国内禽戊型肝炎病毒的分离鉴定及其抗原性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽戊型肝炎病毒(Hepatitis E virus,HEV)是鸡的大肝大脾(Big liver and spleen disease,BLS)病或肝炎脾大(Hepatitis-Splenomegaly,HS)综合症的主要病原,主要引起30-72周龄的蛋鸡和肉种鸡的死淘率升高和产蛋率下降(20-40%),发病鸡通常腹部充血,卵巢退化,肝脏脂肪或淀粉样变性,偶有肝脾肿大。该病曾给澳大利亚的养禽业造成了严重的经济损失,而我国也时有该病爆发的报道。
     禽HEV与人、猪HEV同属于肝炎病毒属,为无囊膜,单股正链RNA病毒,其基因组全长约为6.6kb,比哺乳动物HEV基因组全长少600bp左右,包含5’帽子和3’PolyA结构,含有3个开放阅读框(Open reading frame,ORF),分别为ORF1、ORF2和ORF3。其中ORF2基因编码衣壳蛋白是病毒的主要结构蛋白,并且包含病毒主要的抗原表位。由于禽HEV没有合适有效的体外培养系统,因此对该病毒的研究大多主要集中在病毒的亚单位蛋白ORF2上,通过原核或真核表达该蛋白,了解该蛋白的生物学活性和抗原性等,从而为该病毒的诊断和预防等提供材料和理论支持。
     1.国内禽HEV的RT-PCR检测
     根据实验室前期的禽HEV的血清学调查结果,我们从山东部分的禽HEV抗体阳性率较高的鸡场,收集患有BLS病或HS综合症病鸡的粪便、胆汁和血清。然后参考国外研究学者设计的禽HEV检测引物,对收集样品中的禽HEV RNA进行RT-PCR检测。结果从山东某肉种鸡场收集的粪便和胆汁样品中检测到禽HEV ORF2部分序列,通过该段序列与国外参考序列的同源性比较发现,与欧洲部分国家的分离株同源性较高。
     2.国内禽HEV分离株的全基因组序列分析
     参考GenBank上已知禽HEV的全基因组序列,设计12对引物。利用RT-nest-PCR方法从禽HEV核酸检测阳性的胆汁中,扩增六段相互重叠的禽HEV的基因组片段,然后通过软件拼接获得首个国内禽HEV分离株的全基因组序列,命名为CaHEV。将CaHEV与已知参考的4个禽HEV全基因组序列进行同源性和进化树分析,结果发现CaHEV与欧洲同源性最高,同属于禽HEV基因3型。并且不同禽HEV基因型的ORF2之间,氨基酸同源性达到97%以上,提示禽HEV可能仅存在单一的血清型。
     3. CaHEV的致病性研究
     将含有禽HEV的胆汁翅静脉攻毒1周龄的SPF鸡,对病毒进行增殖,然后用GE方法对病毒悬液进行定量。利用定量的CaHEV病毒悬液,通过口腔和翅静脉两种途径分别攻毒15周龄的SPF鸡,每组26只。攻毒后每天收集粪样,每三天收集血清,每周剖杀两只鸡,直到第12周剖杀所有鸡只,收集剖杀鸡只的胆汁,肝脏和脾脏同时观察剖杀鸡只的肝脏和脾脏的肉眼损害以及其病理学变化。通过对收集样品的RT-PCR检测发现,翅静脉攻毒组,攻毒后第3天就能从粪便中检测到病毒,一直持续到攻毒后54天仍能检测到;第6天开始出现病毒血症,约持续到第21天左右;口腔攻毒组,在攻毒后第6天开始粪便排毒,第62天仍然排毒,病毒血症开始出现在第12天,持续到第33天。通过ELISA检测攻毒鸡的禽HEV抗体发现,翅静脉攻毒组,抗体效价迅速达到高峰后就开始消退,而口腔接种组缓慢达到高峰并维持一段时间。另外,两种途径接种均有只2只鸡出现了肝脾肿大和严重的出血坏死,脏器的病理学变化也都符合HS综合症的部分临床症状,实验进一步论证了禽HEV可能是HS综合症的主要病原,但并不是唯一原因。
     3.禽HEV抗体检测的间接ELISA方法的建立及应用
     利用大肠杆菌原核表达禽HEV衣壳蛋白C端268个氨基酸,纯化后获得蛋白ORF2-268,将该蛋白作为包被抗原,摸索优化ELISA条件,建立禽HEV血清学诊断的间接ELISA方法。利用该ELISA方法,调查了山东省11个种鸡场的禽HEV感染情况。结果发现11个种鸡场都有过禽HEV的感染,不同鸡场的血清阳性率差异显著。其中有两个鸡场的阳性率达到了77%左右,而在检测的所有1379份血清中,493份阳性,阳性率也达到了35.8%,说明禽HEV的感染在山东省某些种鸡场已经非常严重,而且该病的感染已在全省范围内广泛流行。
     此外,利用该ELISA方法,跟踪检测了某种鸡场5个不同厂区的不同周龄鸡的禽HEV抗体的阳性率,结果发现,5个厂区都在12周龄左右就检测到了禽HEV抗体,在20-30周龄时,抗体阳性率达到最大,其中某个厂区在40-50周龄时出现了第二个高峰,大于60周龄时,抗体阳性率非常低。结果说明禽HEV在该种鸡场自然状况下的感染通常发生在小于10周龄的鸡,当鸡只达到20-30周龄时,禽HEV感染了鸡场里大多数的鸡,当达到60周龄时,禽HEV抗体已经在大多数鸡中消退。
     4.禽HEV人工感染鸡后产生的针对不同抗原区的抗体变化规律
     禽HEV的衣壳蛋白含有病毒主要的抗原表位,并且通过软件分析和前期实验室的研究发现,衣壳蛋白的前半段22-83aa存在着一个主要的抗原区,而在后半段有339-383aa,389-410aa,461-492aa,556-566aa和583-600aa 5个主要的抗原区,另外ORF3蛋白上也存在着抗原表位能够刺激机体产生免疫反应。为了研究这几个抗原区在人工感染鸡中产生的免疫应答情况,我们利用实验室前期表达的不同的截段蛋白ORF2-F(包含22-83aa),ORF2-S(包含后半段5个主要的抗原区),ORF2-5(339-442aa,包含后半段前两个抗原区),ORF2-8(383-515aa,包含后半段第2和第3个抗原区),ORF2-9(412-546aa,包含第4个抗原区)和ORF3蛋白作为包被抗原,间接ELISA检测了禽HEV感染鸡后不同日龄的血清中针对不同抗原区的抗体变化规律。结果发现针对ORF2-S蛋白的抗体在感染后12天左右就可以检测到,比ORF2-F和ORF3的早约3天左右,但是针对ORF2-F和ORF3的抗体效价迅速达到高峰后(感染后21天左右)就开始消退,而针对ORF2-S的则缓慢达到高峰维持一段时间后,缓慢消退。用ORF2-5作为包被抗原检测的抗体效价变化规律与用ORF2-S的相似,而用ORF2-8作为包被抗原的则测得抗体效价很低,说明人工感染禽HEV的鸡主要产生了针对抗原区339-383aa的抗原应答反应。当用ORF2-9作为包被抗原时,检测不到任何针对该蛋白的抗体,说明人工感染禽HEV的鸡并没有对该区域412-546aa产生免疫应答反应。
     5.禽HEV病毒样粒子的获得
     利用杆状病毒真核表达系统,表达了禽HEV衣壳蛋白全长,N端缺失56个氨基酸的ORF2Δ56和C端268个氨基酸的ORF2-268蛋白。通过IFA和Western-blot鉴定发现,三段蛋白都在该系统中成功表达,并且发现ORF2Δ56蛋白表达后分泌到细胞培养上清中。同时将该系统表达的三段蛋白与原核表达的相同氨基酸序列的蛋白分析发现,该系统除了表达获得预期大小的蛋白外,还获得了多个比预期大小小的蛋白,证实了禽HEV衣壳蛋白在该系统中表达可能被细胞内的酶酶解成小的片段。另外,通过对分泌到细胞上清中的ORF2Δ56蛋白蔗糖密度梯度离心纯化,负染透射电镜观察,发现禽HEV衣壳蛋白的片段ORF2Δ56蛋白在sf9昆虫细胞中表达后可以自我组装成病毒样粒子
Avian hepatitis E virus (HEV), the causative agent of big liver and spleen (BLS) disease or hepatitis-splenomegaly (HS) syndrome, mainly infects 30-70 week old aged broiler breeder hens and laying hens and causes increasing mortality, egg reduction (20-40%), red fluid in the abdomen, regressive ovaries and enlarged liver and spleen in chickens. The diseases caused heavy economic losses of Australia poultry in 1980s. There were also few case reports in China.
     Avian HEV, which belonged to the Hepeviridae family, was first isolated and characterized from chickens with HS syndrome in USA. Compared with mammalian HEV complete genomic sequences, avian HEV showed only 50% identities with mammalian HEV. But avian HEV is antigenically and genetically related with swine and human HEV. The full length of avian HEV genome is 6.6kb and is 600bp shorter than the length of mammalian HEV complete genome. The complete genome of avian HEV contains three open reading frames (ORF), ORF1, 2 and 3, besides the 5’cap and 3’PolyA structure. The ORF2 gene encodes the capsid protein and contains primary epitopes of avian HEV. Because there was no effective cell culture system for avian HEV, many researches focused on the ORF2 protein of virus substructure protein. Recently, the ORF2 protein of avian HEV expressed with prokaryotic and eukaryotic expression system has been characterized and was used to diagnosis for antibody test.
     1. Detection of avian HEV from China with RT-PCR method.
     Fecal, bile and serum samples were collected from chickens with HS syndrome or BLS disease in some fields, that there were high positive rate for avian HEV antibody according to the previous results of seroepidemiology investigated in our lab. Partial ORF2 gene of avian HEV was detected using RT-PCR method based on the primers described by other researchers. Partial ORF2 gene sequences was obtained from a flock of 35 or 37-week-old broiler breeder hens with HS syndrome. Meanwhile, sequences analysis revealed that the obtained sequences showed the highest identity with European isolates and phylogenetic trees showed that the isolates in this study are closely related to the Europe isolates and belonged to avian HEV genotype 3.
     2. Analysis of the complete genome of avian HEV from China.
     In the study, twelve primers pairs were designed according to the referenced sequences in GenBank. Then six overlapping fragments were amplifying from the bile samples to be positive for avian HEV RNA. The complete genome of Chinese avian HEV isolate was assembled by using the 6 overlapping fragments and designated CaHEV. The complete genomic and different region sequence analyses indicated that CaHEV shared the highest identity (98.3%) with European avian HEV isolate. Compared the ORF2 amino acid sequences with avian HEV each other, the ORF2 gene shared 98.3%–99.7% aa sequence identities with each other. It indicated that there was one serotype among avian HEV isolates. ORF1 of CaHEV contained most mutations compared with prototype avian HEV. Phylogenetic trees of the full-length sequence of avian and mammalian HEV strains showed that avian HEV was segregated into a distinct branch separate from mammalian HEV and CaHEV belongs to avian HEV genotype 3.
     3. Pathogenesis research of avian HEV from China.
     Avian HEV stock of bile and fecal samples suspension were collected from challenged chickens inoculated with bile samples positive for avian HEV RNA detected with RT-PCR. Then the avian HEV stock was filtered and quantitated using GE method. In the study, eighty-four chickens of 15 week ages were divided into 3 groups which were separately housed. Chickens in two groups were inoculated with CaHEV stock by intravenously and orally, respectively. The third group was control group. Fecal samples were collected from the challenged chickens every one day post inoculation and serum samples were collected from every three days post inoculation. Meanwhile, two chickens were necropsied every one week post inoculation and the remaining chickens were necropsied in 12 wpi. Bile and live, spleen tissues were collected. The detection of all collected samples for avian HEV RNA using RT-PCR indicated that avian HEV RNA was first detected from fecal samples of challenged chickens in 3 dpi and was still detected in 54 dpi in intravenously group. Viremia in this group was first detected in 6 dpi and persisted to 21 dpi. In orally group, avian HEV RNA in fecal samples was first detected in 6 dpi and still in 62 dpi and viremia was first appeared in 12 dpi and disappeared in 33 dpi. Analysis of seroconversion to avian HEV antibody using indirect ELISA showed that the antibody titers of intravenously group wane rapidly when it reached the peak, but the antibody titers of orally group declined slowly when reached peak. In addition, partial chickens showed big live and spleen and hemorrhage of the liver and spleen in the two challenged group. Meanwhile, lymphocytic periphlebitis and phlebitis foci were observed in the liver sections from two challenged group. These results further confirmed the relationship between avian HEV and HS syndrome.
     4. Development and application of indirect ELISA for the detection of avian HEV antibody.
     An indirect ELISA was established for the detection of avian HEV antibody using the coated antigen of avian HEV truncated ORF2 protein through optimizing the different conditions. We investigated epidemiology of 11 chicken farms in Shandong province for avian HEV infection using the indirect ELISA. It was shown that avian HEV antibodies were detected in all 11 flocks. But the positive rate for avian HEV antibody among 11 flocks was significant difference. The positive rate reached 77% in two flocks. There were 493 of positive serum for avian HEV antibody in 1379 serum collected from the 11 flocks. It was suggested that avian HEV infection has been very prevalence in Shandong province.
     In addition, we also detected the serum against antibody from different aged chickens in five flocks of same chicken farm using the indirect ELISA. It was shown that the serum from 12 week-old-age chickens were positive for avian HEV antibody and the positive rate reached the largest in the serum from 20-30 week-old-aged chickens in all five flocks. In a flock, the positive rate reached the largest again in the serum of 40-50 week-old-aged chickens. Only 10% of chickens older than 60 weeks were seropositive. These results suggested that the chickens from five flocks were naturally infected by avian HEV in younger than 10 weeks according to the results of the serum from 11 or 12 weeks to be positive and the antibodies to avian HEV of mostly chickens older than 60 weeks disappeared.
     5. Seroconversion to avian HEV antibodies against different protein in inoculated chickens.
     In previous study, it was documented that primary epitopes located in the capsid protein of avian HEV and six antigen domains located in the 22 to 83aa, 339-383aa, 389-410aa, 461-492aa, 556-566aa and 583-600aa, respectively. In addition, ORF3 protein of avian HEV can induce immune responses in chickens. Then to investigate the difference of seroconversion to avian HEV antibodies against the different domains located in ORF2 protein and ORF3 protein, the serum from challenged chickens of different dpi were detected with indirect ELISA using different coated antigen including ORF2-F (22-83aa),ORF2-S(339-606aa),ORF2-5(339-442aa),ORF2-8(383-515aa),ORF2-9(412-546aa)and ORF3 protein. The results showed that the antibodies against ORF2-S were first detected in the serum from challenged chickens of 12 dpi and antibodies against ORF2-F and ORF3 was first detected in 15 dpi serum. But the titers of antibodies against ORF2-F and ORF3 wane rapidly and the titers of ORF2-S declined slowly when they reached the peak, respectively. It was suggested that antibodies responses to the antigen domain of 22 to 83aa located in the forward fragment of ORF2 protein and to ORF3 protein were transient and antibody responses to the latter fragment of ORF2 protein. The titers of antibody against ORF2-5 (339-442aa) in the serum of different dpi were similar as the titers of ORF2-S (339-606aa) detected with indirect ELISA. It was suggested the antigen domains located in 339 to 442aa primarily induced immune responses in the challenged chickens. In addition, according to the titers of antibody against ORF2-8 (383-515aa), we concluded that the 339 to 383aa region was the primary antigen domain in the latter fragment of ORF2 protein induced immune responses in inoculated chickens. Meanwhile, there were no antibody responses to the 412 to 546aa region of ORF2 protein in inoculated chickens because of no reaction between serums of different dpi with ORF2 protein using indirect ELISA.
     6. Self-assembly of empty virus-like particles of avian HEV
     Three truncated proteins including complete ORF2 protein, deleted 56 amino acids in N terminal (ORF2Δ56) and C-terminal 268 amino acids (ORF2-268) were expressed with baculovirus system. Three truncated ORF2 proteins were successfully expressed in baculovirus system through identification of IFA and Western-botting methods. Meanwhile, it was found that the ORF2Δ56 protein was secreted into the cell culture medium when it was expressed with baculovirus system in sf9 cells. Compared with the proteins of ORF2 and ORF2Δ56 expressed with E.coil system, it was shown some proteins to be size smaller than expected protein were produced in baculovirus system. The reason is that the protein expressed with baculovirus may be proteolytic processing in the sf9 cells. The empty virus-like particles of avian HEV was examined with EM when the protein secreted in cell culture medium expressed with baculovirus for ORF2Δ56 protein was purified.
引文
董雪,胡金勇,谢天宏,等.表达戊型肝炎病毒ORF2蛋白的重组腺病毒构建及其经粘膜途径免疫小鼠.中国医学科学院学报, 2003, 25 (3): 324-328.
    佟玉品,詹美云,鲁健,等.酵母表达的戊型肝炎病毒结构区ORF2蛋白的免疫原性研究.中华实验和临床病毒学杂志, 2002, 16 (1): 23-26.
    葛胜祥,郭清顺,李少伟,等.基因Ⅰ、Ⅳ型戊型肝炎病毒高灵敏度通用引物的设计和初步应用.病毒学报, 2005, 21 (3): 181-187.
    葛胜祥,田克恭,多海刚,等.中国不同地区商品猪中戊型肝炎病毒感染情况调查.中国人兽共患病杂志, 2003, 19 (2): 108~109.
    梁久红,孟继鸿.人、猪、禽戊型肝炎病毒血清学关系的研究.中华微生物与免疫学杂志. 2007, 27: 581-586.
    马勋,陆承平,孟继鸿.新疆地区猪戊型肝炎血清流行病学调查.中国病毒学, 2004, 19 (3): 285-287.
    马玉玲,杨德吉,陆承平.鸡大肝大脾病毒RT-PCR检测方法的建立及其检测.中国病毒学,2005, 20 (2): 197-199.
    孟继鸿,戴星,窦晓光,等.不同基因型戊型肝炎病毒重组蛋白的抗原性分析.东南大学学报(医学版), 2002, 21 (1): 31-35.
    曲立春,郭志儒,王远志,等.戊型肝炎病毒之研究进展.中国农学通报, 2006, 22 (8): 26-29.
    王佑春,张华远,辜文洁,等.戊型肝炎病毒(HEV) IV型的ORF3及ORF2蛋白的分片段表达、核酸序列分析.中华肝脏病杂志, 2003, 11 (7): 405-407.
    王佑春,张华远,李河民,等.戊型肝炎病毒Ⅳ型全基因序列分析.中华微生物和免疫学志,2001, 21 (2): 210-213.
    杨德吉,单松华,侯世忠,等。部分鸡场鸡大肝和大脾病的血清学调查.中国兽医科技,1997,27 (6): 13-14.
    张红霞,荆胜涛,周恩民,等.人血清中抗禽戊型肝炎病毒抗体的检测与鉴定.中国卫生检验杂志, 2009, 19 (8): 1741-1744.
    张璐,周恩民,崔治中,等.禽戊型肝炎血清学调查以及与肝脾肿大综合征关系的研究. 中国家禽, 2008, 30 (20): 22-24.
    张军.戊型肝炎研究动态第12届国际病毒性肝炎和肝病研讨会(巴黎)信息[J].国际病毒学杂志, 2006, 13 (4): 97-100.
    赵清,居军.戊型肝炎研究进展.中国卫生检验, 2006, 7 (6): 450-456.
    赵素元,廖立夫,邹林樾.戊型肝炎野生动物模型研究一子午沙鼠.中国媒介生物学及控制杂志, 2001, 12 (4): 285-288.
    周恩民,荆胜涛,彭军,等.禽戊型肝炎病毒人兽共患病的可能性研究.中国家禽, 2009, 31 (1): 5-9.
    Aggarwal R., Shahi H., Naik S. Evidence in favour of high infection rate with hepatitis E virus among young children in India. J Hepatol, 1997. 26: 1425-1426.
    Agunos A. C., Yoo D., Youssef S. A., et al. Avian hepatitis E virus in an outbreak of hepatitis-splenomegaly syndrome and fatty liver haemorrhage syndrome in two flaxseed-fed layer flocks in Ontario. Avian Pathology, 2006. 35 (5): 404-412.
    Arora N. K., Panda S. K., Nanda S. K., et al. Hepatitis E infection in children: study of an outbreak. J Gastroenterol Hepatol, 1999. 14: 572-577.
    Balayan M. S., Andjaparidze A. G., Savinskaya S. S., et a1. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervimlogy, 1983. 20 (2): 20-31. Balayan M. S., Usmanov R. K., Zamyatina N. A., et al. Experimental hepatitis E infection in domestic pigs. J Med Virol, 1990. 32 (1): 58-59.
    Berke T., Matson D. O. Reclassification of the Caliciviridae into distinct genera and exclusion of hepatitis E virus from the family on the basis of comparative phylogenetic analysis. Arch Virol, 2000. 145 (7): 1421-1436.
    Bili I., Jaskulska B., Basic A., et al. Sequence analysis and comparison of avian hepatitis E viruses from Australia and Europe indicate the existence of different genotypes. Journal of General Virology, 2009. 90: 863-873.
    Billam P., Huang F. F., Sun Z. F., et al. Systematic pathogenesis and replication of avian hepatitis E virus specific-pathogen·free adult chickens. J Virol, 2005. 79: 3429-3437.
    Billam P., LeRoith T., Pudupakam R. S., et al. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken, respectively. Veterinary Microbiology, 2009. 139 (3-4): 253-261.
    Billam P., Pierson F. W., Li W., et al. Development and Validation of a Negative-Strand-Specific Reverse Transcription-PCR Assay for Detection of a Chicken Strain of Hepatitis E Virus: Identification of Nonliver Replication Sites. Journal of Clinical Microbiology, 2008. 46 (8): 2630-2634.
    Bradley D., Krawczynski K., Cook E. J., et al. Enterically transmitted non-A, non-B hepatitis serial passage of disease in cynomolgus macaques and tamarins and recovery of disease associated 27 - to 34 -nm viruslike particles. Proc NatlAcad Sci USA, 1987. 84: 6277-6281.
    Caron M., Enouf V., Than S. C., et al. Identification of genotype 1 hepatitis E virus in samples from swine in Cambodia. J Clin Microbiol, 2006. 44: 3440-3442.
    Chauhan A., Jameel S., Dilawari J. B, et al. Hepatitis E virus transmission to a volunteer. Lancet, 1993. 341 (8838): 149-150.
    Clayson E. T., Innis B. L., Myint K. S., et al. Detection of hepatitis E virus infections among domestic swine in the Kathmandu Valley of Nepal. Am J Trop Med Hyg, 1995. 53: 228-232.
    Clemente-Casares P., Pina S., Buti M., et al. Hepatitis E virus epidemiology in industrialized countries. Emerg Infect Dis, 2003. 9: 448-454.
    Dong S. W., Zhao Q., Lu M. Z., et al. Analysis of epitopes in the capsid protein of avian hepatitis E virus by using monoclonal antibodies. Journal of Virological Methods, 2011. 171: 374-380.
    Emerson S. U., Anderson D., Arankalle A., et al. Hepevirus. In Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses, 2004. pp. 851–855.
    Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier Academic Press.
    Emerson S. U., Clemente-Casares P., Moiduddin N., et al. Putative neutralization epitopes and broad cross-genotype neutralization of Hepatitis E virus confirmed by a quantitative cell-culture assay. J Gen Virol, 2006. 87: 697-704.
    Emerson S. U., Purcell R. H. Recombinant vaccines for hepatitis E. Trends Mol Med, 2001. 7 (10): 462-466.
    Emerson S. U., Purcell R. H. Hepatitis E virus. Rev Med Virol, 2003. 13 (3):145-154.
    Faquet C., Mayo M..The 7th ICTV Report. Arch Virol, 2001. 146 (1): 190-194.
    Favorov M. O., Kosoy M. Y., Tsarev S. A., et a1. Prevalence of antibody to hepatitis E virus among rodents in the United States. J Infect Dis, 2000. 181: 449-455.
    Feinstone S. M., Kapikian A. Z., Purceli R. H. Hepatitis E: detection by immuneelectron microscopy of a virus like antigen associated with acute illness. Science, 1973. 182 (116): 1026-1028.
    Ghabrah T. M., Tsarev S., Yarbough P. O., et al. Comparison of tests for antibody to hepatitis E virus. J Med Virol, 1998. 55: 134-137.
    Green K., Ando T., Balayan M., et al.Taxonomy of the caliciviruses. J Infect Dis, 2000. 181 (Suppl 2): S322-S330.
    Guo H., Zhou E. M., Sun Z. F., et al. Protection of chickens against avian hepatitis E virus(avian HEV)infection by immunization with recombinant avian HEV capsid protein. Vaccine, 2007. 25: 2892-2899.
    Guo H., Zhou E. M., Sun Z. F., et al. Identification of B-cell epitopes in the capsid protein of avian hepatitis E viru(savian HEV)that are common to human and swine HEVs or unique to avian HEV. J Gen Virol, 2006. 87 (1): 217-223.
    Guo H. L., Zhou E. M., Sun Z. F., et al. Egg whites from eggs of chickens infected experimentally with avian hepatitis E virus contain infectious virus, but evidence of complete vertical transmission is lacking. Journal of General Virology, 2007, 88: 1532-1537.
    Guo H. L., Zhou E. M., Sun Z. F., et al. Immunodominant Epitopes Mapped by Synthetic Peptides on the Capsid Protein of Avian Hepatitis E Virus Are Non-Protective. Viral Immunology, 2008. 21 (1): 61-69.
    Handlinger J. H., Williams W. An egg drop associated with splenomegaly in broiler breeders. Avian Disease, 1988. 32: 773-778.
    Haqshenas G., Huang F. F., Fenaux M., et al. The putative capsid protein of the newly identified avian hepatitis E virus shares antigenic epitopes with that of swine and human hepatitis E viruses and chicken big liver and spleen disease virus. J Gen Virol, 2002. 83: 2201-2209.
    Haqshenas G., Shivap-rasad H. L., Woolcock P. R. Genetic identification and characterizationof a novel virus related to human hepatitis E virus from chickens with hepatitis-splenomegaly syndrome in the United States. J Gen Virol, 2001. 82: 2449-2462.
    Hirano M., Ding X., Tran H. T., et al.Prevalence of antibody against hepatitis E virus in various species of non-human primates: evidence of widespread infection in Japanese monkeys(Macaca fuscata). Jpn J Infect Dis, 2003. 56 (1): 8-11.
    Hsieh S. Y, Meng X. J, Wu H. Y, et al. Identity of a novel swine hepatitis E virus in Taiwan forming a monophyletic group with Taiwan isolates of human hepatitis E virus. J Clin Microbiol, 1999. 37: 3828-3834.
    He J., Tam A. W., Yarbough P. O., et al. Expression and diagnostic utility of hepatitis E virus putative structural proteins expressed in insect cells. J Clin Microbiol, 1993. 31: 2167-2173.
    Huang C. C., Nguyen D., Fernandez J., et al. Molecular cloning and sequencing of theMexico isolate of hepatitis E virus (HEV). Virology, 1992. 191 (2): 550-558.
    Huang F. F., Haqshenas G., Guenette D. K., et al. Detection by reverse transcription PCR and genetic characterization of field isolates of swine hepatitis E virus from pigs in different geographic regions of the United States. J Clin Microbiol, 2002. 40 (4): 1326-1332.
    Huang F. F., Haqshenas G., Shivap-rasad H. L, et al. Heterogeneity and serop- revalence of a newly identified avian hepatitis e virus from chickens in the United States. J Clin Microbiol, 2002. 40: 4197-4202.
    Huang F. F, Pierson F. W, Toth T. E, et al. Construction and characterization of infectious cDNA clones of a chicken strain of hepatitis E virus (HEV), avian HEV. J Gen Virol, 2005. 86: 2585-2593.
    Huang R., Nakazono N., Ishii K., et al. Existing variations on the gene structure of hepatitis E virus strains from some regions of China. J Med Virol, 1995. 47: 303-308.
    Im S. W., Zhang J. Z., Zhuang H., et al. A bacterially expressed peptide prevents experimental infection of primates by the hepatitis E virus. Vaccine, 2001. 19: 3726-3732.
    Jameel S., Zafrullah M., Ozdener M. H., et al. Expression in animal cells and characterization of the hepatitis E virus structural proteins. J Virol, 1996. 70 (1): 207-216.
    Jiang X., Wang M., Wang K., et al.Sequence and genomic organization of Norwalk virus. Virology, 1993. 195 (1): 51-61.
    Johne R., Plenge-Bonig A., Hess M., et al. Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR. J Gen Virol, 2009. 91: 750-758.
    Kabrane-Lazizi Y., Fine J. B., Elm J., et al. Evidence for widesp read infection of wild ratswith hepatitis E virus in the United States. Am J Trop Med Hyg, 1999, 61: 331-335.
    Kabrane-Lazizi Y., Meng X. J., Purcell R. H., et al. Evidence that the genomic RNA of hepatitis E virus is capped. J Virol, 1999. 73 (10): 8848-8850.
    Kabrane-Lazizi Y., Zhang M., Purcell R. H, et al. Acute hepatitis caused by a novel strain of hepatitis E virus most closely related to United States strains. J Gen Virol, 2001. 82 (7): 1687-1693.
    Kane M., Bradley D., Shrestha S., et al. Epidemic non-A, non-B hepatitis in Nepal. Recovery of a possible etiologic agent and transmission studies in marmosets. JAMA, 1984. 252: 3140-3145.
    Kar-Roy A., Kordaya H., Oberoi R., et al. The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. J Biol Chem, 2004. 279 (27): 28345-28357.
    Karetnyi Y. V., Dzhumalieva D. I., Usmanov R. K., et a1. Probable involvement of rodents in the spread of viral hepatitis E. ZhMikrobiol Epidemiol Immunobiol, 1993, 4:.52-56.
    Khudyakov Y. E., Lopareva E.N., Jue D. L., et al. Antigenic domains of the open reading frame encoded protein of hepatitis E virus. J Clin Microbiol, 1999. 37: 2863-2871.
    Khuroo M. S. Study of an epidemic of non-A, non-B heoatitis possibility of another human hepatitis virus:Distinct from post transfusion non-A non-B type. Am J Med, 1980. 68: 818-823.
    Khuroo M. S., Kamili S., Jameel S. Vertical transmission of hepatitis E virus. Lancet, 1995. 345: 1025-1026.
    Khuroo M. S., Teli M. R, Skidmore S. Incidence and severity of viral hepatitis in pregnancy. Am J Med, 1981, 70: 252-255.
    Koonin E. V., Gorbalenya A. E., Purdy M. A., et al. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci USA, 1992. 89 (17): 8259-8263.
    Kumar A., Beniwal M., Kar P., et al. Hepatitis E in pregnancy. Int J Gynaecol Obstet, 2004. 85 (3): 240-244.
    Li T. C., Miyamura T., Takeda N. Detection of hepatitis E virus RNA from the bivalve Yamato-Shijimi (Corbicula japonica) in Japan. Am J Trop Med Hyg. 2007. 76 (1): 170-172.
    Li T. C., Suzaki Y., Ami Y., et al. Protection of cynomolgus monkeys against HEV infection by oral administration of recombinant hepatitis E virus-like particle. Vaccine, 2004. 22 (3-4): 370-377.
    Li T. C., Yamakawa Y., Suzuki K., et al. Expression and self assemble of empty virus-like particles of hepatitis E virus. J Virol, 1997. 71 (10): 7207- 7213.
    Lu L., Li C., Hagedorn C. H. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol, 2006. 16: 5-36.
    Magden J., Takeda N., Li T., et al. Virus- specific mRNA capping enzyme encoded by hepatitis E virus. J Virol, 2001. 75: 6249-6255.
    Lu L., Li C., Hagedorn C. H. Phylogenetic Analysis of Global HepatitisE Virus Sequences: Genetic Diversity, Subtypes and Zoonosis. Rev Med Viro, 2006. 16 (1): 5-36.
    Makoto H., Xin D., Huy T. T., et al. Prevalence of antibody against hepatitis E virus in various species of non-human primate: evidence of widespread infection. Jpn J Infect Dis, 2003. 56: 8-11.
    Maneerat Y., Clayson E. T., Myint K. S. Experimental infection of the laboratory rat with the hepatitis E virus. J Med Virol, 1996. 48: 121-128.
    Marel A., Bilic I., Prokofieva I., Hess M. Phylogenetic analysis of avian hepatitis E virus samples from European and Australian chicken flocks supports the existence of a different genus within the Hepeviridae comprising at least three different genotypes. Veterinary Microbiology, 2010. 145 (1-2): 54-61.
    Mast E. E., Kuramoto I. K., Favorov M. O., et al. Prevalence of risk factors for antibody to hepatitis E virus seroreactivity among blood donors in Northern California. Journal of Infectious Diseases, 1997. 176: 34-40.
    Ma Y., Lin S. Q., Gao Y., et al. Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J Gastroenterol, 2003. 9:2211-2215.
    Meng X. J. Hepatitis E virus (hepevirus). In: Mahy, B.W.J., van Regenmortel, M.H.V. (Eds.), Encyclopedia of Virology (5 vols). 3rd ed. Elsevier, Oxford, 2008, pp. 377-383.
    Meng X. J. Novel strains of hepatitis E virus identified from humans and other animal species: Is hepatitis E a zoonosis? J Hepatol, 2002. 33: 842-845.
    Meng X. J. Zoonotic and xenozoonotic risks of hepatitis E virus. Infect Dis Rev, 2000. 2: 35-41.
    Meng J., Dai X., Chang J. C., et al. Identification and characterization of the neutralizing epitope (s) of the hepatitis E virus. Virology, 2001, 288: 203-211.
    Meng X. J., Halbur P. G., Haynes J. S., et al. Experimental infection of pigs with the newly identified swine hepatitis E virus (swine HEV), but not with human strains of HEV. Arch Virol, 1998. 143: 1405-1415.
    Meng X. J., Halbur P. G., Shapiro M. S., et al. Genetic and experimental evidence for cross-species infection by the swine hepatitis E virus. J Virol, 1998. 72: 9714-9721.
    Meng X. J., Purcell R. H., Halbur P. G., et al. A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci USA, 1997. 94: 9860-9865.
    Morrow C. J., Samu G., Mátrai E., et al. Avian hepatitis E virus infection and possible associated clinical disease in broiler breeder flocks in Hungary. Avian Pathology, 2008. 37 (5): 527-535.
    Mushahwar I. K. Hepatitis E virus: molecular virology, clinical features, diagnosis, transmission, epidemiology, and prevention. J Med Virol, 2008. 80 (4): 646-658.
    Nakamura M., Takahashi K., Taira K., et al. Hepatitis E virus infection in wild mongooses of Okinawa, Japan: demonstration of anti-HEV antibodies and a full-genome nucleotide sequence, Hepatol Res, 2006. 34: 137-140.
    Nanda S. K., Ansari I. H., Acharya S. K., et al. Protracted viremia during acute sporadic hepatitis E virus infection. Gastroenterology, 1995. 108: 225-230.
    Ning H., Niu Z., Yu R., et al. Identification of genotype 3 hepatitis E virus in fecal samples from a pig farm located in a Shanghai suburb. Vet Microbiol, 2007. 121: 125-130.
    Nishizawa T., Takahashi M., Mizuo H., et al. Characterization of Japanese swine and human hepatitis E virus isolates of genotype IV with 99 % identity over the entire genome. J GenVirol, 2003. 84: 1245-1251.
    Panda S. K., Thakral D., Rehman S. Hepatitis E virus. Rev Med, 2007. 17: 151-180.
    Panteva M., Korkaya H., Jameel S. Hepatitis viruses and the MAPK path-way: is this a survival strategy. Virus Res, 2003. 92 (2): 131-140.
    Payne C. J., Ellis T. M., Plant S. L., et al. Sequence data suggests big liver and spleen disease virus (BLSV) is genetically related to hepatitis E virus. Veterinary Microbiology, 1999. 68: 119-125.
    Peralta B., Biarnés M., Ordó?ez G., et al. Evidence of widespread infection of avian hepatitis E virus (avian HEV) in chickens from Spain. Veterinary Microbiology, 2009. 137: 31-36.
    Peron J. M., Bureau C., Poirson H., et al Fulminant liver failure from acute autochthonous hepatitis E in France: description of seven patients with acute hepatitis E and encephalopathy, J. Viral Hepat, 2007. 14: 298–303.
    Pina S., Buti M., Cotrina M., et al. HEV identified in serum from humans with acute hepatitis and in sewage of animal origin in Spain. J Hepatol, 2000. 33 (5): 826-833.
    Pringle C. R. Virus taxonomy-1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol, 1999. 144 (8): 421-429.
    Purcell R. H., Emerson S. U. Hepatitis E: an emerging awareness of an old disease. Journal of hepatology, 2008. 48: 494-503.
    Purcell R. H., Emerson S. U. Hepatitis E virus. In: Knipe, D., Howley, P., Griffin, D., Lamb, R., Martin, M., Roizman, B. (Eds.), Fields Virology. 4th ed. Lippincott: Williams and Wilkins, Philadelphia, PA, 2001, pp. 3051-3061.
    Purdy M. A., McCaustland K. A., Krawczynski K., et al. Preliminary evidence that a trp E HEV fusion protein protects cynomolgus macaques against challenge with the wild type hepatitis E virus (HEV). J Med Virol, 1993. 41:90-94.
    Purdy M. A., Tam A., Huang C., et al. Hepatitis E virus: a non- enveloped member of the alpha-like RNA virus super group. Sem Virol, 1993. 4: 319-326.
    Purcell R. H. and Emerson S. U. Hepatitis E: an emerging awareness of an old disease, J Hepatol, 2008. 48: 494-503.
    Reuter G., Fodor D., Forgach P., et al. Characterization and zoonotic potential of endemichepatitis E virus (HEV) strains in humans and animals in Hungary. J Clin Virol, 2009. 44: 277-281.
    Ritchie S. J., Riddell C. British Columbia.‘‘Hepatitis-splenomegaly’’syndrome in commercial egg laying hens. The Canadian veterinary journal, 1991. 32: 500-501.
    Robinson R. A., Burgess W. H., Emerson S. U., et al. Structural characterization of recombinant hepatitis E virus ORF2 proteins in baculovirus-infected insect cells. Protein Expr Purif, 1998. 12 (1): 75-84.
    Schlauder G. G., Frider B., Sookoian S., et al. Identification of 2 novel isolates of hepatitis E virus in Argentina. J Infect Dis, 2000. 182 (1): 294-297.
    Schofield D. J., Glamann J., Emerson S. U., et al. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein. J Virol, 2000. 74: 5548-5555.
    Schofield D. J., Purcell R. H., Nguyen H. T.,et al. Monoclonal antibodies that neutralize HEV recognizes an antigenic site at the carboxy terminus of an ORF2 protein vaccine. Vaccine, 2003. 22: 257-267.
    Singh S., Mohanty A., Joshi Y. K., et al. Mother-to-child transmission of hepatitis E virus infection. Indian J Pediatr, 2003. 70 (1): 37-39.
    Singh V., Raje M., Nain C. K., et al. Routes of transmission in the hepatitis E epidemic of Saharanpur. Trop Gastroenterol, 1998. 19 (3): 107-109.
    Souto F. J., Fontes C. J., Parana R. Short report: further evidence for hepatitis E in the Brazilian Amazon. Am J Trop Med Hyg, 1997. 57 (2): 149-150.
    Sriram B., Thakral D., Panda S. K. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication. Virology, 2003. 312 (2): 350-358.
    Sun Z. F., Larsen C. T., Dunlop A., et al. Genetic identification of avian hepatitis E virus (avian HEV) from healthy chicken flocks and characterization of the capsid gene of 14 avian HEV isolates from chickens with hepatitis-splenomegaly syndrome in different geographical regions of the United States. J. Gen. Virol, 2004. 85: 693-700.
    Sun Z. F., Larsen C. T., Huang F. F., et al. Generation and infectivity titration of an infectious stock of avian hepatitis E virus (HEV) in chickens and cross-species infection of turkeyswith avian HEV. Journal of Clinical Microbiology, 2004. 42 (6): 2658-2662.
    Surjit M., Jameel S., Lal S. K. The ORF2 protein of hepatitis E virus binds the 50 region of viral RNA. J Virol, 2004. 78: 320-328.
    Tam A. W., Smith M. M., Guerra M. E., et al. Hepatitis E virus( HEV) : molecular cloning and sequencing of the full length viral genome. Virology, 1991. 185: 120-131.
    Takahashi M. Swine hepatitis E virus strains in Japan form four phylogenetic clusters comparable with those of Japanese isolates of human hepatitis E virus. J Gen Virol, 2003. 84 (4): 851-862.
    Tei S, Kitajima N, Takahashi K. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet, 2003. 362:371-373.
    Ticehurst J., Rhodes L. L., Krawczynski K., et al. Infection of owl monkeys (Aotus trivirgatus) and cynomolgus monkeys (Macaca fascicularis) with hepatitis E virus fromMexico. J Infect Dis, 1992. 165: 835-845.
    Tien N. T., Clayson E. T., Khiem H. B., et al. Detection of immunoglobulin Gto the hepatitis E virus among semeral animal species in Vietnam. Am J Trop Med Hyg, 1997. 57: 211-217.
    Tomiyama D., Inoue E., Osawa Y., et al. Serological evidence of infection with hepatitis E virus among wild Yezo-deer, Cervus nippon yesoensis, in Hokkaido, Japan. J Viral Hepat, 2009. 16: 524-528.
    Torresi J., Meanger J., Lambert P., et al. High level expression of the capsid protein of hepatitis E virus in diverse eukaryotic cells using the SemLiki Forest virus replicon. J Virol Methods, 1997. 69: 81-91.
    Torresi J., Li F., Locarnini S. A., et al. Only the non- glycosylated fraction of hepatitis E virus capsid (open reading frame 2) protein is stable in mammalian cells. J Gen Virol, 1999. 80: 1185-1188.
    Tsarev S. A., Binn L. N., Gomatos P. J., et al. Phylogeneticanalysisofhepatitis E virus isolates from Egypt. J Med Virol, 1999. 57 (1): 68-74.
    Tsarev S. A., Emerson S. U., Tsareva T. S., et al. Variation in course of hepatitis E in experimentally infected cynomolgus monkeys. J Infect Dis, 1993. 167: 1302-1306.
    Tsarev S. A., Shrestha M. P., He J., et al. Naturally acquired hepatitis E virus (HEV) infectionin Nepalese rodents. Am J Trop Med Hyg, 1998. 59: 242-246.
    Tyagi S., Korkaya H., Zafrullah M., et al. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non2 glycosylated form of the major capsid protein, ORF2. J Biol Chem, 2002. 277 (25): 22759-22767.
    Tyagi S., Jameel S., Lal S. K. Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein. J Virol, 2001. 75 (5): 2493-2498.
    Tygai S., Surjit M., Kar-Roy A., et al. The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin bikunin precursor (AMBP) and expedites their export from the hepatocyte. J Biol Chem, 2004. 279 (28): 29308- 29319.
    Usmanov R. K., Balaian M. S., Kazachkov-Iu A., et al. Further study of experimental hepatitis E in piglets. Vop r Virusol, 1994. 39: 208 -212.
    Vishwanathan R. Infectious hepatitis in Delhi (1955-1956). A critical study: epidemiology. Indian J Med Res, 1957, 45: 49-58.
    Vitral C. L., Pinto M. A., Lewis-Ximenez L. L., et al. Serological evidence of hepatitis E virus infection in different animal species from the Southeast of Brazil. Mem Inst Oswaldo Cruz, 2005. 100: 117-122.
    Wang Y. Epidemiology, molecular biology and zoonosis of genotype IV hepatitis E in China. Chin J Epidemiol, 2003. 24: 618-622.
    Xiaofang L., Zafrullah M., Ahmad F., et al. A C terminal hydrophobic region is required for homo-oligomerization of the hepatitis E virus capsid (ORF2) protein. J Biomed Biotechnol, 2001. 1: 122-128.
    Xing L., Kato K., Li T., et al. Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes. Virology, 1999. 265: 35-45. Yarbough P. O. Hepatitis E virus: advances in the HEV biology and HEV vaccine approaches. Intervirology, 1999. 42: 179-184.
    Yajima Y., Takahashi N., Yamagishi H., et al. An acute hepatitis case domestically infected with a hepatitis E virus whose nucleotide sequence showed a high similarity to that from a domestic swine in Japan. Nippon Shokakibyo Gakkai Zasshi, 2003. 100 (4): 454-458.
    Yazaki Y., Mizuo H., Takahashi M., et al. Sporadic acute or fulminant hepatitis E in
    Hokkaido, Japan, may be foodborne, as suggested by the presence of hepatitis E virus in pig liver as food. J Gen Virol, 2003. 84: 2351-2357.
    Zafrullah M., Ozdener M. H., Panda S. K., et al. The ORF3 protein of hepatitis E virus is a phosphor protein that associates with the cytoskeleton. J Virol, 1997. 71 (12): 9045-9053. Zafrullah M., Ozdener M. H, Kumar R., et al. Mutational analysis of glycosylation,
    membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein. J Virol, 1999. 73 (5): 4074-4082.
    Zhang M., Emerson S. U., Nguyen H., et al. Recombinant vaccine against hepatitis E: duration of protective immunity in rhesus macaque. Vaccine, 2002. 20 (27-28): 3285-3291.
    Zhang M., Emerson S. U., Nguyen H., et al. Immunogenicity and protective efficacy of a vaccine prepared from 53 kDa truncated hepatitis E virus capsid protein expressed in insect cell. Vaccine, 2001. 20 (5-6): 853-857.
    Zhang F., Li X., Li Z., et al. Detection of HEV antigen as a novel marker for the diagnosis of hepatitis E. J Med Virol, 2006. 78 (11): 1441-1448.
    Zhao C., Ma Z., Harrison T. J., et al., A novel genotype of hepatitis E virus prevalent among farmed rabbits in China. J Med Virol, 2009. 81: 1371-1379.
    Zhou E. M., Guo H., Huang F. F., et al. Identification of two neutralization epitopes on the capsid protein of avian hepatitis E virus(avian HEV). J Gen Virol, 2008. 89: 500-508.
    Zhou E., Afshar A. Characterization of monoclonal antibodies to epizootic hemorrhagic disease virus of deer (EHDV) and bluetongue virus by immunization of mice with EHDV recombinant VP7 antigen. Res Vet Sci, 1999. 66: 247-252.
    Zhou Y. H., Purcell R. H., Emerson S. U. An ELlSA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3 and 4. Vaccine, 2004. 22: 2578-2585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700