慢病毒介导RNAi技术培育抗新城疫病毒嵌合体鹅胚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1997年以来,在我国多数地区的鹅群中相继爆发和流行鹅副黏病毒病,经鉴定病原为血清Ⅰ型副黏病毒,即新城疫病毒,该病定名为鹅副黏病毒病,又可称为鹅新城疫。各种年龄的鹅对该病均易感,鹅群发病率平均为27.67%,死亡率个别可高达100%,平均死亡率为18.19%,且年龄越小其发病率和死亡率越高,给我国的养鹅业造成严重的经济损失。目前,鹅副黏病毒病防治主要以疫苗免疫为主,尽管目前有多种强毒疫苗和灭活疫苗用于免疫预防,但是仍然不能控制鹅副黏病毒病的发生。目前研究结果均表明,利用新城疫病毒强毒苗或灭活苗甚至是传统的LaSota弱毒疫苗来免疫预防鹅副黏病毒病均不能起到完全的免疫保护作用。因此,对于鹅副黏病毒病我们须寻求一种新的预防思路和技术手段。
     随着分子生物学及其技术方法的不断发展,基因阻断技术也得到了极大的发展,在哺乳动物或其他动物细胞中通过siRNA诱导RNAi效应来实现特定基因的有效抑制,该方法已经成为研究基因功能的重要工具。慢病毒载体介导的基因转导是近年来发展起来的技术,其突出的特点是具有较高的转染效率、能感染静止期细胞和较高的目的基因表达效率。本研究利用具有基因组整合特性和高侵染能力的慢病毒载体介导RNA干扰技术,研究其对鹅源新城疫病毒NA-1株在体外和体内复制增殖能力的影响,进而为禽类抗病毒研究奠定基础。
     首先针对鹅源新城疫病毒NA-1株NP、M基因保守区序列,分别设计3对shRNA,同时设计1对阴性对照shRNA序列,合成后退火形成双链,连接到双酶切线性化的带有pol Ⅲ U6启动子的慢病毒shRNA表达载体(pLKD-GFP),分别命名为:pLKD-shNP268、pLKD-shNP437、pLKD-shNP710、pLKD-shM168、pLKD-shM646、pLKD-shM1062及pLKD-control阴性对照,上述重组慢病毒干扰质粒经PCR及测序鉴定确认。将构建的不同重组慢病毒干扰质粒瞬时转染Vero细胞,48h后接种1000个TCID50/0.1mL的鹅源新城疫病毒NA-1株,分别于病毒感染的12h、24h、36h、48h,应用Real-time RT-PCR方法检测病毒基因mRNA表达量的变化,结果显示,重组慢病毒干扰质粒pLKD-shNP710及pLKD-shM646对病毒基因mRNA表达的抑制率分别为85.8%和84.6%;进一步测定TCID50/0.1mL,观察病毒滴度的变化,结果显示,转染重组慢病毒干扰质粒pLKD-shNP710,pLKD-shM646组其病毒的TCID50/0.1mL分别为10-4.16/0.1mL和10-5.15/0.1mL;应用间接免疫细胞化学方法进一步检测各干扰组及对照组中病毒在细胞中的复制增殖的情况,结果也显示出,转染重组慢病毒干扰质粒pLKD-shNP710,pLKD-shM646组较好的抑制病毒在细胞中复制,重复三次试验均获得一致结果。
     将重组慢病毒干扰质粒pLKD-shNP710,pLKD-shM646及阴性对照pLKD-control及pLKD-GFP分别与慢病毒包装系统的2个辅助质粒(pR8.2,pVSV-G)共转染293T细胞进行重组慢病毒假病毒的包装,分别于24h、48h收集培养上清,4000r/min离心10min,以去除细胞碎片,然后经0.45μm一次性滤器过滤,4℃50,000g离心2h,以获得浓缩的重组慢病毒,浓缩后的重组慢病毒应用Lastra法测定滴度,滴度为5×107TU/mL。将重组慢病毒分别命名为:LV-NP710、LV-M646、LV-control及LV-GFP。将获得的浓缩的重组慢病毒侵染Vero细胞(培养液中加入终浓度为8μg/mL polybrene,以提高包装的病毒对细胞的侵染能力),经嘌呤霉素抗性筛选,获得具有抗性的细胞,然后将细胞进行传代,传至第20代,并且取第5、10、15、20代的细胞提取基因组,应用PCR和DNA测序方法检测shRNA序列是否整合到细胞基因组DNA中,结果显示,每代细胞基因组DNA中均存在shRNA序列,且在细胞内绿色荧光蛋白呈现较高水平表达,证明成功建立了稳定表达shRNA的细胞系,将其分别命名为:NP710-Vero、M646-Vero、control-Vero及GFP-Vero。
     将稳定表达shRNA的Vero细胞系感染鹅源新城疫病毒NA-1株(1000个TCID50/0.1mL),应用Real time RT-PCR方法,对病毒感染12h、24h、36h、48h后,各细胞系干扰NDV基因mRNA表达情况进行检测,结果显示,对NP、M基因的抑制率分别为NP710-Vero组(86.8±0.35)%(P<0.05),M646-Vero组(85.9±0.26)%(P<0.05);应用TCID50方法对病毒感染48h后,病毒滴度变化进行检测,结果显示,NP710-Vero细胞组TCID50为10-4.21/0.1mL,M646-Vero细胞组TCID50为10-5.17/0.1mL;应用间接免疫细胞化学方法检测病毒在各组细胞系中复制情况,结果表明,可稳定表达shRNA的细胞系(NP710-Vero组、M646-Vero组)均能明显抑制病毒在细胞中复制增殖。上述结果说明,稳定表达shRNA序列的Vero细胞系建立成功,并且对NDV的复制产生持续的、稳定的抑制作用。
     本研究进一步将重组慢病毒液(滴度为106TU/mL)注射入新鲜的鹅受精卵胚下腔制备可表达shRNA序列的嵌合体鹅胚,用经灭菌的附带蛋壳膜的合适大小的蛋壳封口,医用胶布固定,然后按标准鹅胚孵化程序进行孵化。提取胚胎基因组DNA,通过PCR鉴定,在检测的鹅胚胎基因组中均有shRNA序列和GFP基因的插入,说明获得的鹅胚为嵌合体胚胎。
Since1997, Goose paramyxovirus disease had broken out and spread in themajority of our region, and was identified that the pathogen was paramyxovirusserotypeⅠ, the disease was named Goose paramyxovirus disease, also maybe calledNewcastle disease of goose. All ages goose are susceptible to the disease, the gaggleincidence rate of27.67%on average, the mortality rate can be as high as100%individual, an average rate of18.19%. This disease cause serious economic losses tothe goose industry in China. At present, the prevention of Goose paramyxovirus diseasewas mainly injected vaccine, although a variety of the attenuated vaccine andinactivated vaccine for immunization prevention, but still can not control theoccurrence of Goose paramyxovirus disease. The results showed that Newcastledisease virus virulent vaccine or inactivated vaccine even traditional LaSotaattenuated vaccine to prevent Goose Newcastle disease virus disease also can not playcompletely immune protective effect. Therefore, we need to find a new preventionideas and technical means for Goose Newcastle disease virus.
     With the development of molecular biology and its technical methods, the geneblocking technology has also been a great deal of development. The siRNA inducedRNAi effect in mammalian or other animal cells, to achieve effective inhibition ofspecific genes, this method has become an important tool for studies of gene function.Lentiviral vector-mediated gene transduction is a new technology, its advantages werethe high efficiency of transfection and can effectively infect quiescent cells andexpress the target gene. In this study, the use of genomic integration features and highinfection capacity of lentiviral vector and mediated RNA interference technology,research the effect of proliferative capacity of NA-1strains of Goose Newcastledisease virus in vitro and in vivo, and thus established the foundation for anti-virus research of poultry.
     First, three pairs shRNA sequences were designed for the conserved regionsequences of NP, M gene of Goose Newcastle disease virus NA-1strain respectivelywhile a pair negative control shRNA sequence was designed, then synthesized andannealing to form double-stranded, and connected to the lentivirus vector(pLKD-GFP)with Pol Ⅲ U6promoter which was linearized by double digestion. The recombinantvectors were named pLKD-shNP268, pLKD-shNP437, pLKD-shNP710,pLKD-shM168, pLKD-shM646, pLKD-shM1062and pLKD-control (negative)respectively. These recombinant lentiviral vector plasmid were confirmed by PCR andsequencing. The different recombinant lentivirus vector plasmids were transientlytransfected Vero cells, after48h, the cells were super-infected the NA-1strain ofGoose Newcastle disease virus. To determine whether NP and M gene expression ofthe NDV strain NA-1could be inhibited by lentivirus vector-mediated siRNA, therelative expression levels of the NP and M genes were evaluated by real-time RT-PCR.The results of the real-time RT-PCR indicated a significant inhibitory effect in therelative expression level of NP and M gene transcripts by85.8%and84.6%,respectively, when plasmids pLKD-shNP710and pLKD-M646were used, ascompared to the mock and pLKD-control transfected cells at48h p.i. PlasmidspLKD-shNP268and pLKD-shNP437down-regulated mRNA expression levels of theNP gene by55.6%and64.2%, while pLKD-shM168and pLKD-shM1062down-regulated mRNA expression levels of the M gene by56.5%and69.0%,respectively. To demonstrate the inhibitory effect of the different recombinantinterference plasmids further, the TCID50assay was used to titrate the NA-1virus inthe cell supernatants at48h p.i. The results show that the TCID50was10-4.16/0.1mLand10-5.15/0.1mL when cells were transfected with pLKD-shNP710and pLKD-M646,respectively. These values indicate significant viral titer reduction when compared tothe mock group, which had a TCID50/0.1mL of10-9.37/0.1mL. The TCID50values forthe other plasmids were as follows:10-7.83/0.1mL for pLKD-shNP268,10-7.12/0.1mLfor pLKD-shNP437,10-6.97/0.1mL for pLKD-shM168, and10-7.1/0.1mL forpLKD-shM1062. We next used an indirect immunocytochemistry assay to detect theexpression of NA-1in Vero cells. The results indicated that the expression of NA-1 was significantly lower in cells transfected with pLKD-shNP710and pLKD-M646than in the Mock Vero and pLKD-control groups. Indeed, the replication of NA-1wassignificantly inhibited in vitro.
     Based on the promising results above, we generated recombinant lentivirus thatcontained a U6Pol III promoter and the NP and M gene siRNA cassette targeting the710-731nt (NP gene) and646-667nt (M gene) regions. The recombinant-defectivepseudotype lentiviruses carried an EGFP reporter gene for quantification by FACSanalysis. These lentiviruses containing the NP and M gene siRNAs were titrated inVero cells, which were found to contain5×107TU/mL. We transduced Vero cells withrecombinant lentivirus stocks LV-NP710, LV-M646, LV-GFP, LV-control andscreening them by puromycin, then we can obtain the resistant cells. These resistantcells were passaged to the20th generations. And extracted the genomic of5th,10th,15th,20thgeneration cell and detected the shRNA sequences by PCR and DNAsequencing methods, the results show that each generation of the cell genomecontaining the shRNA and GFP gene sequences, and the green fluorescent proteinexpression to a higher level. These results proved that it is successful to establish astable cell lines, the cell lines were named that NP710-Vero, M646-Vero, GFP-Veroand control-Vero.
     The different Vero cell lines which can stably expressing shRNA were infectedwith NA-1strain of Goose Newcastle disease virus (1000TCID50/0.1mL). The relativeexpression levels of the NP and M genes were evaluated by real-time RT-PCR. Theresults of the real-time RT-PCR indicated a significant inhibitory effect in the relativeexpression level of NP and M gene transcripts by86.8%and85.9%, respectively inNP710-Vero and M646-Vero cell lines. TCID50assay was used to titrate the NA-1virus in the cell supernatants at48h p.i. The results showed that the TCID50/0.1mLvalues were10-4.21/0.1mL and10-5.17/0.1mL when cells were transduced withLV-NP710and LV-M646, respectively. The mock Vero TCID50/0.1mL was10-9.43/0.1mL, and the LV-control TCID50/0.1mL was10-9.18/0.1mL. The results were similar tothe results of Vero cell transfected the recombinant lentivirus plasmids. We also nextused an indirect immunocytochemistry assay to detect the expression of NA-1indifferent stable Vero cell lines. The results indicated that the expression of NA-1was significantly lower in cells transduced with LV-NP710and LV-M646than in the MockVero and LV-control groups. Indeed, the replication of NA-1was significantlyinhibited in vitro.
     To further research the inhibitive effect of recombinant lentivirus expressingshRNA for Goose Newcastle disease virus in vivo, we take the fresh goose fertilizedegg, recombinant lentivirus solution (titer to106TU/mL) injected into the fresh goosefertilized egg embryo inferior vena, and capped with sterilized the eggshell with shellmembrane, and fixed with medical tape, and then hatched the embryo in accordancewith the standard incubator program. Extracted the genomic DNA of embryomic, andidentified the integration of the shRNA sequence, the results showed that the embryois a chimera embryo.
引文
[1] OIE, Manual of diagnostic tests and vaccines for terrestrial animals: mammals,birds and bees. In: Biological Standards Commission, World Organization forAnimal Health, Paris,2009,576-589.
    [2] USDA. The Office of the Federal Register National Archives and RecordsAdministration Code of Federal Regulations. Title9Animals and AnimalProducts: Chapter I APHIS, Department of Agriculture;2006,490-534.
    [3] Alexander, D. J., Senne, D. A. Newcastle disease, other avian paramyxoviruses,and pneumovirus infections. In: Saif, Y. M., Fadly, A. M., Glisson, J. R.,McDougald, L. R., Nolan, L. K., Swayne, D. E.(Eds.), Diseases of Poultry. IowaState University Press, Ames,2008,75-116.
    [4]殷震,刘景华.动物病毒学.第二版:北京科学出版社[M].1997,48-62,736-767.
    [5] Locke, D. P., Sellers, H. S., Crawford, J. M., Schultz-Cherry, S., King, D. J.,Meinersmann, R. J., Seal, B. S. Newcastle disease virus phosphoprotein geneanalysis and transcriptional editing in avian cells [J]. Virus Res,2000,69:55-68.
    [6] Steward, M., Vipond, I. B., Millar, N. S., Emmerson, P. T., RNA editing inNewcastle disease virus [J]. J. Gen. Virol.1993,74(12):2539-2547.
    [7] de Leeuw, O. S., Koch, G., Hartog, L., Ravenshorst, N., Peeters, B. P. Virulenceof Newcastle disease virus is determined by the cleavage site of the fusionprotein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein [J]. J. Gen. Virol,2005,86:1759–1769.
    [8] de Leeuw, O. S., Hartog, L., Koch, G., Peeters, B. P. Effect of fusion proteincleavage site mutations on virulence of Newcastle disease virus: non-virulentcleavage site mutants revert to virulence after one passage in chicken brain [J].J.Gen. Virol.2003,84:475–484.
    [9] Anthony J. Battisti, Geng Meng, Dennis C. Winkler, Lori W. McGinnes, PavelPlevka, Alasdair C. Steven, Trudy G. Morrison, Michael G. Rossmanna. Structureand assembly of a paramyxovirus matrix protein [J]. PNAS.2012,109(35):13996-14000.
    [10] Schwalbe J. C., Hightower L. E. Maturation of the envelope glycoproteins ofNewcastle disease virus on cellular membranes [J]. J. Virol.1982,41:947-957.
    [13] Mebatsion, T., Verstegen, S., de Vaan, L.T., Romer-Oberdorfer, A., Schrier, C. C.A recombinant Newcastle disease virus with low-level V protein expression isimmunogenic and lacks pathogenicity for chicken embryos [J]. J. Virol.2001,75:420-428.
    [14] Steward, M., Vipond, I. B., Millar, N. S., Emmerson, P. T. RNA editing inNewcastle disease virus [J]. J. Gen. Virol.1993,74(12):2539-2547.
    [15] de Leeuw, O. S., Koch, G., Hartog, L., Ravenshorst, N., Peeters, B. P. Virulenceof Newcastle disease virus is determined by the cleavage site of the fusionprotein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein [J]. J. Gen. Virol,2005,86:1759–1769.
    [16] Peeters, B. P., de Leeuw, O. S., Koch, G., Gielkens, A. L. Rescue of Newcastledisease virus from cloned cDNA: evidence that cleavability of the fusion proteinis a major determinant for virulence [J]. J. Virol.1999,73:5001–5009.
    [17] de Leeuw, O. S., Hartog, L., Koch, G., Peeters, B. P. Effect of fusion proteincleavage site mutations on virulence of Newcastle disease virus: non-virulentcleavage site mutants revert to virulence after one passage in chicken brain [J].J.Gen. Virol.2003,84:475–484.
    [18] Glickman, R. L., Syddall, R. J., Iorio, R. M., Sheehan, J. P., Bratt, M. A.Quantitative basic residue requirements in the cleavage-activation site of thefusion glycoprotein as a determinant of virulence for Newcastle disease virus [J].J.Virol,1988,62:354–356.
    [19] Curran, J., Homann, H., Buchholz, C., Rochat, S., Neubert, W., Kolakofsky, D.The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsidprotein is required for template function but not for RNA encapsidation [J]. J.Virol.1993,67:4358–4364.
    [20] Parks, G. D., Ward, C. D., Lamb, R. A. Molecular cloning of the NP and L genesof simian virus5: identification of highly conserved domains in paramyxovirusNP and L proteins [J]. Virus Res,1992,22:259–279.
    [21] Coronel, E. C., Takimoto, T., Murti, K. G., Varich, N., Portner, A. Nucleocapsidincorporation into parainfluenza virus is regulated by specific interaction withmatrix protein [J]. J. Virol.2001,75:1117–1123.J. Virol.2007a,81:12641–12653.
    [20] Chantal J. Snoeck, Mariette F. Ducatez, Ademola A. Owoade, Olufemi O. Faleke,Bello R. Alkali, Marc C. Tahita, Zekiba Tarnagda, Jean-Bosco Ouedraogo,Issoufou Maikano, Patrick Okwen Mbah, Jacques R. Kremer, Claude P. Muller.Newcastle disease virus in West Africa: new virulent strains identified innon-commercial farms[J]. Arch. Virol.2009.154:47–54.
    [21] Ballagi-Pordany, A., Wehmann, E., Herczeg, J., Belak, S., Lomniczi, B.Identification and grouping of Newcastle disease virus strains by restriction siteanalysis of a region from the F gene [J]. Arch. Virol.1996,141:243–261.
    [22] Czegledi, A., Ujvari, D., Somogyi, E., Wehmann, E., Werner, O., Lomniczi, B.Third genome size category of avian paramyxovirus serotype1(Newcastledisease virus) and evolutionary implications [J]. Virus Res.2006,120:36–48.
    [23] Kim, L.M., King, D.J., Suarez, D.L., Wong, C.W., Afonso, C.L. Characterizationof Class I Newcastle disease virus isolates from Hong Kong live bird marketsand detection using real-time reverse transcription-PCR[J]. J. Clin. Microbiol.2007b,45:1310–1314.
    [24] Wise, M.G., Sellers, H.S., Alvarez, R., Seal, B.S. RNA-dependent RNApolymerase gene analysis of worldwide Newcastle disease virus isolatesrepresenting different virulence types and their phylogenetic relationship withother members of the paramyxoviridae [J]. Virus Res.2004a,104:71–80.
    [25] Perozo, F., Merino, R., Afonso, C.L., Villegas, P., Calderon, N. Biological andphylogenetic characterization of virulent Newcastle disease virus circulating inMexico [J]. Avian Dis.2008,52:472–479.
    [26] Sa Xiao, Anandan Paldurai, Baibaswata Nayak, Armando Mirande, Peter L.Collins, Siba K. Samal. Complete Genome Sequences of a Highly VirulentNewcastle Disease Virus Currently Circulating in Mexico [J]. Genome Announc.2013,1(1): e00177-12.
    [27] Mase, M., Imai, K., Sanada, Y., Sanada, N., Yuasa, N., Imada, T., Tsukamoto, K.,Yamaguchi, S. Phylogenetic analysis of Newcastle disease virus genotypesisolated in Japan [J]. J. Clin. Microbiol.2002,40:3826–3830.
    [28] Xiaoyuan Yuan, Youling Wang, Jinxing Yang, Huaiying Xu, Yuxia Zhang,Zhuoming Qin, Hongbin Ai, Jinbao Wang. Genetic and biological budding andcharacterizations of a Newcastle disease virus from swine in China [J]. Virol J.2012,9:129-131.
    [29] Yuyang Wang, Zhiqiang Duan, Shunlin Hu, Yan Kai, Xiaobo Wang, QingqingSong, Lei Zhong, Qing Sun, Xiaoquan Wang, Yantao Wu, Xiufan Liu. Lack ofdetection of host associated differences in Newcastle disease viruses ofgenotypeⅦ d isolated from chickens andgeese [J]. Virol J.2012,9:197.
    [30] Andrey Bogoyavlenskiy, Vladimir Berezin, Alexey Prilipov, Eugeniy Usachev,Olga Lyapina, Ilya Korotetskiy, Irina Zaitceva, Saule Asanova, AydynKydyrmanov, Klara Daulbaeva, Larisa Shakhvorostova, Marat Sayatov, DanielKing. Newcastle disease outbreaks in Kazakhstan and Kyrgyzstan during1998,2000,2001,2003,2004, and2005were caused by viruses of the genotypes VIIband VIId [J]. Virus Genes,2009,39:94–101.
    [31] Wang, Z., Liu, H., Xu, J., Bao, J., Zheng, D., Sun, C., Wei, R., Song, C., Chen, J.Genotyping of Newcastle disease viruses isolated from2002to2004in China [J].Ann. N. Y. Acad. Sci.2006,1081:228–239.
    [32] Francisco Perozo, Rosmar Marcano, Claudio L. Afonso. Biological andPhylogenetic Characterization of a Genotype ⅦNewcastle Disease Virus fromVenezuela: Efficacy of Field Vaccination [J]. J Clin Microbiol.2012,50(4):1204-1208.
    [33] Sa Xiao, Anandan Paldurai, Baibaswata Nayak, Arthur Samuel, Eny E. Bharoto,Teguh Y. Prajitno, Peter L. Collins, Siba K. Samal. Complete Genome Sequencesof Newcastle Disease Virus Strains Circulating in Chicken Populations ofIndinesia [J]. J Virol.2012,86(10):5969-5970.
    [34] Sean C. Courtney, Dejelia Gomez, Leonardo Susta, Nichole Hines, Janice C.Pedersen, Patti J. Miller, Claudio L. Afonso. Complete Genome Sequencing of aNovel Newcastle Disease Virus Isolate Circulating in Layer Chickens in theDominican Republic [J]. J Virol.2012,86(17):9550.
    [35] Shin-Hee Kim, Subhashree Nayak, Anandan Paldurai, Baibaswata Nayak, ArthurSamuel, Siba K. Samal. Complete Genome Sequence of a Novel NewcastleDisease Virus Isolate from a Chicken in West Africa [J]. J Virol.2012,86(20):11394-11395.
    [36] Snoeck, C.J., Ducatez, M.F., Owoade, A.A., Faleke, O.O., Alkali, B.R., Tahita,M.C., Tarnagda, Z., Ouedraogo, J.B., Maikano, I., Mbah, P.O. Newcastle diseasevirus in West Africa: new virulent strains identified in non-commercial farms[J].Arch. Virol.2009,154:47–54.
    [37] Muhammad Munir, Muhammad Abbas, Muhammad Tanveer Khan, SiamakZohari, Mikael Berg. Genomic and biological characterization of a velogenicNewcastle disease virus isolated from a healthy backyard poultry flock in2010[J]. Virol J.2012,9:46-57.
    [38] Abolnik, C., Horner, R.F., Bisschop, S.P., Parker, M.E., Romito, M., Viljoen, G.J.A phylogenetic study of South African Newcastle disease virus strains isolatedbetween1990and2002suggests epidemiological origins in the Far East[J]. Arch.Virol.2004a,149:603–619.
    [39] Tsai, H.J., Chang, K.H., Tseng, C.H., Frost, K.M., Manvell, R.J., Alexander, D.J.Antigenic and genotypical characterization of Newcastle disease viruses isolatedin Taiwan between1969and1996[J]. Vet. Microbiol.2004,104:19–30.
    [40] Yongzhong Cao, Min Gu, Xiaorong Zhang, Wenbo Liu, Xiufan Liu. CompleteGenome Sequences of Two Newcastle Disease Virus Strains of Genotype Ⅷ[J].Genome Announc.2013,1(1): e00180-12.
    [41] Hualei Liu, Yan Lv, Claudio L. Afonso, Shengqiang Ge, Dongxia Zheng, YunlingZhao, Zhiliang Wang. Complete Genome Sequences of New EmergingNewcastle Disease Virus Stains Isolated from China [J]. Genome Announc.2013,1(1): e00129-12.
    [42] Antal, M., Farkas, T., German, P., Belak, S., Kiss, I. Real-time reversetranscription-polymerase chain reaction detection of Newcastle disease virususing light upon extension fluorogenic primers[J]. J. Vet. Diagn. Invest.2007,19:400–404.
    [43] Fuller, C.M., Collins, M.S., Alexander, D.J. Development of a real-time reverse-transcription PCR for the detection and simultaneous pathotyping of Newcastledisease virus isolates using novel probe [J]. Arch. Virol.2009,154:929–937.
    [44] Pham, H.M., Konnai, S., Usui, T., Chang, K.S., Murata, S., Mase, M., Ohashi, K.,Onuma, M. Rapid detection and differentiation of Newcastle disease virus byreal-time PCR with melting-curve analysis [J]. Arch. Virol.2005,150:2429–2438.
    [45] Tan, S.W., Omar, A.R., Aini, I., Yusoff, K., Tan, W.S. Detection of Newcastledisease virus using a SYBR Green I real time polymerase chain reaction[J]. ActaVirol.2004,48:23–28.
    [46] Wise, M. G., Suarez, D. L., Seal, B. S., Pedersen, J. C., Senne, D. A., King, D. J.,Kapczynski, D. R., Spackman, E. Development of a real-timereverse-transcription PCR for detection of Newcastle disease virus RNA inclinical samples [J]. J. Clin. Microbiol.2004b,42:329–338.
    [47] Farkas, T., Antal, M., Sami, L., German, P., Kecskemeti, S., Kardos, G., Belak, S.,Kiss, I. Rapid and simultaneous detection of avian influenza and Newcastledisease viruses by duplex polymerase chain reaction assay [J]. Zoonoses PublicHealth,2007,54:38–43.
    [48] Kim, L. M., Suarez, D. L., Afonso, C. L. Detection of a broad range of ClassⅠ and Ⅱ Newcastle disease viruses using multiplex real-time reversetranscription polymerase chain reaction assay [J]. J. Vet. Diagn. Invest.2008b,20:414–425.
    [49] Kim, L. M., Afonso, C. L., Suarez, D. L. Effect of probe-site mismatches ondetection of virulent Newcastle disease viruses using a fusion-gene real-timereverse transcription polymerase chain reaction test [J]. J. Vet. Diagn. Invest.2006,18:519–528.
    [50] Toro, H., Hoerr, F. J., Farmer, K., Dykstra, C. C., Roberts, S. R., Perdue, M.Pigeon paramyxovirus: association with common avian pathogens in chickensand serologic survey in wild birds [J]. Avian Dis.2005,49:92–98.
    [51] Abolnik, C., Gerdes, G. H., Kitching, J., Swanepoel, S., Romito, M., Bisschop, S.P. Characterization of pigeon paramyxoviruses (Newcastle disease virus) isolatedin South Africa from2001to2006[J]. Onderstepoort J. Vet. Res.2008,75:147–152.
    [52] Liu, H., Wang, Z., Wu, Y., Zheng, D., Sun, C., Bi, D., Zuo, Y., Xu, T. Molecularepidemiological analysis of Newcastle disease virus isolated in China in2005[J].J. Virol. Methods,2007,140:206–211.
    [53]Appolinaire Djikeng, Rebecca Halpin, Ryan Kuzmickas, Jay DePasse, JeremyFeldblyum, Naomi Sengamalay, Claudio Afonso, Xinsheng Zhang, Norman GAnderson, Elodie Ghedin, David J Spiro. Viral genome sequencing by randompriming methods [J]. BMC Genomics.2008,9:5.
    [54] Knight, S. W., and Bass, B. L. A role for the RNase Ⅲ enzyme DCR-1in RNAinterference and germ line development in Caenorhabditis elegans [J]. Science,2001,293:2269.
    [55] Bernstein, E., Caudy, A. A., Hammond, S. M., Hannon, G. J. Role for a bidentateribonuclease in the initiation step of RNA interference [J]. Nature,2001,409:363.
    [56] S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl.Duplexes of21-nucleotide RNAs mediate RNA interference in culturedmammalian cells [J]. Nature,2001,411:494–498.
    [57] R. H. Plasterk. RNA silencing: the genome's immune system [J]. Science.2002,296:1263–1265.
    [58] J. R. Bertrand, M. Pottier, A. Vekris, P. Opolon, A. Maksimenko, C. Malvy.Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo[J]. Biochem. Biophys. Res. Commun.2002,296:1000–1004.
    [59] J. Martinez, A. Patkaniowska, H. Urlaub, R. Luhrmann, T. Tuschl.Single-stranded antisense siRNAs guide target RNA cleavage in RNAi [J]. Cell,2002,110:563–574.
    [60] D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin, P. D. Zamore. Asymmetryin the assembly of the RNAi enzyme complex [J]. Cell.2003,115:199–208.
    [61] B. S. Heale, H. S. Soifer, C. Bowers, J. J. Rossi. siRNA target site secondarystructure predictions using local stable substructures [J]. Nucleic Acids Res.2005,33:30.
    [62] V. Patzel, S. Rutz, I. Dietrich, C. Koberle, A. Scheffold, S. H. Kaufmann. Designof siRNAs producing unstructured guide-RNAs results in improved RNAinterference efficiency [J]. Nat. Biotechnol.2005,23:1440–1444.
    [63] M. Amarzguioui, H. Prydz. An algorithm for selection of functional siRNAsequences [J]. Biochem. Biophys. Res. Commun.2004,316:1050–1058.
    [64] A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, A. Khvorova.Rational siRNA design for RNA interference [J]. Nat. Biotech-nol.2004,22:,326–330.
    [65] Tracy S. Zimmermann, Amy C. H. Lee, Akin Akinc, Birgit Bramlage, DavidBumcrot, Matthew N. Fedoruk, Jens Harborth, James A. Heyes, Lloyd B. Jeffs,Matthias John, Adam D. Judge, Kieu Lam, Kevin McClintock, Lubomir V.Nechev, Lorne R. Palmer, Timothy Racie, Ingo R hl, Stephan Seiffert, SumiShanmugam, Vandana Sood, Jürgen Soutschek, Ivanka Toudjarska, Amanda J.Wheat, Ed Yaworski, William Zedalis, Victor Koteliansky, Muthiah Manoharan,Hans-Peter Vornlocher, Ian MacLachlan. RNAi-mediated gene silencing innon-human primates [J]. Nature,2006,441:111–114.
    [66]A. S. Cockrell, T. Kafri. Gene delivery by lentivirus vectors [J]. Mol. Biotechnol.2007,36:184–204.
    [67]A.R. Schroder, P. Shinn, H. Chen, C. Berry, J.R. Ecker, F. Bushman. HIV-1integration in the human genome favors active genes and local hotspots[J]. Cell,2002,110:521–529.
    [68]C. Cattoglio, G. Facchini, D. Sartori, A. Antonelli, A. Miccio, B. Cassani, M.Schmidt, C. von Kalle, S. Howe, A.J. Thrasher, A. Aiuti, G. Ferrari, A. Recchia, F.Mavilio. Hot spots of retroviral integration in human CD34+hematopoietic cells[J]. Blood,2007,110:1770–1778.
    [69]B. L. Levine, L. M. Humeau, J. Boyer, R. R. MacGregor, T. Rebello, X. Lu, G. K.Binder, V. Slepushkin, F. Lemiale, J. R. Mascola, F. D. Bushman, B. Dropulic, C.H. June. Gene transfer in humans using a conditionally replicating lentiviralvector[J]. Proc. Natl. Acad. Sci. U. S. A.2006,103:17372–17377.
    [70]J. C. Kappes, X. Wu, J. K. Wake field. Production of trans-lentiviral vector withpredictable safety [J]. Methods Mol. Med.2003,76:449–465.
    [71]N. J. Philpott, A. J. Thrasher. Use of non-integrating lentiviral vectors for genetherapy [J]. Hum. Gene Ther.2007,18:483–489.
    [72]M. Themis, S. N. Waddington, M. Schmidt, C. von Kalle, Y. Wang, F. Al-Allaf, L.G. Gregory, M. Nivsarkar, M. V. Holder, S. M. Buckley, N. Dighe, A. T. Ruthe, A.Mistry, B. Bigger, A. Rahim, T. H. Nguyen, D. Trono, A. J. Thrasher, C. Coutelle.Oncogenesis following delivery of a non-primate lentiviral gene therapy vectorto fetal and neonatal mice [J]. Molec. Ther.2005,12:763–771.
    [73]H. Miyoshi, U. Blomer, M. Takahashi, F. H. Gage, I. M. Verma. Development of aself-inactivating lentivirus vector [J]. J. Virol.1998,72:8150–8157.
    [74]N. Manjunath, P. Kumar, S. K. Lee, P. Shankar. Interfering antiviral immunity:application, subversion, hope?[J]. Trends Immunol.2006,27:328–335.
    [75]J. Cronin, X. Y. Zhang, J. Reiser. Altering the tropism of lentiviral vectors throughpseudotyping [J]. Curr. Gene Ther.2005,5:387–398.
    [76]L. F. Wong, M. Azzouz, L. E. Walmsley, Z. Askham, F. J. Wilkes, K. A.Mitrophanous, S. M. Kingsman, N. D. Mazarakis. Transduction patterns ofpseudotyped lentiviral vectors in the nervous system [J]. Molec. Ther.2004,9:101–111.
    [77]P. Kumar, H. Wu, J. L. McBride, K. E. Jung, M. H. Kim, B. L. Davidson, S. K.Lee, P. Shankar, N. Manjunath. Transvascular delivery of small interfering RNAto the central nervous system [J]. Nature,2007,448:39–43.
    [78]K. Morizono, Y. Xie, G. E. Ringpis, M. Johnson, H. Nassanian, B. Lee, L. Wu, I.S. Chen. Lentiviral vector retargeting to P-glycoprotein on metastatic melanomathrough intravenous injection [J]. Nat. Med.2005,11:346–352.
    [79]N. Pariente, S. H. Mao, K. Morizono, I. S. Chen. Efficient targeted transductionof primary human endothelial cells with dual-targeted lentiviral vectors [J]. J.Gene Med.2008,10:242–248.
    [80]L. Ziegler, L. Yang, K. Joo, H. Yang, D. Baltimore, P. Wang. Targeting lentiviralvectors to antigen-specific immunoglobulins [J]. Hum. Gene Ther.2008,19:861–872.
    [81]L. Yang, H. Yang, K. Rideout, T. Cho, K. I. Joo, L. Ziegler, A. Elliot, A. Walls,D.Yu, D. Baltimore, P. Wang. Engineered lentivector targeting of dendritic cellsfor in vivo immunization [J]. Nat. Biotechnol.2008,26:326–334.
    [82]Mittal V. Improving the efficiency of RNA interference in mammals [J]. NatureRev Gene,2004,5:355-365.
    [83] Sheila A. Stewart, Derek M. Dykxhoorn, Deborah Palliser, Hana Mizuno, EvanY. Yu, Dong Sung An, David M. Sabatin, Irvin S.Y. Chen, William C. Hahn,Phillip A. Sharp, Robert A. Weinberg, Carl D. Novina. Lentivirus-deliveredstable gene silencing by RNAi in primary cells [J]. RNA,2003,9:493-501.
    [84]Lee M. T, Coburn G. A, McClure M. O., Cullon B. R. Inhibition of humanimmunodeficiency virus type-1replication in primary macrophages by usingTat-or CCR5-specific small interfering RNAs expressed from a lentivirus vector[J]. J Virol,2003,77:11964-11972.
    [85]O. ter Brake, B. Berkhout. Lentiviral vectors that carry anti-HIV shRNAs:problems and solutions [J]. J. Gene Med.2007,9:743–750.
    [86]J. Stebbing, G. Moyle. The clades of HIV: their origins and clinical significance[J]. AIDS Rev.2003,5:205–213.
    [87]D. Boden, O. Pusch, F. Lee, L. Tucker, B. Ramratnam. Human immunodeficiencyvirus type1escape from RNA interference [J]. J. Virol.2003,77:11531–11535.
    [88]K. J. von Eije, O. ter Brake, B. Berkhout. Human immunodeficiency virus type1escape is restricted when conserved genome sequences are targeted by RNAinterference [J]. J. Virol.2008,82:2895–2903.
    [89]L. J. Chang, X. Liu, J. He. Lentiviral siRNAs targeting multiple highly conservedRNA sequences of human immunodeficiency virus type1[J]. Gene Ther.2005,12:1133–1144..
    [90]Huang, W. A. Paxton, S. M. Wolinsky, A. U. Neumann, L. Zhang, T. He, S. Kang,D. Ceradini, Z. Jin, K. Yazdanbakhsh, K. Kunstman, D. Erickson, E. Dragon, N.R. Landau, J. Phair, D. D. Ho, R. A. Koup. The role of a mutant CCR5allele inHIV-1transmission and disease progression [J]. Nat. Med.1996,2:1240–1243.
    [91]X. F. Qin, D. S. An, I. S. Chen, D. Baltimore. Inhibiting HIV-1infection in humanT cells by lentiviral-mediated delivery of small interfering RNA against CCR5[J]. Proc. Natl. Acad. Sci.2003,100:183–188.
    [92]A.L. Brass, D. M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, R. J. Xavier, J.Lieberman, S. J. Elledge. Identification of host proteins required for HIVinfection through a functional genomic screen [J]. Science,2008,319:921–926.
    [93]W. Gu, L. Putral, K. Hengst, K. Minto, N. A. Saunders, G. Leggatt, N. A.McMillan. Inhibition of cervical cancer cell growth in vitro and in vivo withlentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6and E7oncogenes [J]. Cancer Gene Ther.2006,13:1023–1032.
    [94]Y. J. Kim, J. Ahn, S. Y. Jeung, D. S. Kim, H. N. Na, Y. J. Cho, S. H. Yun, Y. Jee, E.S. Jeon, H. Lee, J. H. Nam. Recombinant lentivirus-delivered short hairpinRNAs targeted to conserved coxsackievirus sequences protect against viralmyocarditis and improve survival rate in an animal model [J]. Virus Genes,2008,36:141–146.
    [95]A. Pfeifer, S. Eigenbrod, S. Al-Khadra, A. Hofmann, G. Mitteregger, M. Moser, U.Bertsch, H. Kretzschmar. Lentivector-mediated RNAi efficiently suppressesprion protein and prolongs survival of scrapie-infected mice[J]. J. Clin. Invest.2006,116:3204–3210.
    [96]Koo, B. C., Kwon, M. S., Lee, H., Kim, M., Kim, D., Roh, J. Y., Park, Y. Y., Cui,X. S., Kim, N. H., Byun, S. J., Kim, T. Tetracycline-dependent expression of thehuman erythropoietin gene in transgenic chickens [J]. Transgenic Res.2010,19:437–447.
    [97]Kodama, D., Nishimiya, D., Nishijima, K., Okino, Y., Inayoshi, Y., Kojima, Y.,Ono, K., Motono, M., Miyake, K., Kawabe, Y., Kyogoku, K., Yamashita, T.,Kamihira, M., Iijima, S. Chicken oviduct-specific expression of transgene by ahybrid ovalbumin enhancer and the Tet expression system [J]. J. Biosci. Bioeng.2012,113:146–153.
    [98]Mathews J. T. Egg-based production of influenza vaccine:30years of commercialexperience [J]. The Bridge,2006,36:17-24.
    [99]Stern C. D. The chick: a great model system becomes even greater [J]. Dev Cell,2005,8:9-17.
    [100]Chapman S. C, Lawson A, Macarthur W. C, Wiese R. J, Loechel R. H,Burgos-Trinidad M, Wakefi eld J. K., Ramabhadran R, Mauch T. J, SchoenwolfG. C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector[J]. Development,2005,132:935-940.
    [101]Scott B. B, Lois C. Generation of tissue-specific transgenic birds with lentiviralvectors [J]. Proc Natl Acad Sci.2005,102:16443-16447.
    [102]Agate R. J, Scott B. B, Haripal B, Lois C, Nottebohm F. Transgenic songbirdsoffer an opportunity to develop a genetic model for vocal learning [J]. Proc. Natl.Acad. Sci.2009,106:17963-17967.
    [103]van de Lavoir M. C, Diamond J. H, Leighton P. A, Mather-Love C, Heyer B. S,Bradshaw R, Kerchner A, Hooi L. T, Gessaro T. M, Swanberg S. E, DelanyM. E,Etches R. J. Germline transmission of genetically modified primordial germ cells[J]. Nature,2006a,441:766-769.
    [104]Perry M. M. A complete culture system for the chick embryo [J]. Nature,1988,331:70-72.
    [105]Rapp, J. C., Harvey, A. J., Speksnijder, G. L., Hu, W., Ivarie, R. Biologically [J].active human interferon α-2b produced in the egg white of transgenic hens [J].Transgenic Res.2003,12:569–575.
    [106]Koo, B. C., Kwon, M. S., Choi, B. R., Kim, J. H., Cho, S. K., Sohn, S. H., Cho,E. J., Lee, H. T., Chang, W., Jeon, I., Park, J. K., Park, J. B., Kim, T. Productionof germline transgenic chickens expressing enhanced green fluorescent proteinusing a MoMLV-based retrovirus vector [J]. FASEB J.2006,20:2251–2260.
    [107]Koo, B. C., Kwon, M. S., Lee, H., Kim, M., Kim, D., Roh, J. Y., Park, Y. Y., Cui,X. S., Kim, N. H.,mByun, S. J., Kim, T. Tetracycline-dependent expression of thehuman erythropoietin gene in transgenic chickens [J]. Transgenic Res.2010,19:437–447.
    [108]Kwon, M. S., Koo, B. C., Roh, J. Y., Kim, M., Kim, J. H., Kim, T. Production oftransgenic chickens expressing a tetracycline-inducible GFP gene [J]. Biochem.Biophys. Res. Commun.2011,410:890–894.
    [109]Love J, Gribbin C, Mather C, Sang H. Transgenic birds by DNA microinjection[J]. Biotechnology.1994,12:60-63.
    [110]Sang H. Transgenic chickens: Methods and potential applications [J]. TrendsBiotechnol,1994,12:415-420.
    [111]孙研研,蒋斌,郑江霞,徐桂云,曲鲁江,杨宁.胚盘下腔注射法将外源质粒pEGFP-N1导入鸡胚的研究[J].农业生物技术学报,2010,18(4):760-765.
    [112]蒋斌,孙研研,连玲,郑江霞,杨宁.制作石蜡切片验证鸡胚盘显微制作石蜡切片验证鸡胚盘显微注射外源注射外源DNA的效果[J].中国家禽.2013,35(1):5-8.
    [113]薛松磊,张立,谢雨琇,李庆平,冯晓军,沈丹,宋成义,高波. SleepingBeauty (SB)转座子介导增强型绿色荧光蛋白基因(EGFP)体内转染鸡胚胎[J].农业生物技术学报.2013,21(2):185-191.
    [114]Surani M. A, Durcova-Hills G, Hajkova P, Hayashi K, Tee W. W. Germ line,stem cells, and epigenetic reprogramming [J]. Cold Spring Harb Symp QuantBiol.2008,73:9-15.
    [115]Oishi, I. Improvement of transfection efficiency in cultured chicken primordialgerm cells by percoll density gradient centrifugation[J].Biosci. Biotechnol.Biochem.2010,74:2426–2430.
    [116]van de Lavoir, M. C., Collarini, E. J., Leighton, P. A., Fesler, J., Lu, D. R.,Harriman, W. D., Thiyagasundaram, T. S. Etches, R. J. Interspecific germlinetransmission of cultured primordial germ cells[J]. PLoS ONE7.2012, e35664.
    [117]Macdonald, J., Taylor, L., Sherman, A., Kawakami, K., Takahashi, Y., Sang, H.M., Mcgrew, M. J. Efficient genetic modification and germ-line transmission ofprimordial germ cells using piggyBac and Tol2transposons[J].Proc. Natl Acad.Sci.2012,109:1466–1472.
    [118]Park, T. S., Han, J. Y. piggyBac transposition into primordial germ cells is anefficient tool for transgenesis in chickens [J]. Proc. Natl Acad. Sci.2012,109:9337–9341.
    [119]Scott B. B, Lois C. Generation of tissue-specifi c transgenic birds with lentiviralvectors [J]. Proc Natl Acad Sci.2005,102:16443-16447.
    [120]Ivarie R. Avian transgenesis: Progress towards the promise [J]. TrendsBiotechnol.2003,21:14-19.
    [121]Scott B. B, Lois C. Generation of transgenic birds with replication-deficientlentiviruses [J]. Nat Protoc,2006,1:1406-1411.
    [122]Motono, M., Yamada, Y., Hattori, Y., Nakagawa, R., Nishijima, K., Iijima, S.Production of transgenic chickens from purified primordial germ cells infectedwith a lentiviral vector [J]. J. Biosci. Bioeng.2010,109:315–321.
    [123]Lillico S. G, Sherman A, McGrew M. J, Robertson C. D, Smith J, Haslam C,Barnard P, Radcliffe P. A, Mitrophanous K. A, Elliot E. A, Sang H. M..Oviduct-specific expression of two therapeutic proteins in transgenic hens [J].Proc Natl Acad Sci.2007,104:1771-1776.
    [124]McGrew M. J, Sherman A, Lillico S. G, Taylor L, Sang H. Functionalconservation between rodents and chicken of regulatory sequences drivingskeletal muscle gene expression in transgenic chickens [J]. BMC Dev Biol,2010,10:26.
    [125]Wise M. G, Sellers H S, Alvarez R, et al. RNA-dependent RNA polymerase geneanalysis of worldwide Newcastle disease virus isolates representing differentvirulence types and their phylogenetic relationship with other members of theparamyxoviridae [J].Virus Res.2004,104(1):71-80.
    [126] Qing Ge, Michael T. McManus, Tam Nguyen, Ching-Hung Shen, Phillip A.Sharp, Herman N. Eisen, Jianzhu Chen. RNA interference of influenza virusproduction by directly targeting mRNA for degradation and indirectly inhibitingall viral RNA transcription[J]. Proe Natl Acad Sci,2003,100:2718-2723.
    [127]叶健,刘利新,薛远,曲静,高光侠,方荣祥.针对leader序列的siRNA能够有效抑制SARS冠状病毒多个mRNA的表达[J].生物化学与生物物理进展,2007,34(10):1092-1100.
    [128]崔丽瑾,王兴龙,任林柱,伍晓慧,郎需龙,张辉,梅英武,李晓燕,卜朝阳.短发夹结构RNA对口蹄疫病毒2B基因瞬时表达的抑制[J].中国兽医学报,2008,28(5):532-535.
    [129]刘美,母连志,孟柯音,丁壮,丛彦龙,尹仁福,李志杰. RNAi靶向NP、L基因抑制鹅源副黏病毒在鸡胚成纤维细胞中的复制[J].中国兽医学报,2009,29(6):841-844.
    [130]Schubert, S. Grunweller, A.; Erdmann, V. A.; Kurreck, J. Local RNA targetstructure influences siRNA efficacy: Systematic analysis of intentionallydesigned binding regions [J]. J. Mol. Biol.2005,348:883-893.
    [131]Luo, K. Q., Chang, D. C. The gene-silencing efficiency of siRNA is stronglydependent on the local structure of mRNA at the targeted region [J]. Biochem.Biophys. Res. Commun.2004,318:303-310.
    [132]余祖华,丁轲,朱巧艳.新城疫病毒纯化方法的比较研究[J].河南农业科学,2010,9:135-138.
    [133]T. Ahamed, K. M. Hossain, M. M. Billah, K.M.D. Islam, M.M. Ahasan, M.E.Islam. Adaptation of Newcastle Disease Virus (NDV) on Vero Cell Line [J].International Journal of Poultry Science.2004,3(2):153-156.
    [134]Hua Yue, Shu Deng, Fa-long Yang, Ding-fei Li, An-jing Fu, Fan Yang, ChengTang. Short hairpin RNA targeting NP mRNA inhibiting Newcastl disease virusproduction and other viral structural mRNA transcription [J]. Virus Genes,2009,38:143–148.
    [135]Renfu Yin, Zhuang Ding, Xinxin Liu, Lianzhi Mu, Yanlong Cong, TobiasStoeger. Inhibition of Newcastle disease virus replication by RNA interferencetargeting the matrix protein gene in chicken embryo fibroblasts [J]. Journal ofVirological Methods.2010,167:107–111.
    [136]Simon G. Lillico, Michael J. McGrew, Adrian Sherman, Helen M. Sang.Transgenic chickens as bioreactors for protein-based drugs [J]. Drug discoverytoday.2005,10(3):191-197.
    [137]Lois, C., Hong, E. J., Pease, S., Brown, E. J., Baltimore, D. Germlinetransmission and tissue-specific expression of transgenes delivered by lentiviralvectors [J]. Science.2002,295:868–872.
    [138]Pfeifer, A., Ikawa, M., Dayn, Y., Verma, I. M. Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantationembryos [J]. Proc. Natl Acad. Sci.2002,99:2140–2145.
    [139]Susan C. Chapman, Aaron Lawson, William C. MacArthur, Russell J. Wiese,Robert H. Loechel, Maria Burgos-Trinidad, John K. Wakefield, RamRamabhadran, Teri Jo Mauch, Gary C. Schoenwolf. Ubiquitous GFP expressionin transgenic chickens using a lentiviral vector [J]. Development,2004,132:935-940.
    [140]Makoto Motono, Yuki Yamada, Yuki Hattori, Ryo Nakagawa, Ken-ichiNishijima, Shinji Iijima Production of transgenic chickens from purifiedprimordial germ cells infected with a lentiviral vector [J]. Journal of Bioscienceand Bioengineerin.2010,109:315-321.
    [141] Jon Lyall1, Richard M. Irvine, Adrian Sherman, Trevelyan J. McKinley,Alejandro Nú ez, Auriol Purdie, Linzy Outtrim, Ian H. Brown, GenevieveRolleston-Smith, Helen Sang, Laurence Tiley. Suppression of Avian InfluenzaTransmission in Genetically Modified Chickens [J]. Science,2011,331:223-228.
    [142] Mo Sun Kwona, Bon Chul Koob, Bok Ruyl Choia, Hoon Taek Leec, YoungHye Kima, Wang-Shik Ryud, Hosup Shime, Jin-Hoi Kimf, Nam-Hyung Kimb,Teoan Kima. Development of transgenic chickens expressing enhanced greenfluorescent protein [J]. BBRC.2004,320:442-448
    [143]徐世永,丁红梅,孙岩,王蒙,蔡亚飞,刘红林.慢病毒载体介导外源基因在不同细胞及鸡体不同组织中的表达[J].南京农业大学学报,2008,31(3):97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700