[J]. J. Invertbr Pathol., 1983,41:68-76.
    Hashimoto Y, Watanabe A, Kawase S. Preliminary studies of terminal structures of infectious flacherie virus RNA [J]. Microbiologica., 1984,7:91-96.
    Hashimoto Y, Watanabe A , Kawase S. Evidence for the Presence of a Genome - linked Protein in Infectious Flacherie[J]. Virus. Arch. Virol., 1986, 90:301-312.
    Hogle, J.M., Chow, M., Filman, D.J.. Three-dimensional structure of poliovirus at 2.9(?) resolution[J]. Science, 1985, 229: 1358-1365.
    Isawa H, Asano K, Sahara K et al. Analysis of genetic information of an insect picona- like virus, infectious flacherie virus of silkworm:evidence for evolutionary relationships among insect, mammalian and plant picona( - like) viruses [J]. Arch. Virol., 1998,143:127-143.
    Ludtke S J, Baldwin P R, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions[J]. J Struct Biol, 1999, 128:82-97.
    Luo, M., G. Vriend, G. Kamer, et al. The atomic structure of mengo virus at 3.0(?) resolution[J]. Science, 1987, 235:182-191.
    Marc, D., G. Masson, M. Girard, et al. Lack of myristoylation of poliovirus capsid polypeotide VP0 prevents the formation of virions or results in the assembly of noninfrctious virus particles[J]. J. Virol., 1990,64:4099-4107.
    Olson, A.J., Kolatkar, P.R., Oliveira, MA. et al. Structure of a human rhinovirus complexed with its receptor molecule[J]. Proc. Natl. Acad. Sci.USA., 1993, 90:507-511.
    Rossmann, M.G., Arnold, E., Erickson, J.W., et al.. Structure of a human common cold virus and functional relationship to other picornaviruses[J]. Nature, 1985, 317:145-153.
    Rossmann M. G, Johnson J. E., 1989a. Icosahedral RNA virus structure. Annu Rev Biochem, 58:533-573.
    Rossmann M.G. The canyon hypothesis - hiding the host cell receptor attachment site on a viral surface from immune surveillance[J]. J. Biol. Chem., 1989b, 264:14587-14590.
    Rossmann M G, Viral cell recognition and entry[J]. Protein Sci, 1994, 3:1712-1725.
    Tate, J., Liljas, L., Scotti, P., The crystal structure of cricket paralysis virus:the first view of a new family[J]. Nature Strut. Biol., 1999, 6: 765-774.
    Zhang J Q, Feng J X, Liang Y Y, et al. Three-dimensional structure of the Chinese Sacbrood bee virus[J]. Science in China (Series C), 2001, 44:443-449.
    陈炯,杨建平,程晔,等.浙江甘蔗花叶病病原初步鉴定[J].植物病理学报,2001,31:271-273.
    陈炯,陈剑平.由高粱花叶病毒利甘蔗花叶病毒引发的浙江甘蔗花叶病害[J].病毒学报,2002,18:362-366.
    程晔,陈炯,郑滔等.杭州地区发生的玉米花叶病由甘蔗花叶病毒引起[J].中国病毒学,2001,16(2):170-174.
    高文臣,魏宁生,王海河.白草花叶病毒原的生物学鉴定[J]北京师范大学学报(自然科学版),2000,36(3):374-378.
    洪健,李德葆,周雪平.植物病毒分类图谱[M].北京:科学出版社.2001.98-114.
    蒋军喜,周雪平,洪健.杭州地区高粱花叶病毒病原鉴定[J].农业生物技术学报,2002,10(4):377-380.
    余茂耕,韦传宝.六安地区高粱花叶病毒P3基因的克隆和序列测定[J].皖西学院学报,2006,22:62-65.
    王卫兵,洪健,周雪平.SrMV和SCMV侵染玉米的细胞超微病变比较研究[J].浙江大学学报农业与生命科学版,2004,30:215-220.
    Andrejeva, J., U. Puurand, A. Merits, et al.. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus±host interactions and the same CP motif affects virus transmission and accumulation[J]. Journal of General Virology, 1999, 80, 1133-1139.
    Andrews, J. H., and T.A. Shalla. The origin, development, and conformation of amorphous inclusion body components in tobacco etch virus-infected cells[J]. Phytopathology, 1974, 64:1234-1243.
    Atreya, P. L., C.D. Atreya, & T.P. Pirone,. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus[J]. Proceedings of the National Academy of Sciences, USA, 1991, 88, 7887-7897.
    Baumeister, W., R. Grimm, J. Walz. Electron tomography of molecules and cells[J]. Trends in cell biology, 1999, 9:81-85.
    Blanc, S., J.J. Lopez-Moya, R.Wang, et al.. A special interaction between coat protein and helper component correlates with aphid transmission of a potyvirus[J]. Virology, 1997, 231, 141-147.
    Carrington, J.C., K.D. Kasschau, S.K. Mahajan, et al. Cellto-cell and long distance transport of viruses in plants[J]. Plant Cell, 1996, 8:1669-1681.
    Carrington, J.C., Jensen, P.E. and Schaad, M.C. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement[J]. Plant J., 1998, 14, 393-400.
    Edwardson, J.R., D.E. Purcifull, R.G. Christie. Structure of cytoplasmic inclusions in plants infected with rod-shaped viruses[J]. Virology, 1968, 34:250-263.
    Edwardson, J. R. Inclusion bodies[J]. Arch. Virol. Suppl., 1992, 5:25-30.
    Gomez de Cedron, M., Osaba, L., Lopez, L. et al. Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement[J]. Virus Res., 2006, 116, 136-145.
    Ehlers, K., R. Kollmann. Primary and secondary plasmodesmata: structure, origin, and functioning[J]. Protoplasma, 2001,216:1-30.
    German-Retana, S., T. Candresse, E. Alias, et al.. Effects of GFP or GUS tagging on the accumulation and pathogenicity of a resistance breaking LMV isolate in susceptible and resistant lettuce cultivars[J]. Molecular Plant Microbe Interactions, 2000, 13:316-324.
    Guo, D., M.L. Rajamaki, M. Saarma, et al.. Towards a protein interaction map of potyviruses : protein interaction matrixes of two potyviruses based on the yeast two-hybrid system[J]. J. Gen. Virol., 2001, 82:935-939.
    Heinlein M, BL Epel Macromolecular transport and signaling through plasmodesmata[J]. Int Rev Cytol, 2004,235:93- 164.
    Hull, R. Matthews' Plant Virology. [M]. Acadmic Press, San Diego. 2002. 13-45
    Kasschau, K.D. & J.C. Carrington. A counter-defensive strategy of plant viruses : suppression of posttranscriptional gene silencing[J]. Cell, 1998, 95:461-470.
    Kasschau, K.D. & J.C. Carrington. Long-distance movement and replication maintenance functionscorrelate with silencing suppression activity of potyviral HC-Pro[J]. Virology, 2001, 285: 71-81.
    Klein, P.G., R.R. Klein, Rodriguez-Cerezo, et al.. Mutational analysis of the tobacco vein mottling virus genome[J]. Virology, 1994,204:759-769.
    La(?)n, S, J.L. Riechmann, M.T. Martin, et al. Homologous potvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins[J]. Gene, 1989, 82:357-362.
    La(?)n, S., J.L. Riechmann, & J.A. Garc(?)a, RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus[J]. Nucleic Acids Res, 1990, 18:7003-7006.
    La(?)n, S., M.T. Mart(?)n, J.L. Riechmann, et al.. Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicase protein[J]. J. Virol., 1991, 65: 1-6.
    Langenberg, W. G. Virus protein association with cylindrical inclusions of two viruses that infect wheat[J]. J. Gen. Virol., 1986, 67:1161-1168.
    Langenberg, W. G. Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections[J]. J Struct Biol, 1993, 110, 188-195.
    Lawson R H, Hearon S S. The association of pinwheel inclusions with plasmodesmata. [J]. Virology,1971,44:454.
    Lesemann, D.E.. Cytopathology. In: Milne, R.G. (Ed.), The Plant Viruses[M], 4. Plenum Press, NewYork & London, 1988, pp. 179-235.
    Lesemann D E, Shukla D D, Tosic M, et al. Differential of the four viruses of the Sugarcane mosaic virussubgroup based on cytopathology. [J]. Archive of Virology, 1992, (Suppl 5): 353-361.
    Peng, Y., Kadoury, D., Gal-On, A., et al.. Mutations in the HC-Pro gene of zucchini yellow mosaicpotyvirus: effects on aphid transmission and binding to purified virions[J]. J. Gen. Virol., 1998, 79:897-904.
    Rajamaki, M.L. The 6K2 protein and the VPg for potato virus A are determinants of systemic infection in Nicandra phyailoides[J]. Mol.Plant-Microbe Interact., 1999, 12: 1074-1081.
    Riechmann J L, Lain S, Garcia J A. Highlights and prospects of potyvirus molecular biology. [J]. J. Gen. Virol., 1992,73: 1-6.
    Redondo, E., R. Krause-Sakate, S. J. Yang, et al.. Lettuce mosaic virus (LMV) pathogenicity determinants in susceptible and tolerant lettuce varieties map to different regions of the viral genome[J], Molecular Plant Microbe Interactions, 2001, 14:804-810.
    Revers, F., O. Le Gall, T. Candresse, et al.. New advances in understanding the molecular biology ofplant/potyvirus interactions[J]. Mol.Plant-Microbe Interact, 1999, 12:367-376.
    Roberts, I. M., Wang, D., Findlay, K. et al.. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement[J]. Virology, 1998,245: 173-181.
    Rodriguez-Cerezo, E., Findlay, K., Shaw, J. G., et al. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells[J]. Virology, 1997, 236, 296-306.
    Rojas, M.R., F.M. Zerbini, R.F. Allison, et al.. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins[J]. Virology, 1997, 237: 283-295.
    Silvio U.I., A.L. Haenni, & F. Bernardi. Potyvirus proteins: a wealth of functions[J]. Virus Research,2001,74:157-175.
    Shukla D D, Frenkle M J, Mckern N M. Present status of sugarcane mosaic subgroup of potyviruses. [J].Archive of Virology, 1992. (Suppl 5): 363-373
    Van Regenmorte MHV, Fauquet CM, Bishop DHL, et al. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses [M].. Academic Press, New York, San Diego. 2000.
    Verkhovskaya, R.G., I.A. Andreev, N.O. Kalinina, et al. Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants[J]. J. Gen. Virol., 2008, 89:829-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700