鹅细小病毒非结构和结构蛋白B细胞线性抗原表位区的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅细小病毒病(Gosling pavovirusis,GPVS)是雏鹅的烈性传染病,又称小鹅瘟或Derzsy's病。多发生于4日龄至20日龄以内的雏鹅。发病率和死亡率可高达90%~100%。该病病原为鹅细小病毒(Goose parvovirus,GPV),能感染各种品种的雏鹅,也可以感染雏番鸭。目前,该病仍为养鹅业最主要的传染病之一,造成巨大的经济损失。由于本病长期困扰着养鹅业的发展,所以需要一种,准确、简便的诊断方法来对该病作出早期诊断;也需要通过分析病毒的抗原成分筛选合适的肽段作为亚单位疫苗用于本病的免疫防治。但这种诊断试剂和亚单位疫苗的研制,必须建立在对病毒蛋白抗原性的研究之上。细小病毒都具有基因组短小,衣壳结构简单的特点,所以更容易将它们无关的抗原成分筛除,在制造亚单位疫苗和重组诊断抗原上具有很多优势。
     本研究首先构建了含有GPV H1株非结构蛋白(NS1)和结构蛋白(VP1)基因的重组克隆载体pMD18-T-NS1和pMD18-T-VP1。经测序鉴定正确后,分别作为截短表达片段PCR扩增的模板。
     为了对NS1蛋白(627aa)进行抗原表位作图,设计了一套覆盖整个NS1蛋白的短肽,这些短肽长为50-60个氨基酸,有10-15个氨基酸重叠。为了表达这些短肽,共设计合成了15对引物。将这些亚克隆的基因片段插入至原核表达载体pGEX-6P-1中,经IPTG诱导获得了表达。利用切胶纯化的方法对表达蛋白进行了纯化,纯化蛋白经抗GST单克隆抗体鉴定。应用GPV H1株活疫苗毒免疫的10周龄鹅血清对表达的15个重组蛋白的抗原性进行了检测,Western blot结果表明,表达的融合蛋白NS(453-514)、NS(485-542)、NS(533-598)和NS(575-627)能被GPV免疫的鹅血清所识别。根据以上试验结果,进一步设计表达了覆盖NS1蛋白C末端453-627aa的7个截短短肽,这些短肽长为30个氨基酸左右,有10~15个氨基酸重叠。Western blot结果表明,表达的融合蛋白NS(485-514)、NS(498-532)、NS(523-556)、NS(543-573)、NS(564-598)和NS(599-627)能被GPV免疫的鹅血清所识别。
     为了对VP1蛋白(732aa)进行抗原表位作图,设计并表达了19个覆盖整个VP1蛋白的短肽,这些短肽长为50~60个氨基酸,有10~15个氨基酸重叠。Western blot结果表明,表达的融合蛋白VP(35-100)、VP(81-136)、VP(124-161)、VP(146-198)、VP(423-491)、VP(531-595)、VP(616-669)和VP(678-732)能被GPV免疫的鹅血清所识别。根据以上试验结果,进一步设计表达了16个覆盖VP1蛋白抗原性片段的短肽,这些短肽长为30个氨基酸左右,有10~15个氨基酸重叠。Western blot结果表明,表达的融合蛋白VP(35-63),VP(50-81),VP(111-145),VP(136-161),VP(423-453),VP(462-491),VP(531-560),VP(548-577),VP(616-647),VP(634-669),VP(678-706)和VP(697-732)能被GPV免疫的鹅血清所识别。
     综合上述试验结果,GPV H1株NS1蛋白的B细胞线性抗原表位区位于NS1蛋白的羧基末端485-627aa;GPV H1株VP1蛋白的B细胞线性抗原表位区位于35-81aa、111~198aa、423~453aa、462~491aa、531~577aa、616~669aa和678~732aa。
     总之,对以体液免疫反应为主的GPV来说,鉴定其B细胞抗原表位可以揭示GPV体液免疫的本质,填补GPV抗原表位研究上的空白,对深入了解GPV的抗原分子特性,病毒变异对免疫原性及致病性的影响,建立基于抗原表位水平的特异性诊断方法以及设计新型的抗GPV疫苗等具有重要意义。
Goose parvovirus(GPV) infection,also known as goose plaque or Derzsy's disease,causes high mortality in domestic goslings(Anser anser vardom) and Muscovy ducklings(Cairina moschata).It caused 90 to 100%mortality in susceptible goslings under the age of 4 days to 20 days.GPV infection has been reported from many goose-producing countries,and caused huge economic loss.Owing to the hindrance to development of goose cultural industry because of this desease,there needs accurate,convenient diagnostic method for early diagnosis avoiding the interference of maternal antibodies.Meanwhile,it needs monitor the level of maternal antibodies. Furthermore,it needs analyze the viral antigen to select the suitable peptides be as subunits vaccine for desease prevention.
     Notwithstanding many veterinary researchers paid close attention to GPV,the study about the antigenicity of viral protein fell behind other aspects.The genome of the members of parvovirinae is small and the capsid structure is simple,so it is easy to eliminate independent antigenic component.Thus,it has superiority in prepareing subunit vaccine and recombinant diagnostic antigen.Except for this,GPV not only has the high mortality feature of autonomously replicating parvoviruses,but also has the genetic feature of dependovirus.Therefore,we can study the GPV collateing the research finding of other parvovirus.
     In this study,two recombinant plasmids harboring non-structural and structural protein gene named pMD18-T-NS1 and pMD18-T-NS1 were constructed and sequenced.The two recombinant plasmids were used as the templates for PCR in the next procedure.
     To map the antigenic epitopes of non-structural protein,a set of partially overlapping fragments of 50-60aa spanning the protein were designed.The totals of 15 pairs of primers were synthesized. All the forward primers contained a BamHI restriction site,and reverse primers contained a termination codon and an XhoI restriction site.PCR products were cloned into expression vector, pGEX-6P-1(Amersham Pharmacia Biotech,Sweden) and the map of these fragments confirmed by sequencing.Each fragment was expressed as glutathione S-transferase(GST) fusion proteins in Escherichia coli Rosetta(DE3)pLysS and purified by elution from sodium dodecyl sulphate(SDS) polyacrylamide gels.Anti-GST tag MAb was used to identify the purified protein.Then western blot reactivity of these short peptide fused protein to viral infected sera were surveyed.Linear immunodominant B-cell epitopes were primarily found in four fragments:NS(453-514), NS(485-542),NS(533-598),NS(575-627).The further 7 overlapping fragments of the NS1 protein from 453 to 627aa were also expressed in E.coli.The further results of mapping NS1 protein immunodominant epitopes are fragments NS(498-532) which showed strongly positive,fragments NS(485-514),NS(523-556),NS(543-573),NS(564-598) and NS(599-627) which were weakly positive.
     To map the antigenic epitopes of structural protein,a set of partially overlapping fragments of 50-60aa spanning the protein were designed.The totals of 19 pairs of primers were synthesized. Western blot reactivity of these short peptide fused protein to viral infected sera were surveyed. Linear immunodominant B-cell epitopes were primarily found in fragments:VP(35-100), VP(81-136),VP(124-161),VP(146-198),VP(423-491),VP(531-595),VP(616-669) and VP(678-732).The further 16 overlapping fragments of the VP1 antigenic protein were also expressed in E.coli.The further results of mapping VP1 antigenic protein immunodominant epitopes are fragments:VP(35-63),VP(50-81),VP(111-145),VP(136-161),VP(423-453), VP(462-491),VP(531-560),VP(548-577),VP(616-647),VP(634-669),VP(678-706) and VP(697-732).
     Thus,the non-structural protein linear B-cell epitopes are located on the C-terminal, (485-627aa).The structural protein linear B-cell epitopes are located on the 35-81aa,111-198aa, 423-453aa,462-491aa,531-577aa,616-669aa and 678-732aa.
     After goose parvovirus infection,the host principal immune reaction is humoral immune reaction.Identification of B-cell epitopes can reveal the essence of humoral immune reaction and supply the blank in GPV research.Meanwhile,because of GPV supposed to be the antecedent of autonomous parvovirus and dependovirus,the study about GPV non-structural and structural protein antigenicity can complete the knowledge of interaction between parvovirus and their hosts. In a word,identification of antigenic epitopes of the non-structural and structural protein of GPV may be helpful in understanding molecular properties of non-structural and structural protein of GPV,as well as relationship between immunogenicity or pathogenesis and gene variations of the virus.Therefore,the results from the study may also be useful for diagnosis of GPV infection based on antigenic epitope or developing a new strategy for vaccine design.
引文
布日额,王君伟,吴金花,等.2003.GPV野毒株的分离及PCR检测方法的应用.中国预防兽医学报.25(6):469-472.
    布日额,王君伟,吴金花,等.2003.鹅细小病毒VP1与VP3非重叠序列的克隆与原核表达.中国兽医杂志.39(10):3-6.
    布日额,王君伟,吴金花,等.2004.用地高辛标记核酸探针检测鹅细小病毒的研究.畜牧兽医学报.35(1):102-105.
    布日额,王君伟,吴金花,等.2005.鹅细小病毒VP1-VP3非重叠序列地高辛探针的制备和应用.中国兽医杂志.41(1):7-10.
    布日额.2005.GPV VP及NS基因克隆及原核表达产物的研究应用.东北农业大学博士研究生学位论文.
    常国权,杨盛华,邹啸环,等.1996.小鹅瘟病毒的直接透射电镜检测.中国兽医学报.16(1):93.
    陈伯伦,叶本衡,黎杰虹.1985.小鹅瘟鸭胚化GD弱毒疫苗的研究.畜牧兽医学报.16(4):269-273.
    程凌鹏,陈森雄,Brannan J,等.2004.伊蚊C6/36细胞浓核病毒蛋白衣壳三维结构的测定.中国科学C辑.34(1):75-79.
    程凌鹏,陈森雄,李茵茵,等.2004.C6P36浓核病毒111nm分辨率三维结构.电子显微学报.23(4):346-346.
    段玉友,崔治中,王永坤.1993.鹅细小病毒核酸探针的制备及应用.中国畜禽传染病.72(5):37-39.
    方定一,王永坤,郑玉美,等.1981.小鹅瘟病原体及其特异性防治的研究.中国农业科学.(1):1-8.
    方定一.小鹅瘟介绍.1962.中国兽医杂志.8:19-20.
    何长生,魏建忠.2003.禽细小病毒分子生物学研究进展.动物医学进展.24(3):12-14.
    洪峰,共引贤.1991.鹅源鸭瘟与GPV二联弱毒苗的研究.畜牧兽医学报.17(4):407-410.
    胡桂学,逢博,高凤山,等.2003.小鹅瘟PCR诊断方法的建立和初步应用.经济动物学报.7(2):50-53.
    胡奇林,陈少莺,林天龙,等.2001.应用PCR快速鉴别番鸭和鹅细小病毒.中国预防兽医学报.23(6):447-450.
    胡奇林,程由铨,陈少莺,等.2000.四种检测番鸭细小病毒抗原方法的比较.福建畜牧兽医.22(2):4-6.
    黄诚,程安春,汪铭书,等.2004.鹅细小病毒强毒PCR检测方法的建立.中国兽医科技.34(9):54-60.
    黄奇昌,王红宁.1997.抗小鹅瘟异源高免血清的研制和应用.四川农业大学学报.15(1):99-101.
    季芳,张毓金,杨增岐,等.2003.番鸭和鹅细小病毒PCR鉴别方法的建立.动物医学进 展.24(5):99-101.
    卡尔尼克B W主编.1991.高福,刘文军主译.禽病学.第九版.北京:北京农业大学出版社:989-999.
    孔宪刚,李桂霞,刘胜旺,等.2005.鹅细小病毒分离株HG5/82的分子特性研究.中国病毒学.20(1):28-32
    李波.2007.小鹅瘟的防治.黑龙江畜牧兽医.(7):136.
    李福伟,李惠敏,张桂红,等.2006.小鹅瘟的研究进展.广东畜牧兽医科技.31(4):13-15.
    李福伟,张桂红,吴玄光.2006.小鹅瘟的PCR诊断方法的建立.黑龙江畜牧兽医.(6):63-64.
    李桂霞,刘胜旺,孔宪刚,等.2005.鹅细小病毒HG5/82株的分离鉴定及生物学特性的研究.中国预防兽医学报.22(1):21-23.
    李莉,湛东华,周正洪,等.2002.嶂螂浓核病毒三维结构的对比分析.科学通报.47(23):1807-1810.
    李茂祥,李俊宝,郑玉美.1990.小鹅瘟病毒纯化及其理化特性的研究.病毒学报.6:155-159.
    李新华.1998.抗小鹅瘟病毒中和性单克隆抗体的研制及实验防治效果.中国畜禽传染病.4:247-249
    李新华.1998.应用斑点酶联免疫吸附试验快速诊断小鹅瘟的研究.中国兽医科技.28(1):21-22.
    李新华.1999。免疫酶斑点法快速诊断小鹅瘟.中国兽医杂志.25(4):11-12.
    李雪梅,章金刚,向华,等.2001.鹅细小病毒国内分离株主要结构蛋白(VP2-VP3)基因的克隆和序列分析.动物科学与动物医学.18(3):31-34.
    李忠明,张延龄,徐德启,等.当代新疫苗.2001.北京:高等教育出版社:3-7;33-35;126.
    林世堂,郁晓岚,陈炳钿,等.1991.一种新的雏番鸭病毒性传染病的诊断.中国畜禽传染病.57(2):25-26.
    刘家森,姜骞,司昌德,等.2007.番鸭细小病毒与鹅细小病毒PCR鉴别诊断方法的建立.中国兽医科学.37(6):469-472.
    刘洋,麻素然.2006.小鹅瘟的PCR检测内蒙古民族大学学报(自然科学版).21(2):182-183.
    娄华,白挨泉,顾万军,等.2001.番鸭细小病毒强弱毒株VP2基因的序列测定比较.病毒学报.17(2):175-179.
    娄华,杨德威,贺东升,等.2002.番鸭细小病毒与鹅细小病毒的PCR鉴别诊断.中国预防兽医学报.22(6):458-460.
    马君,章金刚,李雪梅,等.2000.鹅细小病毒主要结构蛋白基因的扩增克隆与原核表达载体的构建.中国兽医学报.20(6):554-557.
    潘玉民,董玉平,石全瑞,等.1990.小鹅瘟免疫荧光诊断方法的研究.中国兽医科技.10: 6-10.
    彭万强,朱治远,黄承锋,等.1992.GPV鸭胚化弱毒疫苗对雏鹅的免疫研究.中国兽医科技.22(4):9-11.
    秦爱建,王永坤,周阳生,等.1993.免疫酶琼脂扩散在小鹅瘟诊断中的应用.中国畜禽传染病.68(1):30-31.
    邱薇,范泉水,李作生,等.2005.犬细小病毒VP2基因的比较及分型研究.动物医学进展.26(5):69-72.
    邵昱昊,王静,王懂帅,等.2006.鹅细小病毒VP基因片段的原核表达及抗血清的制备.中国病毒学.21(6):581-584.
    沈关心等译.Harlow E,Lane D编著.2002.抗体实验技术指南.北京:科学出版社.232--242.
    斯佩客特D L,戈德曼R D,莱因万德L A.2001.细胞实验指南.北京:科学出版社:27-28;71-72;781-786.
    苏颖,王姝.2007.小鹅瘟的诊断与防制。现代畜牧兽医.(3):39-40.
    孙怀昌,李俊宝,朱少漩,等.1989.用抗小鹅瘟病毒单抗IgG建立反向间接血凝试验的研究.中国畜禽传染病.(2):44-46.
    汤明,廖德惠,谢镜怀.1994.应用改良琼脂免疫扩散试验检测小鹅瘟病毒的研究.中国兽医杂志.20(8):7-8.
    田晋红,等.1994.四川微生物学会论文集.7:37-43.
    田丽红,贾永清,王君伟,等.2002.鹅细小病毒重组禽痘病毒转移载体的构建.中国兽医科技.32(9):5-7.
    王静,王懂帅,韩宗玺,等.2006.鹅细小病毒VP1基因片段的原核表达及抗血清的制备.农业生物技术学报.2006,14(5):788-792.
    王永坤,孟松树,张建珍,等.1998.中国畜禽兽医学会禽病学会第九次学术研讨会论文集.南宁:中国畜牧兽医学会.111-117
    王永坤,钱钟,秦淑美,等.2004.雏番鸭细小病毒和小鹅瘟病毒特性比较及二联活苗的应用.中国禽业导刊.21(9):18-20.
    王永坤,田慧芳.2007.小鹅瘟的流行与有效防制措施.现代畜牧兽医.(1):32-35.
    王政富,娄华.1995.雏番鸭细小病毒抗血清的制备和应用.养禽与禽病防治.1:11-12.
    徐建生,李俊宝,董国雄.1997.小鹅瘟病毒单抗的防治效果.中国畜禽传染病.96(5):17-19.
    许振忠,王萌新.1995.抗小鹅瘟高免卵黄抗体的制备和应用.四川畜禽.10:17-18.
    姚笛,张勇,朱战波.2006.应用PCR方法检测鹅细小病毒感染.黑龙江八一农垦大学学报.18(3):64-67.
    殷震,刘景华.1997.动物病毒学.北京:科学出版社.1603.
    于天飞,马波,邢明伟,等.2007.鹅细小病毒非结构蛋白和结构蛋白的二级结构及B细胞抗原表位预测.中国家禽.29(7):7-11.
    余兵,王永坤,刘宝荣,等.2002.鹅细小病毒主要免疫原性蛋白基因的克隆与序列分析. 病毒学报.18(3):259-263.
    余兵,王永坤,朱国强.2002.应用核酸斑点杂交法检测鹅细小病毒(GPV).中国兽医学报.22(9):453-454.
    俞翔.1988.抗小鹅瘟免疫血清和免疫卵黄浆的制备及临床应用效果.中国兽医科技.12:25-27.
    虞德屏,韦平,阳艳,等.2004.小鹅瘟快速诊断技术的建立及其应用.广西畜牧兽医.20(2):69-71.
    张绍杰,童光志,王柳,等.2000.传染性喉气管炎(ILTV)糖蛋白gB在重组禽痘病毒中的表达.中国预防兽医学报.20(3):205-208.
    张守峰,扈荣良.2004.通过自制PCR试剂盒确诊雏鹅细小病毒感染.中国兽医学报.24(6):537-538.
    赵丽荣,王君伟,贾永清.2003.鹅细小病毒重组禽痘病毒的构建与免疫原性研究.中国预防兽医学报.25(6):10-13.
    周斌,苗晋锋.2001.苏州地区小鹅瘟的诊断分析和防止对策.中国家禽.23:25-26.
    周春宇,程安春,汪铭书,等.2006.检测鹅细小病毒的间接免疫酶组织化学法的建立.中国兽医杂志.42(8):19-21.
    周阳生,田慧芳,方定一.1984.小鹅瘟疫苗对初生雏鹅的安全性及免疫力试验.畜牧兽医学报.16(9):2-4.
    周阳生,王永坤,方定一.1985.用小鹅瘟疫苗接种母鹅后对其雏鹅天然被动免疫期的测定.中国兽医杂志.11(10):51-52.
    朱少璇.1989.抗小鹅瘟病毒单克隆抗体及其在防治上的初步应用.江苏农学院学报.10(3):41-44.
    邹叔和,李心坦,周建强,等.1992.ABC-ELISA检测小鹅瘟的研究.动物检疫.9(3):6-7.
    Agbandje M,Mckenna R,Rossmann M G,et al.1993.Structure determination of feline parnleukopenia virus empty particles.Protein,16:155-171.
    Agbanje M.,Kajigaya S.,Mckenna R.,et al.1994.The structure of human parvovirus B 19 at 8 人 resolution.Virology.203:106-115.
    Alexander H,Alexander S,Getzoff E D,et al.1992.Altering the antigenicity of proteins.Proc Natl Acad Sci U S A.89(8):3352-3356.
    Alexandrov M,Alexandrova R,Alexandrov I,et al.1999.Fluorescent and electron-microscopy immunoassays employing polyclonal and monoclonal antibodies for detection of goose parvovirus infection.Journal of Virology Methods.79:21-32
    Almeida J D,Deinhardt F,Holmes A W,et al.1976.Morphology of the GB hepatitis agent.Nature.261:608-609.
    Anouja F,Wattiez R,Moussedt S,et al.1997.The cytotoxicity of parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins.J.Virol.71(6):4671-4678.
    Anthony-Cahill SJ,Benfied P A.Fairman R,et al.1992.Molecular characterization of Helix-Loop-Helixptide. Scince. 255: 979-983.
    Appleton H. 1977. Virus particles in marmoset hepatitis. Nature. 267: 729-730.
    Astell C R, Chow M B, Ward D C. 1985. Sequence analysis of the termini of virion and replicative forms of minite virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J. Virol. 54(1): 171-177.
    Astell C R, Mol C D and Anderson W R. 1987. Structural functional homology of parvovirus and papovavirus polypeptides. General Virology. 68: 885-893.
    Astell C R, Thomson M, Merchlins M J, et al. 1984. The complete DNA sequence of mime virus of mice, an autonomous parvovirus. Nucleic acids Res. 11: 999.
    Astell C R. 1990. Terminal hairpins of parvovirus genomes and their role in DNA replication. In: Tijssen P. Handbook of parvovirus. CRC Press. 59-79.
    Bardona C J, Reed W M, Witter R L, et al. 1999. Protein of turkeys from hemorrhagic enteritiswith a recombinant fowlpox virus expressing the native hexon of hemorrhagic enteritis virus. Avian Dis. 43: 234-244.
    Bleker S, Sonntag F, Kleinschrnidt J A. 2005. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of Phospholipase A2 activity. Journal of Virology. 79(4): 2528-2540.
    Bloom M E, Martin D A, Oie L L, et al. 1997. Expression of Aleutean mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions. Journal of Virology. 71: 705-714.
    Blundell M C, Beard A, Stell C. 1987. In vitro identification of a B19 parvovirus promoter. Virology. 157(2): 534-538.
    Brandenburger A, Legendre D, Avalosse B, et al. 1990. NS1 and NS2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp.Virology. 174(2): 576-584.
    Brown K E, Green S W, Young N S. 1995. Goose parvovirus-an autonomous member of the dependovirus genus? Virology. 210: 283-291.
    Burch H B, Nagy E V, Kain K C, et al. 1993. Expression polymerase chain reaction for the in vitro synthesis and epitope mapping of autoantigen. Application to the human thyrotropin receptor. J Immunol Methods. 158(1): 123-130.
    Canaan S, Zadori Z, Ghomashchi F, et al.2004. Interfacial enzymology of parvovirus phospholipases A2*. Journal of Bioglogical Chemistery. 279(15): 14502-14508.
    Carter B J, Trempe JP and Mendelson E. 1990. Adeno-associated virus gene expression and regulation. In "Handbook of Parvoviruses" (Tijssen P,Ed), CRC Press, Boca Raton. FL. 169-226; 227-254.
    Casal J I, Langeveld J M, Comes E, et al. 1995. Peptide vaccine against canine parvovirus: Identification of twoce. Joural of Virology. 69(11): 7274-7277.
    Chang K L, Takahiro Y, Masayuyki N, et al. 1996. Detection of goose parvovirus genome by polymerase chain reacrion: distribution of goose parvovirus in muscovy duckling. Virus research. 42: 167-172.
    Chang L, Shi Y and Shenk T. 1989. Adeno-associated virus PS promoter contains an adenovirus EIA inducible element and a binding site to the major late transcription factor. J. Virol. 63: 3479-3488.
    Chapman M S, Rossman M G. 1993. Structure, sequence and function correlations among parvovirus. Virology. 194: 491-508.
    Chen K C, Shull B C, Moses E A, et al. 1986. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol. 60: 1085-1097.
    Chiorini J A, Wiener S M, Owens R A, et al. 1994. Sequnce requirements for stable binding and function of Rep68 on the adeno-associated virus type 2 inverted terminal repeats. J. Virol. 68(11): 7448-7457.
    Chodosh L A, Carthew R, Wand S P A. 1986. Asingle polypeptide possesses the binding and transcription activities of the adenovirus major late transcription factor. Mol Cell Biol. 6: 4723-4733.
    Christensen J, Cotmore S F, Tattersall P. 1997. A novel cellular site-specific DNA-binding protein co-operates with the viral NS1 polypep-tide to initiate parvoviral DNA replication. J. Virol. 69: 1652-1660.
    Christensen J, Tattersall P. 2002. Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J. Virol. 76: 6518-6531.
    Chu C H, Pan M J, Cheng J T. 2001. Genetic variation of the nucleocapsid genes of waterfowl parvovirus. Virology. 63(11): 1165-1170.
    Clinton GM, Hayashi M. 1976. The parvovirus MVM: a comparison of heavy and light particle infectivity and their density conversion in vitro. Virology. 74(1): 57-63.
    Colin R, Parrish. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline parleukopenia virus using infectious plasmid clones. Virology. 83: 195-205.
    Costello F, Steenfos N, Jensen K T, et al. 1999. Epitope Mapping of Aleutian Mink Disease Parvovirus Virion. Scand. J. Immunol. 49:347-354.
    Cotmore S F, D'abramo A M, Jr, Ticknor C M, et al. 1999. Controlled conformational transtitions in the MVMvirion expose the VP1 N-terminus and viral genome without particle disassembly. Virology. 254: 169-181.
    Cotmore S, Dabramo J A, Carbonel L, et al. 1997. The NS2 polypeptide of MVM is required for capsid assembly in Murine cells.J. Virol. 223: 267-280.
    Cotmore S, Tattersall P. 1994. An asymmetric nicleotide in the parvovirus 31 hairpin directs segregation of a single active origin of DNA replication. EMBO J. 13: 4145-4152.
    Cough D, CeerazV, Cox B, et al. Isolation and identification of goose parvovims in the UK. Veterinary Record, 2005, 26(3): 424.
    Dannacher G, Fouillet X, Coudert M, et al. 1974. Etioogie de la maladie a virus del'oisonae virus. Rec Med. Vet. EC. Alfort. 150: 49-58.
    Deborab H S, Peter W and Michael L R. 1999. Comparative characterization of Rep proteins from the helper dependent Adeno-Associated virus Type 2 and the automous goose parvovirus. Journal of Virology. 73: 2930-2937.
    Deiss M, Tratschin J D, Weiz M, et al. 1990. Cloning of the human parvovirus B19 genome and structural analysis of its palin dDromic termini. Virology. 175: 247-254.
    Derzsy D. Aetiology of goose influenza. 1966. Magy Allator Lapja. 21: 388-389.
    Dorsch S, Licbisch G, Kaufman B, et al. 2002. The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. Journal of Virology. 76(4): 2014-2018.
    Dumas B, Jourdan M, Pascaud A, et al. 1992. Complete nucleotide sequence of the cloned infections genome of junonia coenia densovirus reveals an organization unique among parvovirus. Virology. 191:202-222.
    Fack F, Hugle-Dorr B, Song D, et al. 1997. Epitope mapping by phage display: random versus gene-fragment libraries. J Immunol Methods. 206(1-2): 43-52.
    Farley P J, Long C A. 1995. Plasmodium yoelii yoelii 17XL MSP-1: fine-specificity mapping of a discontinuous, disulfide-dependent epitope recognized by a protective monoclonal antibody using expression PCR (E-PCR). Exp Parasitol. 80(2): 328-32
    Fatima G, Willewp E, Correa C, et al. 1991. Residues Involved in the Antigenic Sites of Transmissible Gastroenteritis Virus S Glycoprotein. Virology. 183: 225-238.
    Fauquet C M, Mayo M A, Maniloff J, et al. 2004. Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press. London, England.
    Gannon J V, Lane D P. 1990. Interactions between SV40 T antigen and DNA polymerase alphaNewBioI. (1): 84-92.
    Girod A, Wobus C E, Zadori Z, et al. 2002. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. Journal of General Virology. 83: 973-978.
    Gorbalenya A E, Koonin E V, Wolf Y Z. 1990. A new superfamily of putative NTP-binding domains encoded genomes of small DNA and RNAviruses. FEBS 1eff. 262: 145-148.
    Gough R E. 1984. Application of the agar gel precipitin and virus neutralisation tests to the serological study of goose parvovirus. Avian pathology. 13: 501-509.
    Green M R, Roeder R G. 1980. Definition of a novel promoter for the major adenovirus-associated virus mRNA. Cell. 22: 231-242.
    Green M R, Roeder R G. 1980. Transcripts of the adeno-associated virus genome: mapping of the major RNAs. J. Virol. 36: 79-92.
    Gu Z, Plaza S, Perros M, et al. 1995. NF-Y controls transcription of minute virus of mice P4 promoter through interaction with an unusual binding site. J. Virol. 69: 239-246.
    Halbert C L, Standaet T A, Wilson C B, et al. 1998. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immuno-suppression during the initial exposure. Journal of Virology. 71: 5932-5941.
    Hlinak A, Muller T, Kramer M, et al. 1998. Serological survey of viral pathogens in bean and white-fronted geese from Germany. Journal of Wildlife Diseases. 34: 479-486
    Hoekstra J, Smith T H, Brakel C Y. 1973. Observation on host range and control of goose hepatitis. Avian Pathol. 2: 169-178.
    Hristensen J, Cotmore S F, Tattersall P. 1997. Parvovirus initiation factor PIF: a novel human DNA-binding factor which coordinately recognizes two ACGT motifs. J. Virol. 71 (8): 5733-5741.
    Jansson D S, Feinstein R, Kardi V, et al. 2007 Epidemiologic investigation of an outbreak of goose parvovirus infection in Sweden. Avian Dis. 51(2): 609-613.
    John S, Parker L, Parrish C R. 1997. Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid. Journal of Virology. 71(12): 9214-9222.
    Johne B, Gadnell M, Hansen K. 1993. Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. J Immunol Methods. 160(2): 191-198.
    Kain K C, Orlandi P A, Lanar D E. 1991. Universal promoter for gene expression without cloning: expression-PCR. Biotechniques. 10(3): 366-374.
    Kamstrup S, Langeveld J, Botner A, et al. 1998. Mapping the antigenic structure of porcine parvovitus at the level of peptides. Virus res. 53: 163-173.
    Kardi V, Szegletes E. 1996. Use of ELISA procedures for the detection of Derzsy's disease virus of geese and of antibodies produced against it. Avian Pathology. 25: 25-34.
    Kay M A, Meuse L, Gown A M. 1997. Transinent immunomodulation with anti-CD40 ligand antibody, and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci. USA. 94:4686-4691.
    Kazuaki T, Tetsuya O, Eriko M, et al. 1995. Effectiveness of an inactivated goose parvovirus vaccine in muscovy ducks. Vet Med Sci. 57(6): 1093-1095.
    Kestler J, Neeb B, Struyf S, Uan Damme J, et al. 1999. Cis requirements for the efficient production of recombinant DNA vectors based on autonomous parvoviruses. Hum Gene Ther. 10(10): 1619-1632.
    Kisary J, Avalosse B, Miller-Faures A, et al. 1985. The genome structure of a new chicken virus identifies it as a parvovirus. J. Gen. Virol. 66: 2259-2263.
    Kisary J. 1974. Cross-neutralization tests on the parvoviruses isolated from gosling. Avian Pathol. 3:293-296.
    Kisary J. 1974. Some growth characteristics of goose parvovirus strain "B". Acta Vet Acad Sci Hung. 24(3): 329-333.
    Kisary J. 1976. Buoyant density of goose parvovirus "B". Acta Microbiol Acad Sci Hung. 23 (2): 205-207.
    Kisary J. 1979. Interaction in replication between goose parvovirus strain B and duck plague herpesvirus. Arch Virol. 59: 81-88.
    Koonin E V A. 1993. Common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21: 2541-2547.
    Kronenberg S, Bottcher B, Lieth C W, et al. 2005. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N terminal. Journal of Virology. 79(9): 5296-5303.
    Kronenberg S, Kleinschmidt J A. and Bottcher B. 2001. Electron cryomicroscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep. 2: 997-1002.
    Kuroki M, Arakawa F, Haruno M, et al. 1992. Biochemical characterization of 25 distinct carcinoembryonic antigen (CEA) epitopes recognized by 57 monoclonal antibodies and categorized into seven groups in terms of domain structure of the CEA molecule. Hybridoma. (4): 391-407.
    Kuroki M, Fernsten P D, Wunderlich D, et al. 1990. Serological mapping of the TAG-72 tumor-associated antigen using 19 distinct monoclonal antibodies. Cancer Res. 50(16): 4872-4879.
    Kuroki M, Wakisaka M, Murakami M, et al. 1992. Determination of epitope specificities of a large number of monoclonal antibodies by solid-phase mutual inhibition assays using biotinylated antigen. Immunol Invest. 21(6): 523-538.
    Lamas S A L, Agbandje M M, Parker J S L, et al. 1996. Structural analysis of a mutation in canine parvovirus which controls antigenicity and host range. Virology. 225: 65-71.
    Lamas S A L, Agbandje M M, Wikoff W R, et al.1997, Structure determination of minute virus of mice. Acta Cryst. 53: 93-102.
    Langeveld J P M, Casal J I, Osterhaus A M E, et al. 1994. First peptide vaccine providing protection against viral infection in the target animal: Studies of canine parvovirus in dog. Journal of Virology. 68(7): 4506-4513.
    Langeveld JPM, Casal J I, Vela C. 1993. B-cell epitopes of canine parvovirus: distrbution on the primary structure and exposure on the viral surface. J. Virol.67: 765-772.
    Le Gall-Recule G, Jestin V, Chagnaud P. 1996. Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins. J. Gen virol. 77(9): 2159-2163.
    Le Gall-Recule G, Jestin W. 1994. Biochemical and genomic characterization of muscovy duck parvwirus. Arch Virol. 139: 121-131.
    Le Gall-Recule G, Lestin V. 1995. Production of digoxigenin-labelled DNA probe for detection of muscovy duck parvovirus. Molecular and celluar probes. 9: 39-44.
    Lebovitz R M, Roeder R G. 1986. Parvovirus H-1 expression: mapping of the abundant cytoplasmic transcripts and identification of promoter sites and overlapping transcription units. J. Virol. (2): 271-280.
    Leegndre D, Rommelaere J. 1992. Terminal regions of the NS1 protein of the parvovirusminure virus of mice are involved in cytotoxicity and promoter trans inhibition. J. Virol. 66(10): 5705-5713.
    Legrand K, Rommelaera J, Caillet-Fanquet P. 1993. MVM(p) NS2 protein expression is required with transformed cells. Virol. 195: 149-155.
    Li Y, Zadori Z, Bando H, Dubuc R, et al. 2001. Genome organization of the densovirus from Bombyx mori(BmDNV-1) and enzyme activity of its capsid. Journal of General Virology. 82: 2821-2825.
    Limn C K, YamadaT, Nakamura M, et al. 1996. Detection of goose parvovirue genome by polymerise chain reaction: distribution of goose parvovirus in muscovy ducklings. Virus Res. 42(1): 167-172.
    Lusby E W, Berns K L. 1982. Mapping of the 5' termini of two adeno-associated virus2 RNAs in the left half of the genome. Virol. 41(2): 518-526.
    Majaniemi I, Trantschin J D, Seigl G 1981. A reassessment of the nucleic acid and protein components of parvovirus LuⅢ in: Abstracts Vth International Congress of Virology. Virol. 41(2): 508-516.
    Malkinson M, Peleg B A, Nily R, et al. 1974. The assay of gosling hepatitis virus and antibody by spermagglutination and spermagglutination-inhibition. II. Spermagglutination-inhibition. Avian Pathol. 3:201-209.
    Manning W C, Zhou S, Bland M P, et al. 1998. Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum Gene Ther. 9: 477-485.
    Mc Carty D M, Pereira D J, Zolotukhin I, et al. 1994. Identification of linear DNA sequences that specifically bind the adeno-associated virus Rrp protein. Virol. 68(8): 4988-4997.
    Meehan B M,Todd D,Creelan J L, et al. 1996. Characterization of viral DNAs from cells with chicken anaemia agent: sequnce analysis of the replication form and transfection capabilities of cloned genome fragments. Arch Virol. 124: 301-319.
    Mengeling W L, Paul P S, Bunn T O, et al. 1986. Antigenic relationships among autonomous parvoviruses. J. Gen. Virol. 67: 2839-2844.
    Mitchell P J and Tijian R. 1989. Transcriptional regulation in mammalian cells by sequence specific DNA binding. Protein Scince. 245: 371-378.
    Morikazu S, Yasuharu N, Tsutmu K, et al. 1989. Characterzation of replicative from DNA of the autonomus parvovirus Mink Enteritis Virus. Microbiol Immunol. 33(9): 721-732.
    Morinet F, D'Auriol L, Tratschin J D, et al. 1989. Expression of the human parvovirus B19 protein fused to protein A in Escherichia coli: recognition by IgM and IgG antibodies in human sera. J Gen Virol. 70 (Pt 11): 3091-3097.
    Moskalenko M, Chen L, Roey M V, et al. 2000. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodieds: Implications for gene therapy and virus structure. Journal of Virology. 74(4): 4506-4513.
    Naeger L K, Cater J, Pintel D J. 1990. The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infections virus production in a cell-type-specific manner. Virol. 64: 6166-6175.
    Naeger L K, Salome N, and Pintel D J. 1993. NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells. Virol. 67: 1034-1043.
    Nazerian K, Lee L E, Yanagida N. 1992. Protection against marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of marek's disease virus. Virol. 66(3): 1409-1413.
    Ohshima T, Nakaj ima T, Uishi T, et al. 1999. CRMI mediates nuclear export of nonstructural protein2 from parvovirus Minute Viruse of Mice. Biochemical and biophysical research communications. 264: 144-150.
    Ozawa K, AyubJ, Hao Y S, et al. 1987. Novel transcrioption map for the B 19 (human) pathogenic parvovirus. J. Virol.61: 2395-2460.
    Padron E, Bowman V, Kaludov N, et al. 2005. Structure of adeno-associated virus type 4. Journal of Virology. 79(8): 5047-5058.
    Palmwe G A,Tattersall P. 2000. Autonomous parvoviruses as gene transfer vehicles. Conerib Microbiol. 4:178-202.
    Paradiso P R, Rhode S L, Singer II. 1982. Canine parvovirus: a biochemical and ultrastructural charaterization. J Gen Virol. (1): 113-125.
    Parrish C R, Aquadro C F, Carmichel L E. 1988. Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink, and raccoon parvoviruses. Virology 166: 293-307.
    Petersen G, Song D, Hugle-Dorr B, et al. 1995. Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol Gen Genet. Dec (4): 425-431.
    Phontip S, Makiko O, Masayuki N, et al. 1998. Detection of goose and muscovy duck parvoviruses using polymerase chain reaction-restriction enzyme fragment length polymorphism analysis. Avian Disease. 42: 133-139
    Pintel D, Dadachani D, Astell C R, et al. 1983. The genome of minute virus of mice, an automous parvovirus, encodes two overlappong transcription units. Nucleic Acids Res. 11: 1019-1038
    Qiu J, Cheng F, Yoto Y, et al. 2005. The expression strategy of goose parvovirus exhibits features of both the Dependovirus and Parvovirus genera. J Virol. 79(17): 11035-11044.
    Rhode S L, Paradis P R. 1983. Parvovirus genme: Nucleotide sequence of HI and mapping of its genes by hybrid arrest translations. Virol. 45: 173.
    Ridpath J F, Mengeling W L. 1988. "Virus diseases in laboratory and captove animals" (Darai G, Ed). Martinus Nijhoffpublishers, Boston. 296.
    Rimmelzwaan G F, Poelen M C, Meloen M, et al. 1990. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs. J. Gene. Virol. 71:2321-2329.
    Rimmelzwaan G, Garlson J, Uytehaag F G, et al. 1990. A synthetic peptide derived from the amino acid sequence of canine parvovirus structure proterns which defines a B cell epitopes and elicits antibody in BALB c mice. Journal of General Virology. 71: 2741-2745.
    Sato H, Hirata J, Furukawa M, et al. 1991. Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19. J. Virol. 65:1667-1672.
    Schettle C H. 1973. Virus hepatitis of geese 3. Properties of the tarsal agent. Avian Pathol 2: 179-193.
    Schettler C H. 1971. Isolation of a highly pathogenic virus from geese with hepatitis. Avian Dis. 15(2): 323-325.
    Schettler C H. 1977. Virus hepatitis of geese Ⅱ: Host range of goose hepatitis virus. Avian Dis. 15: 809-823.
    Seah JN, Yu L, Kwang J. 2000. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet Microbiol. 75(1): 11-16.
    Seiberg M, Kessler M, Levine A J. 1987. Human RNA polymerase Ⅱ can prematurely terminate transcription of the adenovirus type 2 late transcription unit at a precise site that resembles a prokaryotic termination signal. Virus Genes. 1(1): 97-116
    Shade R O, Blundell M C, Cotmore S R, et al. 1986. Nucleotide sequence and genome organization of human parvovirus B 19 isolated from the serum of a child during aplastic crisis. Virol. 58: 921.
    Shyder R O, Im D S and Muzyczka N. 1990. Evidence for covalent attachment of the adeno-associated virus (AAV) rep protein to the ends of the AAV. Genome.64: 6024-6213.
    Simpson A A, Chipman R P, Baker S T, et al. 1998. The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 A resolution. Structure. 6: 1355-1367.
    Simpson A A, Herbert B, Sullivan G M, et al. 2002. The structure of porcine parvovirus comparison with related viruses. Journal of Molecular Biology. 315: 1189-1198.
    Sirivan P, Obayashi M, Nakamura M, et al. 1998. Detection of goose and muscovy parvovirus using polymerase chain reaction-restriction enzyme fragment length polymorphism analysis. Avian Disease. 42(1): 133-139.
    Smith G P, Scott J K. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257.
    Strassheim M L, Gruenberg A, Veijalainen P, et al. 1994. Two dominant neutralizing antigenic determinants of canine parvovirus are found on the threefold spike of the virus capsid. Virology. 198(1): 175-184.
    Suikkanen S M, Antila A, Jaatinen M. et al. 2003. Release of canine parvovirus from endocytic vesicles. Virology. 316: 267-280.
    Sun T, Lu P, Wang X. 2004. Localization of infection-related epitopes on the non-structural protein 3ABC of foot-and-mouth disease virus and the application of tandem epitopes. J Virol Methods. 119(2): 79-86.
    Takehara K, Hayashi Y, Kanda J, et al. 1995. An outbreak of goose parvovirus infection in Japan. Vet Med Sci. 57: 777-779.
    Takehara K, Hyakutake K, Imamura T, et al. 1994. Isolation, identification, and plaque titration of parvovirus from muscovy ducks in Japan. Avian Disease. 38: 810-815.
    Takehara K, Nakata T, Takizawa K, et al. 1999. Expression of goose parvovirus VP1 capsid protein by a baculovirus expression system and establishment of fluorescent antibody test to diagnose goose parvovirus infection. Arch Virol. 144(8): 1639-1645.
    Tatarkis T, Mato T, Markos B, et al. 2004. Phyogenetic analysis of hungarian goose parvovirus isolates and vaccine strains. Avian Pathology. 33: 438-444.
    Tropak M B, Roder J C. 1994. High-resolution mapping of GenS3 and B11F7 epitopes on myelin-associated glycoprotein by expression PCR. J Neurochem. (3):854-862.
    Truyen U M A and Parrish C R. 1994. Characterization of the feline host range and a specific epitope of feline panleukopenia virus. Virology. 200: 494-503.
    Tsai H J, Lee C Y. 2006. Serological survey of racing pigeons for selected pathogens in Taiwan. Acta Vet Hung. 54(2): 179-189.
    Tsao J, Chapman M S, Agbandje M, et al. 1991. The three structure of canine parvovirus and its functional implications. Science. 251: 1456-1464.
    Tullis G E, Burger L R, Pintel D J, et al. 1993. The minor capsid VP1 of the autonomous parvovirus minute of mice is dispensable for encapsulation of progeny single stranded DNA but is required for infectivity. Viro 167: 131 -141.
    Vihinen R M, Wang D, Weichert W, et al. 2002. The VP 1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. Journal of Virology. 76(4): 1884-1891.
    Wagener C, Fenger U, Clark B R, et al. 1984. Use of biotin-labeled monoclonal antibodies and avidin-peroxidase conjugates for the determination of epitope specificities in a solid-phase competitive enzyme immunoassay. J Immunol Methods. 68(1-2): 269-274.
    Wagener C, Yang Y H, Crawford F G, et al. 1983. Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: a systematic approach for the determination of epitope specificities of monoclonal antibodies. J Immunol. 130(5): 2308-2315.
    Waiters R W, Agbandje-McKenna M, Bowman V D, et al. 2004. Structure of adeno-associated virus serotype 5. Journal of Virology. 78(7): 3361-3371.
    Walker S L, Wonderling R S, Owens R A. 1997. Mutational analysis of the adeno-associated virus type2 Rep68 protein nelicase motifs. Journal of Virology. 71: 6996-7004.
    Wang C Y, Shieh H K, Shien J H, et al. 2005. Expression of capsid proteins and non-structural proteins of waterfowl parvoviruses in Escherichia coli and their use in serological assays. Avian Pathol. 34(5): 376-82.
    Weichert W S, Parker J S L, Wahid A T M, et al. 1998. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology. 250(1): 106-117.
    Wikoff W R., Wang G, Parrish C R, et al. 1994. The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure. 2: 595-607.
    Wobus C E, Hugle-Don B, Girod A, et al. Monoclonal antibody against the adeno-associated virus type 2 (AAV-2) Capsid: epitope mapping and identificationg of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J Virol, 2000, 74(19): 9281-9293.
    Xie Q, Bu W, Bhatia S, et al.2002. The atomic structure of adeno-associated virus (AAV2), a vector for human gene therapy. Proc. Natl. Acad. Sci. USA. 99: 10405 -10410.
    Xie Q, Chapman M S. 1996. Canine parvovirus capsid structure, analyzed at 2.9A resolution. J Mol Biol. 264: 497-520.
    Yakobson B, Koch T, Winocour E. 1987. Replication of digoxigenin of adeno-associated virus in synchronized cells without the addition of a helper virus. Viro 1.61: 972-981.
    Yoshimoto K, Rosenfeld S, Frickhofen N, et al. 1991. A second neutralizing epitope of B19 parvovirus implicates the spike region in the immune response. J. Virol. 65(12): 7056-7060.
    Zadori Z R, Stefancsik T, Rauch, et al. 1995. Analysis of the complete nucleotide sequences of goose and muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology. 212: 562-573.
    Zadori Z, Szelei J, Lacoste M C, et al. 2001. A viral phospholipase A2 is required for parvovirus infectivity. Developmental Cell. 1: 291-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700