SIRT1在肺动脉高压血管重塑中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肺动脉高压是一种不同病因所致肺动脉阻塞,进而引起肺血管阻力增加,最终导致右心衰竭的临床综合征,其进展迅速,预后甚差。现有治疗手段很难阻止更无法逆转疾病的进展,因此PAH目前仍然无法治愈。肺血管重塑是肺动脉高压的显著病理学改变,肺动脉平滑肌增殖是肺血管重塑的关键所在,亦是阻止和逆转PAH进程的关键所在。目前对肺血管重塑发生、发展过程中肺动脉平滑肌增殖所涉及的分子事件还知晓甚少。
     目的:研究Ⅲ类去乙酰化酶SIRT1对肺动脉平滑肌增殖,肺血管重塑的影响。
     方法:首先选用人肺动脉平滑肌细胞(HPASMCs)作为研究对象,首先应用realtimePCR和western blot检测了PDGF-BB诱导时HPASMCs中SIRT1的表达变化;进一步流式细胞术检测JSIRT1在体外对细胞周期的影响;随后过表达和干扰SIRT1,通过realtime PCR和western blot观察基础水平和PDGF-BB诱导后SIRT1对细胞周期蛋白,K+通道蛋白表达水平的影响。其次,建立野百合碱(MCT)诱导的大鼠PAH模型,用SIRT1的激活剂resveratrol进行干预,用漂浮导管检测大鼠肺动脉压力;采用HE染色、免疫组化、EVG染色、TUNEL染色等方法观察模型鼠中膜增厚,血管平滑肌细胞增殖,动脉中凋亡细胞数;通过realtime PCR和western blot观察PAH大鼠肺组织中SIRT1,细胞周期蛋白,K+通道蛋白等的表达变化以及resveratrol干预后这些分子的表达变化。
     结果:PDGF-BB刺激引起HPASMCs中SIRT1的mRNA和蛋白水平出现先降低后增加的动态改变。过表达SIRT1可以将PDGF-BB诱导的HPASMCS阻滞在G1期。过表达SIRT1抑制PDGF-BB诱导的HPASMCs中Kvl.5和Kv2.1的mRNA水平的下调。过表达SlRT1下调HPASMCs中周期蛋白CyclinDl, CyclinE, CDK2的表达,上调p21的表达;SIRT1RNAi上调HPASMCs中CyclinDl, CyclinE, CDK2的表达,下调p21的表达。Resveratrol下调CyclinDl, CyclinE, CDK2的表达,上调p21的表达,SIRT1介导了resveratrol的这种作用。MCT诱导的PAH大鼠肺组织中SIRT1、Kvl.5和Kv2.1,p21的表达明显降低,resveratrol干预减少SIRT1、Kvl.5和Kv2.1,p21的降低,同时改善了肺小动脉中膜增厚、非肌性动脉的肌化,降低了肺动脉压力。
     结论:在细胞水平,PDGF-BB增力HPASMCs中细胞周期蛋白CyclinDl, CyclinE, CDK2的表达,降低p21、Kv1.5和Kv2.1的表达。SIRT1可以下调CyclinDl, CyclinE, CDK2的表达,上调p21、Kv1.5和Kv2.1的表达。将HPASMCs阻滞在Gl期,抑制HPASMCs增殖。SIRT1介导了resveratrol对细胞周期蛋白CyclinD1、CyclinE、 CDK2、p21的调控。在动物水平,resveratrol能增加MCT诱导的PAH大鼠肺组织SIRT1、Kv1.5、Kv2.1和p21的表达,抑制PAH的发展。
Rationale:Pulmonary arterial hypertension (PAH) is a heterogenous syndrome in which pulmonary arterial obstruction increases pulmonary vascular resistance, which leads to right ventricular (RV) failure. Despite aggressive treatments, the mortality of PAH remains high. Current therapies can hardly prevent from progression of PAH. Vascular remodeling is the key pathology of PAH. Proliferation of pulmonary arterial smooth muscle cells (PASMC) is the cytological basis of vascular remodeling. Inhibition of PASMC proliferation might contribute to the regression of PAH.
     Objective:To investigate the role of SIRT1, a class Ⅲ histone deacetylase, in the regulation of human pulmonary arterial smooth muscle cells (HPASMCs) proliferation and vascular remodeling in monocrotaline induced PAH rats.
     Methods:With realtime-PCR and western blot, we examined the expression of SIRT1in HPASMCs stimulated with PDGF-BB. FCM was applied to detect the effects of SIRT1on HPASMCs proliferation in vitro. After over-expression of RNAi to SIRT1, expression of cell cycle protein which functions in G1state, potassium channels proteins including Kv1.5and Kv2.1were examined by western blot or realtime-PCR. Furthermore, rats were injected with monocrotaline (MCT) to developed pulmonary arterial hypertension and resveratrol (2.5mg/kg per day or20mg/kg per day) was feeded orally. We investigated the efficacy of resveratrol to prevent from developing pulmonary arterial hypertension by hemodynamics, HE staining, immunohistochemistry, EVG staining and TUNEL assay. At last,the expressions of SIRT1, Kv1.5, Kv2.1and p21in the lungs of rats were detected by realtime-PCR or western blot.
     Results:We found that the expression of SIRT1in HPASMCs decreased after PDGF-BB stimulation. Adenoviral overexpression of SIRT1inhibited HPASMCs proliferation and led to an arrest of the cells in phase G1. In addition, SIRT1decreased the expression of CyclinDl, CyclinE, CDK2, increased the expression of p21,the G1phase regulatory protein.Meanwhile, SIRT1increased the expression of Kv1.5and Kv2.1. Moreover, resveratraol, SIRT1angonist could attenuat MCT induced pulmonary arterial remodeling and increased SIRT1, Kvl.5, Kv2.1and p21in the lungs of rats, which lead to improvement of pulmonary arterial hypertension.
     Conclusion:Our studies show that SIRT1decreases the expression of CyclinD1, CyclinE and CDK2, increases the expression of Kv1.5and Kv2.1, which result in inhibition of HPASMCs proliferation. Resveratraol, the angonist of SIRT1, exerts antiproliferative effects in the pulmonary arteries, which may contribute to the prevention of pulmonary arterial hypertension
引文
1. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet. May 3 2003;361 (9368):1533-1544.
    2. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. Jul 1995;75(3):487-517.
    3. Glukhova MA, Kabakov AE, Frid MG, et al. Modulation of human aorta smooth muscle cell phenotype:a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc Natl Acad Sci USA. Dec 1988;85(24):9542-9546.
    4. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med Oct 14 2004;351(16):1655-1665.
    5. Barman SA, Zhu S, White RE. RhoA/Rho-kinase signaling:a therapeutic target in pulmonary hypertension. Vasc Health Risk Manag.2009;5:663-671.
    6. Planas-Silva MD, Weinberg RA. The restriction point and control of cell proliferation. Curr Opin Cell Biol. Dec 1997;9(6):768-772.
    7. Pines J. Cyclins and cyclin-dependent kinases:a biochemical view. Biochem J. Jun 15 1995;308(Pt 3):697-711.
    8. Ohtsubo M, Theodoras AM, Schumacher J, et al. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. May 1995;15(5):2612-2624.
    9. Stillman B. Smart machines at the DNA replication fork. Cell. Sep 91994;78(5):725-728.
    10. Sherr CJ. G1 phase progression:cycling on cue. Cell. Nov 18 1994;79(4):551-555.
    11. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol. Aug 1995;15(8):4215-4224.
    12. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies. Circulation. May 11;121(18):2045-2066.
    13. Archer SL, Souil E, Dinh-Xuan AT, et al. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. Jun 1 1998;101(11):2319-2330.
    14. Pozeg ZI, Michelakis ED, McMurtry MS, et al. In vivo gene transfer of the 02-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation. Apr 22 2003; 107(15):2037-2044.
    15. Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction:the tale of two channels. Faseb J. Feb 1995;9(2):183-189.
    16. Post JM, Hume JR, Archer SL, et al. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am JPhysiol. Apr 1992;262(4 Pt 1):C882-890.
    17. Patel AJ, Lazdunski M, Honore E. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. Embo J. Nov 17 1997;16(22):6615-6625.
    18. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem.2007;76:75-100.
    19. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. Jun 241999;260(1):273-279.
    20. Narala SR, Allsopp RC, Wells TB, et al. SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell. Mar 2008;19(3):1210-1219.
    21. Orimo M, Minamino T, Miyauchi H, et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol. Jun 2009;29(6):889-894.
    22. Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirTl regulate apoptotic response to DNA damage. Nat Cell Biol. Sep 2006;8(9):1025-1031.
    23. Tsai LH, Lees E, Faha B, et al. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene. Jun 1993:8(6):1593-1602.
    24. Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. Apr 15 2008; 177(8):861-870.
    25. Zhang J, Lee SM, Shannon S, et al. The type Ⅲ histone deacetylase Sirtl is essential for maintenance of T cell tolerance in mice. J Clin Invest. Oct 2009;119(10):3048-3058.
    26. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. Oct 1999;79(4):1283-1316.
    27. Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. Febs J. Nov 2005;272(22):5723-5741.
    28. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. Oct 2005;115(10):2811-2821.
    29. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. Feb 17 2000;403(6771):795-800.
    30. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism:understanding longevity. Nat Rev Mol Cell Biol. Apr 2005;6(4):298-305.
    31. Bai L, Pang WJ, Yang YJ, et al. Modulation of Sirtl by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem. Jan 2008;307(1-2):129-140.
    32. Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirtl contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. Apr 2008;10(4):385-394.
    33. Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One.2008;3(4):e2020.
    34. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRTl deacetylase. Science. Mar 26 2004;303(5666):2011-2015.
    35. Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. Jan 12 2006;25(2):176-185.
    36. Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. Nov 15 2005;65(22):10457-10463.
    37. Sasaki T, Maier B, Bartke A, et al. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell. Oct 2006;5(5):413-422.
    38. Csiszar A, Smith K, Labinskyy N, et al. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells:role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol. Oct 2006;291(4):H1694-1699.
    39. Labinskyy N, Csiszar A, Veress G, et al. Vascular dysfunction in aging:potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem.2006;13(9):989-996.
    40. Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. Aug 2008;8(2):157-168.
    41. Ungvari Z, Orosz Z, Rivera A, et al. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol. May 2007;292(5):H2417-2424.
    42. Wang Z, Chen Y, Labinskyy N, et al. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts. Biochem Biophys Res Commun. Jul 212006;346(1):367-376.
    43. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. Apr 29 2005;280(17):17187-17195.
    44. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. JBiol Chem. Apr 29 2005;80(17):17038-17045.
    45. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. Apr 2005;37(4):349-350.
    46. Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. Jun 17 2004;429(6993):771-776.
    47. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J. Jun 16 2004;23(12):2369-2380.
    48. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. Sep 112003;425(6954):191-196.
    49. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. Aug 5 2004;430(7000):686-689.
    50. Chattergoon NN, D'Souza FM, Deng W, et al. Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. Jan 2005;288(1):L202-211.
    51. Li M, Li Z, Sun X, et al. Heme oxygenase-1/p21 WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. Febs J. Mar;277(6):1543-1550.
    52. Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. Jul 3 2007;104(27):11418-11423.
    53. Michelakis ED, Dyck JR, McMurtry MS, et al. Gene transfer and metabolic modulators as new therapies for pulmonary hypertension. Increasing expression and activity of potassium channels in rat and human models. Adv Exp Med Biol.2001;502:401-418.
    54. Moudgil R, Michelakis ED, Archer SL. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis:implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation. Dec 2006;13(8):615-632.
    55. Platoshyn O, Yu Y, Golovina VA, et al. Chronic hypoxia decreases K(V) channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol. Apr 2001;280(4):L801-812.
    56. Yuan JX, Aldinger AM, Juhaszova M, et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation. Oct 6 1998;98(14):1400-1406.
    57. Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence. Nat Rev Drug Discov. Jun 2006;5(6):493-506.
    58. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. Faseb J. Aug 2001;15(10):1798-1800.
    59. Tessitore L, Davit A, Sarotto I, et al. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis. Aug 2000;21(8):1619-1622.
    60. Kimura Y, Okuda H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J Nutr. Jun 2001; 131(6):1844-1849.
    61. Tseng SH, Lin SM, Chen JC, et al. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res. Mar 15 2004; 10(6):2190-2202.
    62. Bove K, Lincoln DW, Tsan MF. Effect of resveratrol on growth of 4T1 breast cancer cells in vitro and in vivo. Biochem Biophys Res Commun. Mar 8 2002;291(4):1001-1005.
    63. Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. Oct 2007;6(4):307-319.
    64. Lekli I, Szabo G, Juhasz B, et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats:the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol. Feb 2008;294(2):H859-866.
    65. Penumathsa SV, Koneru S, Samuel SM, et al. Strategic targets to induce neovascularization by resveratrol in hypercholesterolemic rat myocardium:role of caveolin-1,endothelial nitric oxide synthase, hemeoxygenase-1, and vascular endothelial growth factor. Free Radic Biol Med. Oct 12008;45(7):1027-1034.
    66. Thirunavukkarasu M, Penumathsa SV, Koneru S, et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes:Role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med. Sep 12007;43(5):720-729.
    67. Hunter T, Pines J. Cyclins and cancer. Ⅱ:Cyclin D and CDK inhibitors come of age. Cell. Nov 18 1994;79(4):573-582.
    68. Baldin V, Lukas J, Marcote MJ, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. May 1993;7(5):812-821.
    69. Quelle DE, Ashmun RA, Shurtleff SA. et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. Aug 1993;7(8):1559-1571.
    70. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. Dec 17 2004;306(5704):2105-2108.
    71. Hsueh WA, Jackson S, Law RE. Control of vascular cell proliferation and migration by PPAR-gamma:a new approach to the macrovascular complications of diabetes. Diabetes Care. Feb 2001;24(2):392-397.
    72. Lee HY, Chung JW, Youn SW, et al. Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. Feb 16 2007;100(3):372-380.
    73. Zhang Y, Liu C, Zhu L, et al. PGC-1 alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells. PLoS One.2007;2(11):e1137.
    74. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-lalpha. Embo J. Apr 4 2007;26(7):1913-1923.
    75. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature. Mar 3 2005;434(7029):113-118.
    76. Lekakis J, Rallidis LS, Andreadou I, et al. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil. Dec 2005;12(6):596-600.
    77. Liu Z, Song Y, Zhang X, et al. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin Exp Pharmacol Physiol. Dec 2005:32(12):1049-1054.
    78..Wilson T, Knight TJ, Beitz DC, et al. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci.1996;59(1):PL15-21.
    1. Thenappan T, Shah SJ, Rich S, et al. A USA-based registry for pulmonary arterial hypertension:1982-2006. Eur Respir J. Dec 2007;30(6):1103-1110.
    2. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. JAm Coll Cardiol. Jun 16 2004;43(12 Suppl S):13S-24S.
    3. Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. JAm Coll Cardiol. Jun 16 2004;43(12 Suppl S):25S-32S.
    4. Tuder RM, Chacon M, Alger L, et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension:evidence for a process of disordered angiogenesis. JPathol. Oct 2001;195(3):367-374.
    5. Christman BW, McPherson CD, Newman JH, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. Jul 9 1992;327(2):70-75.
    6. Steudel W, Ichinose F, Huang PL, et al. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res. Jul 1997;81(1):34-41.
    7. Stewart DJ, Levy RD, Cernacek P, et al. Increased plasma endothelin-1 in pulmonary hypertension:marker or mediator of disease? Ann Intern Med. Mar 15 1991;114(6):464-469.
    8.. Sakao S, Taraseviciene-Stewart L, Lee JD, et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. Faseb J. Jul 2005;19(9):1178-1180.
    9. McMurtry MS, Moudgil R, Hashimoto K, et al. Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. Apr 2007;292(4):L872-878.
    10. McMurtry MS, Archer SL, Altieri DC, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest. Jun 2005;115(6):1479-1491.
    11. Eddahibi S, Raffestin B, Hamon M, et al. Is the serotonin transporter involved in the pathogenesis of pulmonary hypertension? J Lab Clin Med. Apr 2002; 139(4):194-201.
    12. Guignabert C, Izikki M, Tu LI, et al. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res. May 26 2006;98(10):1323-1330.
    13. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. Oct 2005;115(10):2811-2821.
    14. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics. Apr 22 2008;33(2):278-291.
    15. Yuan XJ, Wang J, Juhaszova M, et al. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet. Mar 7 1998;351(9104):726-727.
    16. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies. Circulation. May 11;121(18):2045-2066.
    17. Voelkel NF, Cool C, Lee SD, et al. Primary pulmonary hypertension between inflammation and cancer. Chest. Sep 1998;114(3 Suppl):225S-230S.
    18. Archer SL, Gomberg-Maitland M, Maitland ML, et al. Mitochondrial metabolism, redox signaling, and fusion:a mitochondria-ROS-HIF-lalpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. Feb 2008;294(2):H570-578.
    19. Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible factor-lalpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats:similarities to human pulmonary arterial hypertension. Circulation. Jun 6 2006;113(22):2630-2641.
    20. Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. Jan 2007;11(1):37-51.
    21. Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase:a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. Mar 2006;3(3):177-185.
    22. Michelakis ED, McMurtry MS, Wu XC, et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats:role of increased expression and activity of voltage-gated potassium channels. Circulation. Jan 15 2002;105(2):244-250.
    23. Guignabert C, Tu L, Izikki M, et al. Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. Faseb J. Dec 2009;23(12):4135-4147.
    24. Herve P, Launay JM, Scrobohaci ML, et al. Increased plasma serotonin in primary pulmonary hypertension. Am J Med. Sep 1995;99(3):249-254.
    25. Eddahibi S, Humbert M, Fadel E, et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest. Oct 2001;108(8):1141-1150.
    26. Kawut SM, Horn EM, Berekashvili KK, et al. Selective serotonin reuptake inhibitor use and outcomes in pulmonary arterial hypertension. Pulm Pharmacol Ther.2006;19(5):370-374.
    27. Welsh DJ, Harnett M, MacLean M, et al. Proliferation and signaling in fibroblasts:role of 5-hydroxytryptamine2A receptor and transporter. Am J Respir Crit Care Med. Aug 1 2004;170(3):252-259.
    28. Launay JM, Herve P, Peoc'h K, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. Oct 2002;8(10):1129-1135.
    29. Sitbon O, Humbert M, Jais X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. Jun 14 2005;111(23):3105-3111.
    30. Archer SL, Souil E, Dinh-Xuan AT, et al. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. Jun 1 1998;101(11):2319-2330.
    31. Pozeg ZI, Michelakis ED, McMurtry MS, et al. In vivo gene transfer of the O2-sensitive potassium channel Kvl.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation. Apr 22 2003;107(15):2037-2044.
    32. Yu Y, Platoshyn O, Zhang J, et al. c-Jun decreases voltage-gated K(+) channel activity in pulmonary.artery smooth muscle cells. Circulation. Sep 25 2001;104(13):1557-1563.
    33. Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. Jul 3 2007; 104(27):11418-11423.
    34. Hansmann G, de Jesus Perez VA, Alastalo TP, et al. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest. May 2008;118(5):1846-1857.
    35. Ishigami M, Swertfeger DK, Granholm NA, et al. Apolipoprotein E inhibits platelet-derived growth factor-induced vascular smooth muscle cell migration and proliferation by suppressing signal transduction and preventing cell entry to G1 phase. J Biol Chem. Aug 7 1998;273(32):20156-20161.
    36. Said SI, Hamidi SA, Dickman KG, et al. Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation. Mar 13 2007;115(10):1260-1268.
    37. Hamidi SA, Prabhakar S, Said SI. Enhancement of pulmonary vascular remodelling and inflammatory genes with VIP gene deletion. Eur Respir J. Jan 2008;31(1):135-139.
    38. Petkov V, Mosgoeller W, Ziesche R, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. May 2003;111(9):1339-1346.
    39. Qi JQ Ding YG, Tang CS, et al. Chronic administration of adrenomedullin attenuates hypoxic pulmonary vascular structural remodeling and inhibits proadrenomedullin N-terminal 20-peptide production in rats. Peptides. Apr 2007;28(4):910-919.
    40. Nagaya N, Kyotani S, Uematsu M, et al. Effects of adrenomedullin inhalation on hemodynamics and exercise capacity in patients with idiopathic pulmonary arterial hypertension. Circulation. Jan 27 2004;109(3):351-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700