三江湿地与稻田细菌及T4型细菌病毒多样性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了阐述开发对三江湿地中细菌群落结构以及多样性的影响,同时探索湿地与稻田生态系统中T4型细菌病毒群落特征,本文通过两部分实验分别采用分子生物学技术对三江湿地和稻田生态系统中的细菌以及T4型细菌病毒群落进行了研究。
     对三江湿地(毛果、小叶樟)以及开发后的稻田土壤DNA构建16S rRNA基因文库,每个文库中得到100个阳性克隆,将同源性≥97%的序列划分为一个OUT。稻田、毛果湿地、小叶樟湿地文库分别产生了70、75、75个OTUs。构建文库的覆盖率分别为49%,44%和42%,涵盖了样地大约一半的细菌种类。香农指数及物种丰富度指数Schao1表明,湿地土壤中细菌多样性高于稻田。在三个文库300个克隆中发现了变形菌门、厚壁菌门、放线菌门、酸杆菌门、绿湾菌门、疣微菌门、浮霉菌门、拟杆菌门和Armatimonadetes类细菌9个菌门。其中,变形菌门、放线菌门、厚壁菌门、疣微菌门、酸杆菌门、绿湾菌门为三个文库中共同拥有的菌门。湿地开发为稻田后,土壤中变形菌的数量和多样性明显增加。稻田土壤中变形菌占细菌群体的37%,毛果湿地和小叶樟湿地中变形菌分别占17%和24%。此外,稻田土壤中存在α-、β-、γ-、δ-四种变形菌纲,湿地中只存在α-、δ-两种变形菌纲。主成分及群落相似性分析结果表明,三个文库中的细菌群落总体上差异较大,毛果湿地与小叶樟湿地细菌群落组成比较接近,稻田与湿地中细菌群落相似性较低。三江湿地中酸杆菌数量偏低不同于其它湿地生态系统,说明三江湿地中存在着独特的细菌组成。厚壁菌门在稻田以及毛果湿地中数量波动不大,却远高于小叶樟湿地。小叶樟湿地中的疣微菌明显高于稻田和毛果湿地。此外,在稻田和毛果湿地中发现了浮霉菌,小叶樟湿地中未发现;稻田和小叶樟湿地中发现了拟杆菌,毛果湿地中未发现。因此,我们认为植被以及湿地类型(稻田属于人工湿地)会影响土壤中细菌群落结构及多样性。
     通过对三江湿地(毛果、小叶樟)以及稻田生态系统中的T4型细菌病毒群落的g23基因序列构建系统进化树并结合UniFrac分析在湿地以及稻田水体中发现了g23基因序列的新组。同时发现,湿地生态系统中的T4型细菌病毒多样性不同于水生生态系统和旱地黑土,而与稻田生态系统中的T4型细菌病毒的多样性相似。UniFrac分析表明,湿地土壤中的T4型细菌病毒明显不同于水体中的T4型细菌病毒。随着时间和季节的变化,T4型细菌病毒的群落结构也有所变化,且水体中T4型细菌病毒群落结构的变化大于土壤中。通过与其它生态系统中的T4型细菌病毒进行比较发现,湿地生态系统中T4型细菌病毒的环境异质性大于湖泊、旱地黑土以及稻田土壤。
To illustrate the effects of the exploitation on bacterial community structure anddiversity in Sanjiang wetlands, and explore the diversity characteristic of T4-type phages inwetlands and paddy ecosystem as well, Molecular biology techniques were used to investigatethe community of bacteria and T4-type phages.
     Bacterial16S rRNA gene clone libraries were constructed, and300clones were obtainedfrom three libraries (paddy, Carex lasiocarpa and Deyeuxia platyphylla wetlands) in total.Unique phylotypes were defned as OTUs with≤97%16S rRNA gene sequences similarity,and we obtained70,75,75OTUs from paddy, Carex lasiocarpa and Deyeuxia platyphyllawetlands, respectively. The coverages of clone libraries were49%,44%and42%, whichexplain approximately half of the total bacterial species in the study sites. Shannon index andspecies richness index Schao1show that bacterial diversity in wetlands is higher than that inpaddy. Proteobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Acidobacteria,Planctomycetes, Bacteroidetes, Chloroflexi and Armatimonadetes were identified among the300clones. And Proteobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Acidobacteria,Chloroflexi were the shared bacterial Phylums among the three libraries. Significant increasein the number and diversity of proteobacteria in the soil has been found after the exploitationfrom wetlands to paddy. Composition analysis result shows that the proportion ofProteobacteria is37%,17%and24%in paddy, Carex lasiocarpa and Deyeuxia platyphyllawetlands, respectively. There are4Proteobacteria classes (α-, β-, γ-, δ-)in paddy, while only2classes(α-, δ-) in wetlands. Results of principal component and community similarity analysisindicate that bacterial communities from the three libraries is divergence in general, bacterialcommunities in Carex lasiocarpa wetland is similar to that in Deyeuxia platyphylla wetland,similarity of bacterial communities between paddy and wetlands is relatively low. The lowerproportion of Acidobacteria obtained in this study inferred that the bacterial communities inwetlands in Sanjiang plain were unique and differed with those found in other wetlandsaround the world. We concluded that vegetation and wetland type will affect the diversity ofbacterial communities. The number of Firmicutes didn't fluctuate obviously between paddyand Carex lasiocarpa wetland, however, much higher than that in Deyeuxia platyphyllawetland. And Verrucomicrobia in Deyeuxia platyphylla wetland is much higher than that inpaddy and Carex lasiocarpa wetland. In our study, Planctomycetes was found in paddy andCarex lasiocarpa wetland, which didn't exist in Deyeuxia platyphylla Wetland. We also foundBacteroidetes in paddy and Deyeuxia platyphylla wetland, which didn't exist in Carex lasiocarpa wetland.
     Based on the analysis of Phylogenetic tree and UniFrac, We found novol group of g23sequences in waters in the wetlands and the paddy field. The distribution of g23sequences inthe wetlands was distinctly differed with those from aquatic environments and upland blacksoils, but similar with those from the paddy fields. Unifrac analysis shows that the T4-typebacterial viruses between soil and water in wetland ecosystem changed significantly. Greatertemporal change of T4-type phage communities in waters than in soils was discovered in thisstudy. Heterogeneous of T4-type phage communities in the wetlands is much more than thosein lake freshwater, upland black soils and paddy field soils.
引文
[1]安娜,高乃云,刘长娥.中国湿地的退化原因、评价及其保护.生态学杂志,27(5):821-828.
    [2] Agnelli A., Ascher J., Corti G., et al. Distribution of microbial communities in a forest soilprofile investigated by microbial biomass, soil respiration and DGGE of total andextracellular DNA.Soil Biol. Biochem,2004,36:859-868.
    [3] Akiyama M., Shimizu S., Ishijima Y., et al. Response of microbial community structure tonaturaland accelerated hydrarch successions in the boreal wetlands in northern Hokkaido,Japan. Limnology,2010,11:273-279.
    [4] Ausec L., Kraigher B., Mandic-Mulec I. Differences in the activity and bacterialcommunity structure of drained grassland and forest peat soils. Soil Biology andBiochemistry,2009,41:1874-1881.
    [5] Bj rdal C.G., Daniel G., Nilsson T. Depth of burial, an important factor in controllingbacterial decay of waterlogged archaeological poles. Int. Biodeter.Biodegr,2000,45:15-26.
    [6] Blanchette R.A. A review of microbial deterioration found in archaeological wood fromdifferent environments. Int. Biodeter. Biodegr,2000,46:189-204.
    [7] Bundt M., Widmer F., Pesaro M., et al. Preferential flow paths:biological ‘hot spots’ insoils. Soil Biol. Biochem.2001,33:729-738.
    [8] Baptista J.C., Davenport R.J., Donnelly T., et al. The microbial diversity oflaboratory-scale wetlands appears to be randomly assembled. Water Res,2008,42:3182-3190.
    [9] Brussaard C.P.D. Viral control of phytoplankton populations–a review. The Journal ofEukaryotic Microbiology,2004,51:125-138.
    [10] Bitton G., Masterson N., Gifford G.E. Effects of secondary treated effluent on themovement of viruses through a cypress dome soil. Journal of Environmental Quality,1976,5:370-375.
    [11] Brenner F.J., Brenner E.K., Schwartz T.E. Use of plaque assay to detect enteric viruses ina rural watershed. Journal of Environmental Quality,1999,28:845-849.
    [12] Butina T.V., Belykh O.I., Maksimenko S.Y., et al. Phylogeneticdiversityof T4-likebacteriophages in Lake Baikal,East Siberia. FEMS Microbiol Lett,2010,309:122-129.
    [13] Burrell P., Keller J., Blackall L. Characterisation of the bacterial con sortium involved innitriteoxidation in activated sludge. Water Science and Technology,1999,39(6):45-52.
    [14] Caple C. The reburial environment: towards a benign reburial context: the chemistry ofthe burial environment. Conserv. Manag. Archaeolog. Sites,2004,6:155-165.
    [15] Cifuentes A., Anton J., Benlloch S., et al. Prokaryotic diversity in Zostera nolt ii-colonizedmarine sediments. Appl Environ Microbio,2000,66(4):1715-1719.
    [16] Calheiros C.S.C., Duque A.F., Moura A., et al.Changes in the bacterial communitystructure in two-stage constructed wetlands with different plants for industrialwastewater treatment. Bioresour. Technol,2009,100:3228-3235.
    [17] Douterelo I., Goulder R., Lillie M. Soil microbial community response toland-management and depth, related to the degradation of organic matter in Englishwetlands: Implications for the in situ preservation of archaeological remains. AppliedSoil Ecology,2010,44:219-227.
    [18] Desplats C., Krisch H.M. The diversity and evolution of the T4-type bacteriophages.Research in Microbiology,2003,154:259-267.
    [19] Ekelund F., R nn R., Christensen S. Distribution with depth of protozoa,bacteria andfungi in soil profiles from three Danish forest sites. Soil Biol.Biochem,2001,33:475-481.
    [20] Fierer N., Schimel J.P., Holden P.A. Variations in microbial community compositionthrough two soil depth profiles. Soil Biol.Biochem.,2003,35:167-176.
    [21] Fraser L.H., Keddy P.A. The future of large wetlands: a global perspective. The World’sLargest Wetlands, Cambridge University Press, Cambridge.2005,446-468.
    [22] Francisco J.D., Anthony T.O., Randy A. Dahlgren. Efficacy of constructed wetlands forremoval of bacterial contamination from agricultural return flows. Agricultural WaterManagement,2010,97:1813-1821.
    [23] Felske A., Wolterink A., Lis R.V., et al. Response of a soil bacterial community tograssland succession as monitored by16S rRNA levels of the predominant ribotypes.Appl Environ Microbiol,2000,66:3998-4003.
    [24] Fuhrman J.A. Marine viruses and their biogeochemical and ecological effects.Nature,1999,399:541-548.
    [25] Farnell-Jackson E.A.,Ward A.K. Seasonal patterns of viruses, bacteria and dissolvedorganic carbon in a riverine wetland. Freshwater Biology,2003,48:841-845.
    [26] Filippini M., Buesing N., Bettarel Y., et al. Infection paradox: high abundance but lowimpact of freshwater benthic viruses. Appl Environ Microbiol,2006,72:4893-4898.
    [27] Filippini M., Buesing N., Gessner M.O. Temporal dynamics of freshwater bacterio-andvirioplankton along a littoral-pelagic gradient. Freshwater Biology,2008,53:1114-1125.
    [28] Fujii T., Nakayama N., Nishida M., et al. Novel capsid genes (g23) of T4-typebacteriophages in a Japanese paddy field. Soil Biol. Biochem.,2008,40:1049-1059.
    [29] Filée J., Tétart F., Suttle C.A., et al. Marine T4-type bacteriophages, a ubiquitouscomponent of the dark matter of the biosphere. Proceedings of the National Academy ofSciences of the United States of America,2005,102:12471-12476.
    [30] Fong T.T., Griffin D.W., Lipp E.K. Molecular assays for targeting human and bovineenteric viruses in coastal waters and their application for libraryindependent sourcetracking. Appl Environ Microbiol,2005,71:2070-2078.
    [31] Goberna M., Insam H., Klammer S., et al. Microbial community structure at differentdepths in disturbed and undisturbed semiarid Mediterranean soils. Microb. Ecol.,2005,50:315-326.
    [32] Gesheva V., Negoita T. Psychrotrophic microorganism communities in soils of HaswellIsland, Antarctica, and their biosynthetic potential. Polar Biol.2012,35:291-297.
    [33] Gregory D., Matthiesen H., Bj rdal C.G. In situ preservation of artefacts in Nydam Mose:studies into environmental monitoring and the deterioration of wooden artefacts[M].2002, pp.213-223.
    [34]何勇田,熊先哲.试论湿地生态系统的特点.农业环境保护,1994,13(6):275-278.
    [35]贺贵芹,杨改河,冯永忠等.西藏高原湿地生态系统结构及功能分析.干旱地区农业究,2007,25(3):185-189.
    [36] Han XY. Bacterial identification based on16S ribosomal RNA gene sequence analysis.In Advanced techniques in diagnostic microbiology, Part II.2006. Editors: Tang YW.,Stratton SW. pp:323-332, Spring, New York, USA.
    [37] Hartman WH., Richardson CJ., Vilgalys R., et al. Environmental and anthropogeniccontrols over bacterial communities in wetland soils. PNAS,2008,105:17842-17847.
    [38] Helms A.C., Camillo Martiny A., Hofman-Bang J., et al. Identification of bacterialcultures from archaeological wood using molecular biological techniques. Int. Biodeter.2004,53:79-88.
    [39]黄慧珍,程凯,许敏等.基于g23基因的武汉东湖T4类浮游病毒遗传多样性.中国环境科学,2011,31(3):443-447.
    [40] Jin H.M., Sun J.X.O., Liu J.F. Changes in soil microbial biomass and communitystructure with addition of contrasting types of plant litter in a semiarid grasslandecosystem. Journal of Plant Ecology.2010,3(3):209-217.
    [41]蒋卫国,李京,李加洪等.辽河三角洲湿地生态系统健康评价.生态学报,2005,25(3):408-414.
    [42] Jackson E., Jackson C. Viruses in wetland ecosystems. Freshwater Biology,2008,53:1214-1227.
    [43] Jia Z.J., Ishihara R, Nakajima Y, et al. Molecular characterization of T4-typebacteriophages in a rice field. Environmental Microbiology,2007,9:1091-1096.
    [44] Krasnits E., Friedler E., Sabbah I. et al. Spatial distribution of major microbial groups ina well established constructed wetland treating municipal wastewater. EcologicalEngineering,2009,35:1085-1089.
    [45] Kato C., Li L., Tamaoka J., et al. Molecular analyses of the sediment of the11,000mdeepM ariana Trench. Extrem ophiles,1997,1(3):117-123.
    [46] Karam J.D., Drake J.W., Kreuzer K.N., et al. Molecular Biology of Bacteriophage T4[M].American Society for Microbiology, Washington DC,1994.
    [47]林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能.土壤学报,2008,45(5):892-900.
    [48]刘茂松,姜志林,李湘萍.长江中下游湿地生态系统的功能及其保护.南京林业大学学报,1999,80(2):27-30.
    [49] Li T., Wang P., Wang P., et al. Microbial diversity in surface sediments of the XishaTrough the South China Sea. Acta EcolS,2008,28(3):1166-1173.
    [50]李会荣,俞勇,曾胤新等.北极太平洋扇区海洋沉积物细菌多样性的系统发育分析.微生物学报,2006,46(2):177-183.
    [51]刘欣,肖天,张文燕等.胶州湾海域表层沉积物细菌多样性.海洋科学,2010,34.
    [52]李梓正,朱立博,林叶春等.呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化.生态学报,2010,30(11):2883-2889.
    [53] Lee H.W., Lee S.Y., L ee J.B., et al. Molecular characterization of microbial communityin nitrate removing activated sludge. FEMS Microbiology Ecology,2002,41(2):85-94.
    [54] Liu J.J., Wang G.H., Zheng C.Y., et al. Specific assemblages of major capsid genes (g23)of T4-type bacteriophages isolated from upland black soils in Northeast China. Soil BiolBiochem,2011,43:1980-1984.
    [55] López-Bueno A., Tamames J., Velázquez D., et al. High diversity of the viral communityfrom an Antarctic lake. Science,2009,326:858-861.
    [56] Lozupone C., Knight R. UniFrac: a new phylogenetic method for comparing microbialcommunities. Appl Environ Microbiol,2005,71:8228-8235.
    [57] Munn C.B. Viruses as pathogens of marine organisms–from bacteria to whales. Journalof the Marine Biological Association of the United Kingdom,2006,86:453-467.
    [58] Maranger R., Bird D.F. High Concentrations of Viruses in the Sediments of Lac Gilbert,Québec. Microb Ecol,1996,31:41-45.
    [59] Muyzer G., De-Wall E.C., Uitterlinden A.G.. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16SrRNA. Appl.Environ.Microbiol.,1993,59:695-700.
    [60] Ogunseitan O.A. Genetic transduction in freshwater ecosystems. Freshwater Biology,2008,53:1228-1239.
    [61] Powell K.L., Pedley S., Daniel G., et al. Ultrastructural observations of microbialsuccession and decay of wood buried at a Bronze Age archaeological site. Int. Biodegr,2001,47:165-173.
    [62] Peduzzi P., Schiemer F. Bacteria and viruses in the water column of tropical freshwaterreservoirs. Environmental Microbiology,2004,6:707-715.
    [63] Paul J.H., Sullivan M.B., Segall A.M., et al. Marine phage genomics. ComparativeBiochemistry and Physiology B,2002,133:463-476.
    [64] Pankratov T. A., Ivanova A.O., Dedysh S. N., et al. Bacterial populations andenvironmental factors controlling cellulose degradation in an acidic Sphagnum peat.Environ. Microbiol.2011,13,1800-1814.
    [65] Ravenschlag K., Sahm K., Amann R. Quantitative molecular analysis of the microbialcommunity in marine Arctic sediments (Svalbard). Appl Environ Microbio,2001,67(1):387-395.
    [66] Rohwer F., Edwards R. The phage proteomic tree: a genome based taxonomy for phage.Journal of Bacteriology,2002,184:4529-4535.
    [67] Rohwer C. Methods in Enzymology[M].2007,421:259-268.
    [68] Ravit B., Ehrenfeld J.G., Haggblom M.M. A Comparison of Sediment MicrobialCommunities Associated with Phragmites australis and Spartina altemiflora in TwoBrackish Wetlands of New Jersey. Estumies,2003,26(2):465-74
    [69] Song Z. W., Wu L., Yang G., et al. Indicator Microorganisms and Pathogens RemovalFunction Performed by Copepods in Constructed Wetlands. Bull Environ ContamToxicol,2008,81:459-463.
    [70]苏玉环,李会荣,李筠等.北极太平洋扇区深海沉积物的细菌多样性研究.高技术通讯,2006,16(7):752-756.
    [71]孙慧敏,戴世鲲,王广华等.南海北部巴士海峡深海沉积物中细菌多样性分析.热带海洋学报,2010,29(3):41-46.
    [72] Suttle C.A. Viruses in the sea. Nature,2005,437:356-361.
    [73] Suttle C.A. Marine viruses–major players in the global ecosystem. Nature ReviewsMicrobiology,2007,5:801-812.
    [74] Scheurman P.R., Bitton G., Farrah S.R. Fate of microbial indicators and viruses in aforested wetland.In: Constructed Wetlands for Wastewater Treatment:Municipal,Industrial, and Agricultural (Ed. D.Hammer). Lewis Publishers, Chelsea, MI,1989, pp.657-663.
    [75] Tornblom E., Sondergaard M. Seasonal dynamics of bacterial biomass and production oneelgrass Zostera marina leaves. Mar.Ecol: Progress Ser,1999,179:231-240.
    [76] Tétart F., Desplats C., Kutateladze K., et al. Phylogeny of the major head and tail genesof the wide-ranging T4-type bacteriophages. Journal of Bacteriology,2001,183:358-366.
    [77] Tamaki H., Tanaka Y., Matsuzawa H., et al."Armatimonas rosea gen. nov., sp. nov., aGram-negative, aerobic, chemoheterotrophic bacterium of a novel bacterial phylum,Armatimonadetes phyl. nov., formally called the candidate phylum OP10". InternationalJournal of Systematic and Evolutionary Microbiology.2011,61(6):1442-7.
    [78] Wang G.H., Hayashi M., Saito M., et al. Diversity of major capsid genes (g23) of T4-typebacteriophages in Japanese paddy field soils. Soil Biol. Biochem.,2009a,41:13-20.
    [79]汪朝辉,王克林,贺曲夫.洞庭湖湿地生态系统评估.国土与自然资源研究,2003,2:49-51.
    [80] Wardle D.A., Bonner K.I., Barker G.M., et al. Plant removals in perennial grassland:vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. EcolMonogr,1999,69:535-568.
    [81]王霞,陈哲,袁红朝等.应用16S rDNA克隆文库技术研究长期稻草还田对水稻土细菌多样性的影响.生态学报,2010,30(13):3865-3874.
    [82] Wei B. Diversity and distribution of proteorhodopsin-containing microorganisms inmarine environments. Front. Environ. Sci. Engin.2012,6(1):98-106.
    [83]王晓丹,翟振华,赵爽等.北京翠湖表流和潜流湿地对细菌多样性的影响.环境科学,2009,30(1):280-288.
    [84] Wilhelm S.W., Suttle C.A. Viruses and nutrient cycles in the sea. BioScience,1999,49:781-788.
    [85] Wommack K.E., Colwell R.R. Virioplankton:viruses in aquatic ecosystems.Microbiology and Molecular Biology Reviews,2000,64:69-114.
    [86] Weinbauer M.G. Ecology of prokaryotic viruses.FEMS Microbiology Reviews,2004,28:127-181.
    [87] Weinbauer M.G., Rassoulzadegan F. Are viruses driving microbial diversification anddiversity? Environmental Microbiology,2004,6:1-11.
    [88] Wellings F.M., Lewis A.L., Mountain C.W., et al. Demonstration of virus in groundwaterafter effluent discharge onto soil. Applied Microbiology,1975,29:751-757.
    [89] Williamson K.E., Radosevich M., Wommack K.E. Abundance and diversity of viruses insix Delaware soils. Applied and Environmental Microbiology,2005,71:3119-3125.
    [90] Wang G.H., Jin J., Asakawa S., et al. Survey of major capsid genes (g23) of T4-typebacteriophages in rice fields in Northeast China. Soil Biol. Biochem.,2009b,41:423-427.
    [91] Wang G.H., Murase J., Taki K., et al. Changes in major capsid genes (g23) of T4-typebacteriophages with soil depth in two Japanese rice fields. Biol Fert Soils,2009c,45:521-529.
    [92] Wang G.H., Murase J., Asakawa S., et al.Unique viral capsid assembly protein gene (g20)of cyanophages in the floodwater of a Japanese paddy field. Biol Fert Soils,2010,46:93-102.
    [93]薛超波,王国良,金珊,等.海洋微生物多样性研究进展.海洋科学进展,2004,22(3):377-384.
    [94]谢彬,努尔巴依·阿布都沙力克,吴玉秀.阿尔泰山湿地生态系统服务功益与可持续利用.水土保持研究,2008,15(6):97-104.
    [95]徐宏翔,吴敏,王小谷等.东北太平洋深海沉积物细菌多样性.生态学报,2008,28(2):479-485.
    [96]徐建华,杨红梅,曾军等.新疆玛纳斯热气泉免培养土壤细菌多样性分析.微生物报,2010,50(5):568-573.
    [97] Xu Y., Wang G., Jin J., et al. Bacterial communities in soybean rhizosphere in response tosoil type, soybean genotype, and their growth stage. Soil Biology and Biochemistry,2009,41:919–925
    [98]杨永兴,刘长娥,杨杨等.长江河口九段沙海三棱藨草湿地生态系统N、P、K的循环特征.生态学杂志,2009,28(10):1977-1985.
    [99] Yang Y., Wang X., Shi J.F. et al. The influence of the discharging sewage on microbialdiversity in sludge from Dongting Lake. World J Microbiol Biotechnol.2012,28:421-430.
    [100] Yu Z., Wang G., Jin J., et al. Soil microbial communities are more affected by land usethan seasonal variation in restored grassland and cultivated Mollisols in Northeast China.European Journal of Soil Biology,2011,47:357–363.
    [101]张琳,谭学界,王红瑞.黄河三角洲湿地生态系统健康评价与环境解译.水文水资源,2009,6:12-14.
    [102]邹扬,曾胤新等.白令海北部表层沉积物中细菌多样性的研究.极地研究,2009,21(1):15-24.
    [103]张辉,孔凡晶.西藏扎布耶盐湖细菌多样性的免培养技术分析.微生物学报,2010,50(3):334-341.
    [104]张永生,赖欣,张静妮等.内蒙古贝加尔针茅草原细菌多样性的PCR-DGGE分析.华北农学报,2010,25(3):58-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700