用户名: 密码: 验证码:
鼻咽癌患者放疗前后脑白质微观结构的动态改变与其神经认知功能的相关性:DTI-TBSS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分鼻咽癌患者放疗前后认知功能与正常人对照研究
     目的:
     采用简易精神状态检查(mini mental status examination, MMSE)量表对鼻咽癌患者接受放射治疗前及放射治疗后不同时间点进行整体认知功能的动态评价,探讨放疗对鼻咽癌患者神经认知功能的影响及变化趋势。
     材料与方法:
     1.研究对象
     本研究共纳入128例被试,其中鼻咽癌患者组100例,正常对照组28例。100例鼻咽癌患者中,男72例,女28例,平均年龄43.73±9.88岁(19-65)岁,受教育程度10.27±3.24年(6-16)年。所有患者均由病理活检证实,肿瘤分期为T1N0M0~T4N2Mo期(UICC第七版)。放疗后磁共振随访时间从放疗完成后1周至12年不等,中位随访时间为7.5个月。根据国内外研究,我们将患者组按放疗前和放疗完成后行DTI检查的不同时间将其分为4组:第1组为放疗前组(pre-RT),25例;第2组为放疗后0-6个月组(post-RT0-6m)(放疗后平均3.02个月),25例;第3组为放疗后>6-12个月组(post-RT>6-12m)(放疗后平均8.14个月),25例:第4组为放疗后>12个月组(post-RT>12m)(放疗后平均31.19个月),25例。鼻咽癌患者组的纳入标准包括:(1)均为病理证实后放疗前或首次接受放射治疗的患者;(2)鼻咽癌治疗方案接近,均施行三维适形调强放射治疗(总剂量/分割剂量/分割次数,66-74GY/1.8~2.0GY/30-35次)。所有患者在放疗期间至放疗后均联合应用多药化疗,主要化疗药物有5-氟尿嘧啶、顺铂和紫杉类等;(3)均为汉族,右利手;(4)无颅内侵犯及脑内转移;(5)颅内无脑血管病变及脑肿瘤病变;(6)无头颅外伤史及颅内手术史;(7)无高血压、心脏病、糖尿病、高血脂、代谢性疾病及精神疾病;(8)常规MR平扫及增强扫描颅内未发现明显异常信号改变。
     正常对照组28例(年龄、性别、受教育程度、利手与鼻咽癌患者组相匹配的健康人),男20例,女8例,平均年龄43.57±11.75岁(24~62)岁,受教育程度10.29±3.63年(6~16)年。所有纳入的研究对象均在试验前被详细告知试验目的、方法和注意事项,并签署知情同意书正式同意参加试验。
     2.神经心理学测试
     采用简易精神状态检查(mini mental status examination, MMSE)量表对所有128例被试的整体认知功能进行评价。
     3.统计学分析
     利用SPSS13.0软件,采用单因素方差分析(one-way ANOVA)评价鼻咽癌患者放疗前、放疗后不同时间组及对照组之间年龄、受教育程度的差异,采用卡方检验评价上述各组之间性别构成的差异。采用多个独立样本比较的Kruskal-Wallis H检验比较各组间MMSE评分的差异,组间有差异者进一步多重比较,采用Bonferroni法调整P值。检验水准α取0.05,P<0.05认为差异有统计学意义。
     结果:
     1.鼻咽癌患者放疗前组、放疗后不同时间组以及正常对照组之间年龄(F=0.908,P=0.462)、性别(χ2=1.191,P=0.880)及受教育程度(F=0.253,P=0.907)差异无统计学意义(P>0.05);所有被试均为右利手,分组均衡性尚好。
     2.鼻咽癌患者放疗前组、放疗后不同时间组及正常对照组之间MMSE评分的差异无统计学意义(χ2=5.429,P=0.246)。
     结论:
     1、鼻咽癌患者局部三维适形调强放疗后的MMSE评分与放疗前及正常对照组相比,随着时间的推移,在统计学上没有显著性降低。
     2、鼻咽癌三维适形调强放疗后患者的认知功能具有动态变化的趋势,放疗后6个月内MMSE评分出现一过性的轻度降低,之后逐渐升高,1年后恢复至放疗前水平。
     3、采用局部三维适形调强放射治疗的现代技术,常规分割剂量(≤2Gy),常用的总剂量(66~74Gy),分割次数为30~35次,治疗鼻咽癌是安全的,对常规头颅MRI阴性患者的整体认知功能无显著影响。
     第二部分鼻咽癌患者放疗前后脑白质微观结构改变:DTI-TBSS研究
     目的:
     1、利用磁共振扩散张量成像技术(DTI)和基于纤维束示踪的空间统计(tract based spatial statistic, TBSS)的后处理技术,与放疗前基线水平及正常对照组比较,评价鼻咽癌患者放疗后不同时期脑白质微观结构的动态改变情况。
     2、探讨鼻咽癌患者放疗前后不同时期脑白质微观结构改变与其整体认知功能评分之间的关系。
     材料与方法:
     1.研究对象
     107例被试被纳入本研究:鼻咽癌患者组81例,平均年龄为44.26±9.91岁(19-65岁),男60例,女21例,受教育程度10.27±3.30年(6~16年)。所有患者均由病理活检证实,肿瘤分期为T4N2Mo期(UICC第七版)。放疗后磁共振随访时间从放疗完成后1周至4年7个月不等,中位随访时间为7.5个月。根据国内外研究,我们将患者组按放疗前和放疗完成后行DTI检查的不同时间将其分为4组:第1组为放疗前组(pre-RT),23例;第2组为放疗后0-6个月组(post-RT0-6m)(放疗后平均3.14个月),21例;第3组为放疗后>6-12个月组(post-RT>6-12m)(放疗后平均8.13个月),20例;第4组为放疗后>12个月组(post-RT>12m)(放疗后平均23.89个月),17例。鼻咽癌患者组的纳入标准同第一部分。
     正常对照组26例(年龄、性别、受教育程度、利手与鼻咽癌患者组相匹配的健康人),平均年龄为43.73±11.67岁(24~62岁),男18例,女8例,受教育程度10.23±3.49年(6-16年)。所有纳入的研究对象均在试验前被详细告知试验目的、方法和注意事项,并签署知情同意书正式同意参加试验。
     2.神经心理学测试
     采用简易精神状态检查(mini mental status examination, MMSE)量表对所有被试的整体认知功能进行评价(同第一部分)。
     3.扫描设备与序列
     所有被试均采用美国GE SIGNA EXCITE3.0T磁共振成像仪扫描进行静息态下脑功能数据采集,使用标准八通道头颅线圈接收核磁共振信号。DTI数据采集之前均进行常规的全脑轴位T1WI、T2WI及FLAIR序列扫描,以排除脑部疾患。DTI数据采集采用单次激发平面回波(single-shot echo-planar imaging, SS-EPI)序列以及并行采集技术(array spatial sensitivity encoding technique, ASSET),平行于大脑前后联合连线平面,得到覆盖全脑的轴位扩散加权图像。具体参数如下:扩散敏感梯度方向为25个,扩散敏感系数b值为1000s/mmz和0s/mmm2,重复时间(TR)=12000ms,回波时间(TE)=75.5ms,视野(FOV)=24cm×24cm,矩阵(matrix size)=128×128,层厚(thickness)=3.Omm,层间距(slice gap)=0mm,激励次数(NEX)=1,翻转角(flip angle)=90°。
     4.图像后处理
     DTI数据分析采用FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl, version4.1.9)提供的工具包。具体步骤包括:(1)使用FSL软件FDT套件中的eddy correct函式对原始DTI数据进行头动和涡流校正。(2)利用FSL软件中BET套件以每个被试者的B0图像作为依据,产生各自的脑mask。(3)通过FDT套件中的dtifit函式,进行扩散张量的计算。输出的结果包括:部分各向异性(fractional anisotropy, FA)、平均扩散率(mean diffusivity, MD)、三个本征值(λ1、λ2、λ3)及相对应的三个特征向量(V1、V2、V3)等,再通过FSL函式计算出λ#(λ#=λ1)和λ⊥[λ⊥=(λ2+λ3)/2]。然后按照TBSS流程进行分析:tbss_1_preproc, tbss_2_reg,tbss_3_postreg,tbss_4_prestats。接着利用FSL软件中的randomise函式分别对鼻咽癌患者放疗前、放疗后不同时间组及正常对照组的FA值、MD值、λ#值和λ⊥值进行基于纤维束示踪的全脑显著性差异统计分析,参考TFCE (threshold-free cluster enhancement)的演算法,在统计方法上通过permutation的方法,从而有效地控制并校正在多重比较时寻找被试者间FA图数值差异时可能发生的FWE(family-wise error)概率。
     5.统计学分析
     FA值、MD值、λ#值及λ⊥值图组间基于体素的比较,采用randomize工具进行的非参数统计阈值分析的统计方法,置换测试次数为5000,多重比较校正采用以簇为基础的校正方法,P<0.05且簇>50个体素(体素大小:1×1×lmm3)认为有统计学意义。采用偏相关分析方法(以年龄和受教育程度为协变量),评价鼻咽癌患者放疗前、放疗后TBSS的相关指标(包括组间差异区域的平均FA值、MD值、λ#值及λ⊥值)与其MMSE评分之间的相关关系。P<0.05认为相关性有统计学意义。
     结果:
     TBSS结果:
     1.平均FA值
     右侧额叶、顶叶及枕叶白质的FA值在放疗后0-6月组(G2)较放疗前(G1)明显下降(P<0.05,多重比较校正),之后逐渐恢复,其中右侧额叶及右侧顶叶白质的FA值在放疗后一年以上组(G4)仍未恢复至放疗前水平,明显低于放疗前水平;右侧枕叶白质的FA值在放疗后一年以上组(G4)恢复至接近放疗前水平,未见明显差别。右侧小脑及左侧顶叶白质的FA值在放疗后0-6月组(G2)较放疗前(G1)明显升高(P<0.05,多重比较校正),之后逐渐减低,其中右侧小脑的FA值在放疗后一年以上组(G4)仍未恢复至放疗前水平,明显高于放疗前水平;左侧顶叶白质的FA值在放疗后一年以上组(G4)接近放疗前水平,未见明显差别。
     2.平均λ#值
     双侧枕叶、双侧颞叶及双侧顶叶白质多个脑区的λ#值在放疗后六个月内(G2)较放疗前(G1)明显升高(P<0.05,多重比较校正),之后逐渐下降,其中双侧颞叶、左侧枕叶、部分双侧顶叶白质的¨值在放疗后一年以上组(G4)仍明显高于放疗前水平;右侧枕叶及余双侧顶叶白质的λ#值在放疗后一年以上组(G4)接近放疗前水平,未见明显差别。
     3.平均λ⊥值
     右侧枕叶、左侧额-顶交界区、左侧顶叶白质多个脑区的λ⊥值在放疗后六个月内(G2)较放疗前(G1)明显升高(P<0.05,多重比较校正),之后逐渐下降,其中左侧顶叶白质的λ⊥值在放疗后一年以上组(G4)仍明显高于放疗前水平;右侧枕叶及左侧额-顶交界区白质的λ⊥值在放疗后一年以上组(G4)接近放疗前水平,未见明显差别。右侧小脑及左侧半卵圆中心的λ⊥值在放疗后六个月内(G2)较放疗前(G1)明显减低(P<0.05,多重比较校正),之后逐渐升高,在放疗后一年以上组(G4)仍未恢复至放疗前水平,较放疗前仍明显减低。
     4.平均MD值
     双侧颞叶、右侧枕叶、左侧顶叶、右侧枕-颞交界区、左侧半卵圆中心、左侧额-顶交界区白质多个脑区的MD值在放疗后六个月内(G2)较放疗前(G1)明显升高(P<0.05,多重比较校正),之后逐渐下降,大部分脑区的MD值在放疗后一年以上组(G4)恢复至接近放疗前水平,未见明显差别;而右侧枕叶白质的MD值在放疗后一年以上组(G4)仍明显高于放疗前水平。
     相关性分析结果:
     鼻咽癌患者放疗后0-6个月(G2)与放疗前(G1)组间比较有显著性差异脑区的DTI各指标与MMSE评分的相关性分析结果如下:右侧枕叶白质(r=0.483,P=0.027)、左侧顶叶白质(r=0.445,P=0.034)的FA值与其MMSE评分呈正相关;右侧顶叶白质的λ#值与其MMSE评分呈正相关(r=0.498,P=0.025);左侧额-顶交界区白质的λ⊥值与其MMSE评分呈负相关(r=-0.482,P=0.027);左侧额-顶交界区白质的MD值与其MMSE评分呈负相关(r=-0.487,P=0.025),左侧顶叶白质的MD值与其MMSE评分呈正相关(r=0.514,P=0.035)。其余组间差异脑区的FA值、λ#值、λ⊥值和MD值与MMSE评分之间的相关性无显著统计学意义。
     结论:
     1.作为目前唯一能在活体上对水分子运动进行测量与成像的无创性方法,DTI能够在常规头颅MRI发现异常之前,灵敏、动态地监测鼻咽癌放疗后脑白质微观结构的损伤。
     2.放射治疗对鼻咽癌患者可产生较广泛的、累及多个脑区的脑白质微观结构的损伤,而不仅仅局限于颞叶;并且脑白质微观结构的异常是复杂的、动态的、暂时性的改变,在放疗后6个月内损伤最严重,随后脑组织损伤会逐渐修复,一年之后较放疗前有不同程度的恢复。
     3.鼻咽癌患者放疗后6个月内多个脑区的FA值降低、λ⊥值和MD值升高以及λ#值升高,提示这些区域的脑白质微观结构的损伤主要以脑水肿、脱髓鞘改变为主,可能伴有轻度的轴索退变。
     4.鼻咽癌患者组间差异脑区中,右侧枕叶白质、左侧顶叶白质的FA值与其MMSE评分呈正相关;右侧订叶白质的λ#值与其MMSE评分呈正相关;左侧额-顶交界区白质的λ⊥值与其MMSE评分呈负相关;左侧额-顶交界区白质的MD值与其MMSE评分呈负相关,左侧顶叶白质的MD值与其MMSE评分呈正相关。表明鼻咽癌放疗后广泛的脑白质微观结构损伤影响了患者的认知功能,DTI活体测量脑白质微观结构的变化有可能为早期评价放射性脑损伤以及认知功能障碍提供更敏感的生物学标记物。
Part one:A comparative study of neurocognitive function between patients with nasopharyngeal carcinoma before and after radiotherapy and healthy subjects
     Objective
     To evaluate dynamically the overall cognitive function of the patients with nasopharyngeal carcinoma (NPC) before and after radiotherapy (RT) at different time points by using the mini mental state examination (MMSE) scale, and to investigate the effects of RT on the neurocognitive status of the NPC patients and the change trend with time.
     Materials and Methods
     1. Subjects
     One hundred and twenty-eight subjects were investigated in this study, including100NPC patients and28healthy subjects matched for age, gender, and education.100patients [72males,28females, mean age43.73±9.88years (range19-65years), years of education10.27±3.24(range6-16years)] with pathologically confirmed NPC were included in the study, with staging from TIN0M0to T4N2M0(Union for International Cancer Control, seventh edition,2009). MRI follow-up time after RT ranged from1week to12years after completion of RT, and the median follow-up time was7.5months. All patients underwent a fractionated radiation therapy with three-dimensional conformal and intensity-modulated techniques (total dose/fraction dose/exposures,66-74Gy/1.8-2.0Gy/30-35times) for the first time. In every patient the same fractionation schedule was followed:one fraction per day, five fractions per week. All of the patients received two to four courses of concomitant chemotherapy during and after RT with one or more agents, such as cisplatin, fluorouracil and gemcitabine, depending on the clinical stage. Excluded from this study were patients with intracranial invasion, intracranial primary tumors or metastases, vascular lesions of the brain, head trauma and intracranial surgery, hypertension, heart disease, diabetes, hyperlipidemia, metabolic diseases, major psychiatric or neurological illness and other underlying disease that could possibly result in cognitive impairment. According to the international and domestic staging systems for classifying radiation-induced brain injury, we divided the NPC patients on the basis of the time before and after completion of RT into four subgroups:group1(pre-RT, or baseline, n=25); group2(0-6months post-RT, n=25); group3(>6-12months post-RT, n=25); group4(>12months post-RT, n=25). Control group included28healthy subjects,20males,8females, mean age43.57±11.75years (range24-62years), years of education10.29±3.63(range6-16years), who had no history of intracranial lesions, brain injury or neurocognitive deficits. All subjects were right-handed, native Chinese speakers. Each participant was fully informed about the purpose, methods, and precautions of the project, and formally agreed to participate and signed the informed consent form.
     2. Neuropsychological tests
     For all eligible participants, the Chinese version of the the Mini-Mental State Examination (MMSE) was used to assess their cognitive state in this study. MMSE was administered by a physician during the same period with the MRI examinations.
     3. Statistic analysis
     Data were analyzed by using the Statistical Package for Social Sciences (SPSS for Windows, Version13.0, Chicago, IL, USA). One-way analysis of variance (ANOVA) was performed to compare the differences in the age and years of education among different groups. Chi-square test was performed to assess the differences of gender among different groups. Cognitive performance was evaluated as a change in scores over time. The Kruskal-Wallis H test with multiple comparisons using Bonferroni post hoc test was used to determine the statistical differences of the MMSE scores across the different groups. A two-side P value<0.05was considered to be statistically significant.
     Results
     1. There was no significant difference in the age (F=0.908, P=0.462), years of education (F=0.253, P=0.907) and gender (χ2=1.191, P=0.880) among the groups before and after RT at different time points in NPC patients and control group.
     2. There was no significant significantly difference in the MMSE scores (χ2=5.429, P=0.246) among the different groups.
     Conclusion
     1. No statistically significant decrease in MMSE scores over the period of follow-up was found after RT with three-dimensional conformal and intensity-modulated techniques compared with pre-RT in NPC patients and control group.
     2. The neurocognitive function after three-dimensional conformal intensity modulated radiotherapy for NPC patients showed dynamic change. The MMSE scores temporary decline occurred within6months after RT, but then will recover gradually, and will recovered to the level of the pre-RT after12month.
     3. Our results supports the safety of focal RT using three-dimensional conformal and intensity-modulated techniques in conventional fractionation (≤2Gy), commonly prescribed total doses (66-74Gy) and exposures (30-35times) for treatment of nasopharyngeal carcinoma. The modern techniques may have no significant impact on overall neurocognitive performance of normal-appearing WM in NPC patients.
     Part two:White matter microstructural changes before and after radiotherapy in patients with nasopharyngeal carcinoma:a DTI-TBSS study
     Objective
     1. To noninvasively investigate white matter (WM) microstructural dynamic changes before and after radiotherapy (RT) at different times by using diffusion tensor imaging (DTI) and tract based spatial statistic (TBSS) in comparison to the baseline and healthy subjects in nasopharyngeal carcinoma (NPC) patients.
     2. To explore whether white matter (WM) microstructural changes before and after RT at different times associate with neurocognitive outcome of NPC patients monitored using the Mini-Mental State Examination (MMSE).
     Materials and Methods
     1. Subjects
     One hundred and seven subjects were investigated in this study, including81NPC patients and26healthy subjects matched for age, gender, and education.81patients [60males,21females, mean age44.26±9.91years (range19-65years), years of education10.27±3.30(range6-16years)] with pathologically confirmed NPC were included in the study, with staging from T1N0M0to T4N2M0(Union for International Cancer Control, seventh edition,2009). MRI follow-up time after radiotherapy ranged from1week to4years and7months after completion of radiotherapy, and the median follow-up time was7.5months. All patients underwent a fractionated radiation therapy with three-dimensional conformal and intensity-modulated techniques (total dose/fraction dose/exposures,66-74Gy/1.8-2.0Gy/30-35times) for the first time. In every patient the same fractionation schedule was followed:one fraction per day, five fractions per week. All of the patients received two to four courses of concomitant chemotherapy during and after RT with one or more agents, such as cisplatin, fluorouracil and gemcitabine, depending on the clinical stage. Excluded from this study were patients with intracranial invasion, intracranial primary tumors or metastases, vascular lesions of the brain, head trauma and intracranial surgery, hypertension, heart disease, diabetes, hyperlipidemia, metabolic diseases, major psychiatric or neurological illness and other underlying disease that could possibly result in cognitive impairment. According to the international and domestic staging systems for classifying radiation-induced brain injury, we divided the NPC patients on the basis of the time before and after completion of RT into four subgroups:group1(pre-RT, or baseline, n=23); group2(0-6months post-RT, n=21); group3(>6-12months post-RT, n=20); group4(>12months post-RT, n=17). Control group included26healthy subjects,18males,8females, mean age43.73±11.67years (range24-62years), years of education10.23±3.49(range6-16years), who had no history of intracranial lesions, brain injury or neurocognitive deficits. All subjects were right-handed, native Chinese speakers. Each participant was fully informed about the purpose, methods, and precautions of the project, and formally agreed to participate and signed the informed consent form.
     2. Neuropsychological tests
     For all eligible participants, the Chinese version of the the Mini-Mental State Examination (MMSE) was used to assess their cognitive state in this study (the same as the first part). MMSE was administered by a physician during the same period with the MRI examinations.
     3. DTI data acquisition
     All MR imaging data were acquired using a3.0T GE clinical scanner (SIGNA EXCITE GE Medical Systems, Milwaukee, WI, USA) with an eight-channel head coil. The routine MRI brain protocol including axial T1-weighted images (TR/TE, 600/15ms), T2-weighted images (TR/TE,5200/140ms), and T2-weighted fluid attenuated inversion recovery (TR/TE/IR,9000/120/2100ms) was obtained for every subject to detect intracranial lesions. DTI scans were performed employing a single-shot echo-planar imaging sequence and array spatial sensitivity encoding technique with the following parameters:repetition time (TR)12000ms, echo time (TE)75.5ms, field of view (FOV)24×24cm, matrix128R128, slice thickness3mm with no interslice gap, NEX=1, flip angle90°. Images were collected along25non-collinear diffusion gradient directions with a b-value of1000sec/mm2, and one set of null images with b=0sec/mm2was acquired.
     4. DTI data processing and TBSS analysis
     DTI data was analyzed by using FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl, version4.19) tools. The procedure of DTI data processing included:First, diffusion tensor images were corrected for head movement and eddy current distortion by using FDT tool of the FSL software. Second, mask image for each brain was created by using each subject' B0image with BET tool of the FSL software. Then, the diffusion tensor was calculated on a voxel-by-voxel basis by using dtifit. Maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ‖=λ1) and radial diffusivity [λ⊥=(λ2+λ3)/2] were obtained. And then follow the tract based spatial statistic (TBSS) processes, first running the next steps: tbss_1_preproc, tbss_2_reg, tbss_3_postreg, tbss_4_prestats. Subsequently, threshold-free cluster enhancement (TFCE) in randomise was used to perform the multisubject analysis of FA, MD, λ‖and λ⊥respectively, permutation-based correction for multiple comparisons at P<0.05.
     5. Statistic analysis
     Patial correlation analysis with age and years of education as covariates was performed to investigate the underlying relationship between the patients'MMSE scors and the mean FA, MD, λ‖and λ⊥values in significantly different areas that revealed by pre-RT vs0-6months post-RT in NPC patients. A two-side P value less than0.05was considered as significant correlation.
     Results
     TBSS results
     1. FA values
     Compared with pre-RT group, the mean FA values in the right frontal lobe, right parietal lobe and right occipital lobe white matter reduced significantly in post-RT0-6m group (P<0.05), then increased gradually. Until one year after RT (group4), the FA level in the right frontal lobe and right parietal lobe white matter had remained significantly lower than that in the pre-RT group, while the FA level in the right occipital lobe white matter was slightly lower than pre-RT, but was not significantly different.
     Compared with pre-RT group, the mean FA values in the right cerebellum and left parietal lobe white matter increased significantly in post-RT0-6m group (P<0.05), then reduced gradually. Until one year after RT (group4), the FA level in the right cerebellum had remained significantly higher than that in the pre-RT group, while the FA level in the left parietal lobe white matter had been restored and was not significantly different from that in the pre-RT group.
     2.λ‖values
     Compared with pre-RT group, the λ‖values in significantly different areas in the bilateral occipital lobe, temporal lobe and parietal lobe white matter increased significantly in post-RT0-6m group (P<0.05), then reduced gradually. Until one year after RT (group4), the λ‖level in the bilateral temporal lobe, left occipital lobe, part of the bilateral parietal lobe white matter was still significantly higher than that in the pre-RT group; while the λ‖level in the right occipital lobe and rest of the bilateral parietal lobe white matter was close to the values in the pre-RT group and there was no significant difference.
     3.λ⊥values
     Compared with pre-RT group, the mean λ⊥values in the right occipital lobe, left frontal-parietal junction area and left parietal lobe white matter increased significantly in post-RT0-6m group (P<0.05), then reduced gradually. Until one year after RT (group4), the λ⊥level in the left parietal lobe white matter had remained significantly higher than that in the pre-RT group; while the λ⊥level in the right occipital lobe and left frontal-parietal junction area white matter was close to the values in the pre-RT group and was not significantly different.
     Compared with pre-RT group, the mean λ⊥values in the right cerebellum and left centrum semiovale reduced significantly in post-RT0-6m group (P<0.05), then increased gradually. Until one year after RT (group4), the λ⊥level in the above brain areas had remained significantly lower than that in the pre-RT group.
     4. MD values
     Compared with pre-RT group, the MD values in significantly different areas in the right occipital lobe, bilateral temporal lobe, the right occipital-temporal junction area, the left parietal lobe, the left centrum semiovale, the left frontal-parietal junction area white matter increased significantly in post-RT0-6m group (P<0.05), then reduced gradually. Until one year after RT (group4), the MD level in the right occipital lobe white matter was still significantly higher than that in the pre-RT group; while the MD level in the rest brain areas mentioned above was close to the values in the pre-RT group and there was no significant difference.
     Correlation results
     FA value in the right occipital (r=0.483, P=0.027), and left parietal (r=0.445, P=0.034) white matter that revealed by groups comparison between pre-RT vs post-RT0-6m correlated positively with MMSE score of NPC patients. λ‖value in the right parietal white matter (r=0.498, P=0.025) correlated positively with MMSE score of NPC patients. λ‖value in the left frontal-parietal junction area white matter (r=-0.482, P=0.027) correlated negatively with MMSE score of NPC patients. MD value in the left frontal-parietal junction area (r=-0.487, P=0.025) correlated negatively with MMSE score of NPC patients. MD value in the left parietal (r=0.514, P=0.035) correlated positively with MMSE score of NPC patients.
     Conclusion
     1. As the only noninvasive method for characterizing changes in tissue microstructural organization and diffusivity of water changes in brain tissue in vivo, DTI may be used in sensitive discovering and dynamical monitoring the subtle abnormalities of the radiation-induced WM microstructure, earlier than conventional cranial MRI, following RT for NPC patients.
     2. For NPC patients, radiotherapy may produce extensive white matter microstructure damage, involving multiple brain regions and not just limited to the temporal lobe. Furthermore, WM microstructure abnormalities are complex, dynamic and temporary, brain tissue injury is most serious within6months after radiotherapy, then will repair gradually, and will be close to the level of the pre-RT after12month.
     3. The FA value decreased significantly, and λ⊥, MD,λ‖value increased significantly in multiple WM regions within6months after RT compared with pre-RT in NPC patients, suggesting that WM microstructural damage in these regions may be caused mainly by brain edema and demyelination, and may be accompanied by mild axonal degeneration.
     4. The mean FA, MD, λ‖and λ⊥values in significantly different areas that revealed by pre-RT vs0-6months post-RT in NPC patients were correlated significantly with their MMSE score. It indicates that extensive WM microstructure damage after radiotherapy affects the patient's cognitive function, and DTI in vivo measurement of WM microstructure changes may provide sensitive imaging biomarkers for early evaluation of radiation-induced brain injury and cognitive dysfunction.
引文
[1]Mulhern R K, Merchant T E, Gajjar A, et al. Late neurocognitive sequelae in survivors of brain tumours in childhood[J]. Lancet Oncol,2004,5(7):399-408.
    [2]Crossen J R, Garwood D, Glatstein E, et al. Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J]. J Clin Oncol,1994,12(3):627-642.
    [3]Sun A, Bae K, Gore E M, et al. Phase Ⅲ trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer:neurocognitive and quality-of-life analysis[J]. J Clin Oncol,2011,29(3):279-286.
    [4]Chang E L, Wefel J S, Hess K R, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial[J]. Lancet Oncol,2009,10(11):1037-1044.
    [5]Meyers C A, Brown P D.Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors[J]. J Clin Oncol,2006,24(8):1305-1309.
    [6]Warrington J P, Csiszar A, Mitschelen M, et al. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia[J]. PLoS One,2012,7(1):e30444.
    [7]Filley C M. Toxic leukoencephalopathy[J]. Clin Neuropharmacol,1999,22(5):249-260.
    [8]Filley C M, Kleinschmidt-Demasters B K. Toxic leukoencephalopathy[J].N Engl J Med,2001,345(6):425-432.
    [9]Keime-Guibert F, Napolitano M, Delattre J Y. Neurological complications of radiotherapy and chemotherapy [J]. J Neurol,1998,245(11):695-708.
    [10]Li J, Bentzen S M, Renschler M, et al. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function[J]. J Clin Oncol,2007,25(10):1260-1266.
    [11]Meyers C A, Smith J A, Bezjak A, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium:results of a randomized phase Ⅲ trial[J]. J Clin Oncol,2004,22(1):157-165.
    [12]Komaki R, Meyers C A, Shin D M, et al. Evaluation of cognitive function in patients with limited small cell lung cancer prior to and shortly following prophylactic cranial irradiation[J]. Int J Radiat Oncol Biol Phys,1995,33(1):179-182.
    [13]Penitzka S, Steinvorth S, Sehlleier S, et al. Assessment of cognitive function after preventive and therapeutic whole brain irradiation using neuropsychological testing[J]. Strahlenther Onkol,2002,178(5):252-258.
    [14]Torres I J, Mundt A J, Sweeney P J, et al. A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors[J]. Neurology,2003,60(7):1113-1118.
    [15]Williams J M, Davis K S. Central nervous system prophylactic treatment for childhood leukemia:neuropsychological outcome studies[J].Cancer Treat Rev,1986,13(2):113-127.
    [16]Daams M, Schuitema I, van Dijk B W, et al. Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia:a MEG study of power spectrum and correlated cognitive dysfunction[J]. BMC Neurol,2012,12:84.
    [17]Roman D D, Sperduto P W. Neuropsychological effects of cranial radiation: current knowledge and future directions[J]. Int J Radiat Oncol Biol Phys,1995,31(4):983-998.
    [18]Fossen A, Abrahamsen T G, Storm-Mathisen I. Psychological outcome in children treated for brain tumor[J]. Pediatr Hematol Oncol,1998,15(6):479-488.
    [19]Copeland D R, Demoor C, Moore B R, et al. Neurocognitive development of children after a cerebellar tumor in infancy:A longitudinal study [J]. J Clin Oncol,1999,17(11):3476-3486.
    [20]Kramer J H, Crowe A B, Larson D A, et al. Neuropsychological sequelae of medulloblastoma in adults[J]. Int J Radiat Oncol Biol Phys,1997,38(1):21-26.
    [21]Mulhern R K, Reddick W E, Palmer S L, et al. Neurocognitive deficits in medulloblastoma survivors and white matter loss[J]. Ann Neurol,1999,46(6):834-841.
    [22]Smibert E, Anderson V, Godber T, et al. Risk factors for intellectual and educational sequelae of cranial irradiation in childhood acute lymphoblastic leukaemia[J]. Br J Cancer,1996,73(6):825-830.
    [23]Hill J M, Kornblith A B, Jones D, et al. A comparative study of the long term psychosocial functioning of childhood acute lymphoblastic leukemia survivors treated by intrathecal methotrexate with or without cranial radiation[J]. Cancer,1998,82(1):208-218.
    [24]Brouwers P, Riccardi R, Poplack D, et al. Attentional deficits in long-term survivors of childhood acute lymphoblastic leukemia (ALL) [J]. J Clin Neuropsychol,1984,6(3):325-336.
    [25]Cetingul N, Aydinok Y, Kantar M, et al. Neuropsychologic sequelae in the long-term survivors of childhood acute lymphoblastic leukemia[J].Pediatr Hematol Oncol,1999,16(3):213-220.
    [26]Christie D, Leiper A D, Chessells J M, et al. Intellectual performance after presymptomatic cranial radiotherapy for leukaemia:effects of age and sex[J]. Arch Dis Child,1995,73(2):136-140.
    [27]Waber D P, Tarbell N J. Toxicity of CNS prophylaxis for childhood leukemia[J]. Oncology (Williston Park),1997,11(2):259-265.
    [28]Mulhern R K, Kepner J L, Thomas P R, et al. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation:a Pediatric Oncology Group study[J]. J Clin Oncol,1998,16(5):1723-1728.
    [29]Grill J, Renaux V K, Bulteau C, et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes[J]. Int J Radiat Oncol Biol Phys,1999,45(1):137-145.
    [30]Anderson V A, Godber T, Smibert E, et al. Cognitive and academic outcome following cranial irradiation and chemotherapy in children:a longitudinal study[J]. Br J Cancer,2000,82(2):255-262.
    [31]Crossen J R, Garwood D, Glatstein E, et al. Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J]. J Clin Oncol,1994,12(3):627-642.
    [32]Armstrong C L, Corn B W, Ruffer J E, et al. Radiotherapeutic effects on brain function:double dissociation of memory systems [J]. Neuropsychiatry Neuropsychol BehavNeurol,2000,13(2):101-111.
    [33]Taphoorn M J, Schiphorst A K, Snoek F J, et al. Cognitive functions and quality of life in patients with low-grade gliomas:the impact of radiotherapy [J].Ann Neurol,1994,36(1):48-54.
    [34]Meyers C A, Geara F, Wong P F, et al. Neurocognitive effects of therapeutic irradiation for base of skull tumors[J].Int J Radiat Oncol Biol Phys,2000,46(l):51-55.
    [35]Cheung M, Chan A S, Law S C, et al.Cognitive function of patients with nasopharyngeal carcinoma with and without temporal lobe radionecrosis[J]. Arch Neurol,2000,57(9):1347-1352.
    [36]Parkin A J, Hunkin N M. Memory loss following radiotherapy for nasal pharyngeal carcinoma--an unusual presentation of amnesia[J]. Br J Clin Psychol,1991,30(Pt 4):349-357.
    [37]Nishimura R, Takahashi M, Morishita S, et al. MR imaging of late radiation brain injury[J]. Radiat Med,1992,10(3):101-108.
    [38]Constine L S, Konski A, Ekholm S, et al. Adverse effects of brain irradiation correlated with MR and CT imaging[J]. Int J Radiat Oncol Biol Phys,1988,15(2):319-330.
    [39]Jason G W, Pajurkova E M, Taenzer P A, et al. Acute effects on neuropsychological function and quality of life by high-dose multiple daily fractionated radiotherapy for malignant astrocytomas:assessing the tolerability of a new radiotherapy regimen[J]. Psychooncology,1997,6(2):151-157.
    [40]Wenz F, Steinvorth S, Lohr F, et al. Acute central nervous system (CNS) toxicity of total body irradiation (TBI) measured using neuropsychological testing of attention functions[J]. Int J Radiat Oncol Biol Phys,1999,44(4):891-894.
    [41]Gregor A, Cull A, Traynor E, et al. Neuropsychometric evaluation of long-term survivors of adult brain tumours:relationship with tumour and treatment parameters[J]. Radiother Oncol,1996,41(1):55-59.
    [42]Vigliani M C, Sichez N, Poisson M, et al. A prospective study of cognitive functions following conventional radiotherapy for supratentorial gliomas in young adults:4-year results[J]. Int J Radiat Oncol Biol Phys,1996,35(3):527-533.
    [43]Taylor B V, Buckner J C, Cascino T L, et al. Effects of radiation and chemotherapy on cognitive function in patients with high-grade glioma[J].J Clin Oncol,1998,16(6):2195-2201.
    [44]Peper M, Steinvorth S, Schraube P, et al. Neurobehavioral toxicity of total body irradiation:a follow-up in long-term survivors[J]. Int J Radiat Oncol Biol Phys,2000,46(2):303-311.
    [45]Weitzner M A, Meyers C A. Cognitive functioning and quality of life in malignant glioma patients:a review of the literature[J]. Psychooncology,1997,6(3):169-177.
    [46]Glosser G, Mcmanus P, Munzenrider J, et al. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors[J].Int J Radiat Oncol Biol Phys,1997,38(2):231-239.
    [47]Meyers C A, Geara F, Wong P F, et al. Neurocognitive effects of therapeutic irradiation for base of skull tumors[J]. Int J Radiat Oncol Biol Phys,2000,46(1):51-55.
    [48]Yuan J M, Wang X L, Xiang Y B, et al. Non-dietary risk factors for nasopharyngeal carcinoma in Shanghai, China[J]. Int J Cancer,2000,85(3):364-369.
    [49]田野,郭志荣,祝梅芳.中国大陆地区鼻咽癌放疗后放射性脑病的系统评价[J].中华肿瘤杂志,2002,24(5):471-473.
    [50]New P. Radiation injury to the nervous system[J]. Curr Opin Neurol,2001,14(6):725-734.
    [51]Lee A W, Law S C, Ng S H, et al. Retrospective analysis of nasopharyngeal carcinoma treated during 1976-1985:late complications following megavoltage irradiation[J]. Br J Radiol,1992,65(778):918-928.
    [52]Woo E, Lam K, Yu Y L, et al. Temporal lobe and hypothalamic-pituitary dysfunctions after radiotherapy for nasopharyngeal carcinoma:a distinct clinical syndrome[J]. J Neurol Neurosurg Psychiatry,1988,51(10):1302-1307.
    [53]Lee A W, Law S C, Ng S H, et al. Retrospective analysis of nasopharyngeal carcinoma treated during 1976-1985:late complications following megavoltage irradiation[J]. Br J Radiol,1992,65(778):918-928.
    [54]Lee A W, Ng S H, Ho J H, et al. Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma[J]. Cancer,1988,61(8):1535-1542.
    [55]Woo E, Lam K, Yu Y L, et al. Cerebral radionecrosis:is surgery necessary?[J].J Neurol Neurosurg Psychiatry,1987,50(11):1407-1414.
    [56]Glass J P, Hwang T L, Leavens M E, et al. Cerebral radiation necrosis following treatment of extracranial malignancies [J]. Cancer,1984,54(9):1966-1972.
    [57]Leung S F, Kreel L, Tsao S Y. Asymptomatic temporal lobe injury after radiotherapy for nasopharyngeal carcinoma:incidence and determinants[J]. Br J Radiol,1992,65(776):710-714.
    [58]Lee P W, Hung B K, Woo E K, et al. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma[J]. J Neurol Neurosurg Psychiatry,1989,52(4):488-492.
    [59]Hua M S, Chen S T, Tang L M, et al. Neuropsychological function in patients with nasopharyngeal carcinoma after radiotherapy [J]. J Clin Exp Neuropsychol,1998,20(5):684-693.
    [60]Bederson J B, Harsh G T, Walker J A, et al. Radiation-induced bilateral cystic temporal lobe necrosis:reversal of memory deficit after fenestration and internal shunting. Case report[J]. J Neurosurg,1990,72(3):503-505.
    [61]Parkin A J, Hunkin N M. Memory loss following radiotherapy for nasal pharyngeal carcinoma--an unusual presentation of amnesia[J]. Br J Clin Psychol,1991,30(Pt 4):349-357.
    [62]Chu C C, Huang C C, Chen H J. Kluver-Bucy syndrome:report of a case with nasopharyngeal cancer after irradiation and chemotherapy [J]. Zhonghua Yi Xue Za Zhi (Taipei),1994,54(6):432-435.
    [63]Hsiao K Y, Yeh S A, Chang C C, et al. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: a prospective study[J]. Int J Radiat Oncol Biol Phys,2010,77(3):722-726.
    [64]欧广飞,蔡伟明.鼻咽癌放射治疗后长期生存病人的记忆力减退与脑损伤相关性的研究[J].中华放射肿瘤学杂志,1999,8(2):14-16.
    [65]陈文,王金华,凌翔.鼻咽癌患者放射治疗前后记忆的变化[J].上海精神医学,2000,12(4):206-207.
    [66]Cheung M C, Chan A S, Law S C, et al. Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma[J]. Cancer,2003,97(8):2019-2026.
    [67]Laack N N, Brown P D. Cognitive sequelae of brain radiation in adults[J].Semin Oncol,2004,31(5):702-713.
    [68]Wang Y X, King A D, Zhou H, et al. Evolution of radiation-induced brain injury: MR imaging-based study[J]. Radiology,2010,254(1):210-218.
    [69]Valk P E, Dillon W P. Radiation injury of the brain[J]. AJNR Am J Neuroradiol,1991,12(1):45-62.
    [70]韩永清,孙爱民,陈勇,等.鼻咽癌单程与再程放射治疗后放射性脑损伤临床分析[J].新乡医学院学报,2009,26(2):157-159.
    [71]杨瑞杰,戴建荣,胡逸民.放疗的生物学评估和优化[J].中华放射肿瘤学杂志,2006,15(3):172-175.
    [72]陈旺生,李建军,洪澜,等.鼻咽癌放射性脑损伤的MR扩散张量成像研究[J].临床放射学杂志,2010,29(6):747-749.
    [73]Shanmugaratnam K, Chan S H, De-The G, et al. Histopathology of nasopharyngeal carcinoma:correlations with epidemiology, survival rates and other biological characteristics[J]. Cancer,1979,44(3):1029-1044.
    [74]Perry A, Schmidt R E. Cancer therapy-associated CNS neuropathology:an update and review of the literature[J]. Acta Neuropathol,2006,111(3):197-212.
    [75]Laack N N, Brown P D. Cognitive sequelae of brain radiation in adults[J].Semin Oncol,2004,31(5):702-713.
    [76]唐亚梅,李艺,张殷殷,等.鼻咽癌放疗后放射性脑病及生活质量研究[J].中华放射医学与防护杂志,2005,25(4):336-339.
    [77]王奋,孔繁忠,林少民.三维适型放疗对中晚期鼻咽癌放射性脑损伤影响研究[J].现代预防医学,2012,39(1):188-191.
    [78]Becker M, Schroth G, Zbaren P, et al. Long-term changes induced by high-dose irradiation of the head and neck region:imaging findings[J]. Radiographics,1997,17(1):5-26.
    [79]卢秋霞,卫光宇,卢瑞梁,等.鼻咽癌颞叶放射性脑病的MRI动态变化[J].中国肿瘤,2010,19(2):139-142.
    [80]Brennan K M, Roos M S, Budinger T F, et al. A study of radiation necrosis and edema in the canine brain using positron emission tomography and magnetic resonance imaging[J]. Radiat Res,1993,134(1):43-53.
    [81]Norris A M, Carrington B M, Slevin N J. Late radiation change in the CNS:MR imaging following gadolinium enhancement J]. Clin Radiol,1997,52(5):356-362.
    [82]Russo C, Fischbein N, Grant E, et al. Late radiation injury following hyperfractionated craniospinal radiotherapy for primitive neuroectodermal tumor[J]. Int J Radiat Oncol Biol Phys,1999,44(1):85-90.
    [83]Yang T, Wu S L, Liang J C, et al. Time-dependent astroglial changes after gamma knife radiosurgery in the rat forebrain[J]. Neurosurgery,2000,47(2):407-416.
    [84]高荣莲,陈肖华.星形胶质细胞的电离辐射损伤及修复作用[J].国外医学(放射医学核医学分册),2004,28(1):37-40.
    [85]Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone[J]. J Biol Chem,2004,279(15):15167-15176.
    [86]Kim S H, Lim D J, Chung Y G, et al. Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation[J]. J Korean Med Sci,2002,17(2):242-248.
    [87]Ramanan S, Zhao W, Riddle D R, et al. Role of PPARs in Radiation-Induced Brain Injury[J]. PPAR Res,2010,2010:234975. doi:10.1155/2010/234975.
    [88]Kim J H, Brown S L, Jenrow K A, et al. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials[J].J Neurooncol,2008,87(3):279-286.
    [89]Monje M L, Mizumatsu S, Fike J R, et al. Irradiation induces neural precursor-cell dysfunction [J]. Nat Med,2002,8(9):955-962.
    [90]Tofilon P J, Fike J R. The radioresponse of the central nervous system:a dynamic process[J].Radiat Res,2000,153(4):357-370.
    [91]官键,陈龙华,李志勇.单次大剂量照射活体动物脑的放射区域代谢和超微结构的研究[J].实用放射学杂志,2007,23(1):115-118.
    [92]牟永告,王振宁,魏大年,等.放射性脑坏死的影像学特征及手术治疗[J].中国微侵袭神经外科杂志,2010,15(6):248-250.
    [93]Fajardo L F. Is the pathology of radiation injury different in small vs large blood vessels?[J]. Cardiovasc Radiat Med,1999,1(1):108-110.
    [94]Dropcho E J. Central nervous system injury by therapeutic irradiation[J].Neurol Clin,1991,9(4):969-988.
    [95]Tiller-Borcich J K, Fike J R, Phillips T L, et al. Pathology of delayed radiation brain damage:an experimental canine model[J]. Radiat Res,1987,110(2):161-172.
    [96]Murros K E, Toole J F. The effect of radiation on carotid arteries. A review article[J]. Arch Neurol,1989,46(4):449-455.
    [97]Feehs R S, Mcguirt W F, Bond M G, et al. Irradiation. A significant risk factor for carotid atherosclerosis[J]. Arch Otolaryngol Head Neck Surg,1991,117(10):1135-1137.
    [98]Hopewell J W, Wright E A. The nature of latent cerebral irradiation damage and its modification by hypertension[J]. Br J Radiol,1970,43(507):161-167.
    [99]潘绵顺,王鹏,蒋华平,等.放射性脑损伤及相关问题[J].立体定向和功能性神经外科杂志,2007,20(3):187-192.
    [100]Lee A W, Foo W, Chappell R, et al. Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys,1998,40(1):35-42.
    [101]Lee A W, Ng W T, Hung W M, et al. Major late toxicities after conformal radiotherapy for nasopharyngeal carcinoma-patient- and treatment-related risk factors[J]. Int J Radiat Oncol Biol Phys,2009,73(4):1121-1128.
    [102]Butler J M, Rapp S R, Shaw E G. Managing the cognitive effects of brain tumor radiation therapy[J]. Curr Treat Options Oncol,2006,7(6):517-523.
    [103]Hunt M A, Zelefsky M J, Wolden S, et al. Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer [J].Int J Radiat Oncol Biol Phys,2001,49(3):623-632.
    [104]冉雄.鼻咽癌放射性脑病相关发生因素分析及MRI动态随访研究[D].南方医科大学,2011.
    [105]陈颖,李娜,贾守强,等.放射性脑病相关发生因素低场MR研究[J].实 用诊断与治疗杂志,2007,21(5):357-358.
    [106]Anderson V A, Godber T, Smibert E, et al. Cognitive and academic outcome following cranial irradiation and chemotherapy in children:a longitudinal study[J]. Br J Cancer,2000,82(2):255-262.
    [107]Hopewell J W, Wright E A. The nature of latent cerebral irradiation damage and its modification by hypertension[J]. Br J Radiol,1970,43(507):161-167.
    [108]Mccready R A, Hyde G L, Bivins B A, et al. Radiation-induced arterial injuries[J]. Surgery,1983,93(2):306-312.
    [109]Elias M F, Wolf P A, D'Agostino R B, et al. Untreated blood pressure level is inversely related to cognitive functioning:the Framingham Study[J]. Am J Epidemiol,1993,138(6):353-364.
    [110]Waldstein S R, Ryan C M, Manuck S B, et al. Learning and memory function in men with untreated blood pressure elevation[J].J Consult Clin Psychol,1991,59(4):513-517.
    [111]姚静.精神分裂症高危人群认知功能和人格特征及其遗传学研究[D].四川大学,2005.
    [112]Squires N K, Squires K C, Hillyard S A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man[J].Electroencephalogr Clin Neurophysiol,1975,38(4):387-401.
    [113]苏达京.鼻咽癌患者放射治疗后认知功能的研究[D].广西医科大学,2005.
    [114]王夏红,李六一,穆俊林.鼻咽癌患者放射治疗后认知功能的变化分析[J].临床神经电生理学杂志,2004,13(4):220-221.
    [115]Folstein M F, Folstein S E, Mchugh P R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician[J].J Psychiatr Res,1975,12(3):189-198.
    [116]Aoyama H, Shirato H, Onimaru R, et al. Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull [J].Int J Radiat Oncol Biol Phys,2003,56(3):793-800.
    [117]Regine W F, Scott C, Murray K, et al. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy:an analysis from Radiation Therapy Oncology Group Study 91-04[J]. Int J Radiat Oncol Biol Phys,2001,51(3):711-717.
    [118]Murray K J, Scott C, Zachariah B, et al. Importance of the mini-mental status examination in the treatment of patients with brain metastases:a report from the Radiation Therapy Oncology Group protocol 91-04[J].Int J Radiat Oncol Biol Phys,2000,48(1):59-64.
    [119]Brown P D, Buckner J C, O'Fallon J R, et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination[J]. J Clin Oncol,2003,21(13):2519-2524.
    [120]Crum R M, Anthony J C, Bassett S S, et al. Population-based norms for the Mini-Mental State Examination by age and educational level [J]. JAMA,1993,269(18):2386-2391.
    [121]Temkin N R, Heaton R K, Grant I, et al. Detecting significant change in neuropsychological test performance:a comparison of four models[J]. J Int Neuropsychol Soc,1999,5(4):357-369.
    [122]Foreman M D, Grabowski R. Diagnostic dilemma:cognitive impairment in the elderly[J]. J Gerontol Nurs,1992,18(9):5-12.
    [123]Foreman M D, Fletcher K, Mion L C, et al. Assessing cognitive function[J]. Geriatr Nurs,1996,17(5):228-233.
    [124]Bae K, Bruner D W, Baek S, et al. Patterns of missing mini mental status exam (MMSE) in radiation therapy oncology group (RTOG) brain cancer trials[J].J Neurooncol,2011,105(2):383-395.
    [125]Peper M, Steinvorth S, Schraube P, et al. Neurobehavioral toxicity of total body irradiation:a follow-up in long-term survivors[J]. Int J Radiat Oncol Biol Phys,2000,46(2):303-311.
    [126]Schultheiss T E, Kun L E, Ang K K, et al. Radiation response of the central nervous system[J]. Int J Radiat Oncol Biol Phys,1995,31(5):1093-1112.
    [127]Khong P L, Leung L H, Fung A S, et al. White matter anisotropy in post-treatment childhood cancer survivors:preliminary evidence of association with neurocognitive function[J]. J Clin Oncol,2006,24(6):884-890.
    [128]Moretti R, Torre P, Antonello R M, et al. Neuropsychological evaluation of late-onset post-radiotherapy encephalopathy:a comparison with vascular dementia[J]. J Neurol Sci,2005,229-230:195-200.
    [129]Cole P D, Kamen B A. Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia[J]. Ment Retard Dev Disabil Res Rev,2006,12(3):174-183.
    [130]Herman M A, Tremont-Lukats I, Meyers C A, et al. Neurocognitive and functional assessment of patients with brain metastases:a pilot study [J]. Am J Clin Oncol,2003,26(3):273-279.
    [131]刘运林,张谦,肖颂华,等.全脑照射对迟发性脑损伤大鼠学习记忆能力和海马突触结构的影响[J].中华行为医学与脑科学杂志,2010,19(10):879-881.
    [132]Moore B R, Copeland D R, Ried H, et al. Neurophysiological basis of cognitive deficits in long-term survivors of childhood cancer[J]. Arch Neurol,1992,49(8):809-817.
    [133]Brouwers P, Poplack D.Memory and learning sequelae in long-term survivors of acute lymphoblastic leukemia:association with attention deficits[J]. Am J Pediatr Hematol Oncol,1990,12(2):174-181.
    [134]Copeland D R, Fletcher J M, Pfefferbaum-Levine B, et al. Neuropsychological sequelae of childhood cancer in long-term survivors[J]. Pediatrics,1985,75(4): 745-753.
    [135]Laack N N, Brown P D.Cognitive sequelae of brain radiation in adults[J]. Semin Oncol,2004,31(5):702-713.
    [136]Warrington J P, Csiszar A, Mitschelen M, et al. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia[J]. PLoS One,2012,7(1):e30444.
    [137]Brown W R, Blair R M, Moody D M, et al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation:a potential rat model of vascular dementia[J].J Neurol Sci,2007,257(1-2):67-71.
    [138]Shi L, Adams M M, Long A, et al. Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus[J]. Radiat Res,2006,166(6):892-899.
    [139]Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice[J].Exp Neurol,2004,188(2):316-330.
    [140]Lee W H, Sonntag W E, Mitschelen M, et al. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain[J].Int J Radiat Biol,2010,86(2):132-144.
    [141]Lee W H, Warrington J P, Sonntag W E, et al. Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain[J].Int J Radiat Oncol Biol Phys,2012,82(5):1559-1566.
    [142]Tang Y, Luo D, Rong X, et al. Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury[J]. PLoS One,2012,7(6):e36529.
    [143]Li Y Q, Chen P, Haimovitz-Friedman A, et al. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation [J]. Cancer Res,2003,63(18):5950-5956.
    [144]Li Y Q, Chen P, Jain V, et al. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord[J].Radiat Res,2004,161(2):143-152.
    [145]Kamiryo T, Lopes M B, Kassell N F, et al. Radiosurgery-induced microvascular alterations precede necrosis of the brain neuropil[J]. Neurosurgery,2001,49(2):409-415.
    [146]Brown W R, Thore C R, Moody D M, et al. Vascular damage after fractionated whole-brain irradiation in rats[J]. Radiat Res,2005,164(5):662-668.
    [147]李学忠.电子束照射半脑后认知功能变化特点及机制的研究[D].苏州大学,2002.
    [148]Archibald Y M, Lunn D, Ruttan L A, et al. Cognitive functioning in long-term survivors of high-grade glioma[J].J Neurosurg,1994,80(2):247-253.
    [149]Deangelis L M, Delattre J Y, Posner J B. Radiation-induced dementia in patients cured of brain metastases[J]. Neurology,1989,39(6):789-796.
    [150]Abayomi O K. Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors[J]. Acta Oncol,2002,41(4):346-351.
    [151]Tang Y, Luo D, Rong X, et al. Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury[J]. PLoS One,2012,7(6):e36529.
    [152]Lezak M D. Neuropsychological assessment in behavioral toxicology--developing techniques and interpretative issues[J], Scand J Work Environ Health,1984,10 Suppl 1:25-29.
    [153]Glantz M J, Burger P C, Friedman A H, et al. Treatment of radiation-induced nervous system injury with heparin and warfarin[J]. Neurology,1994,44(11): 2020-2027.
    [154]Chan Y L, Leung S F, King A D, et al. Late radiation injury to the temporal lobes:morphologic evaluation at MR imaging[J]. Radiology,1999,213(3): 800-807.
    [155]Behin A, Delattre J Y. Complications of radiation therapy on the brain and spinal cord[J]. Semin Neurol,2004,24(4):405-417.
    [156]Karasawa K, Horikawa N, Kawase E, et al. Assessment of psychological responses in patients about to receive radiotherapy [J]. Radiat Med,2005,23(7):478-484.
    [157]Lam L C, Leung S F, Chan Y L. Progress of memory function after radiation therapy in patients with nasopharyngeal carcinoma[J]. J Neuropsychiatry Clin Neurosci,2003,15(1):90-97.
    [158]Shi L, Olson J, D'Agostino R J, et al. Aging masks detection of radiation-induced brain injury[J]. Brain Res,2011,1385:307-316.
    [159]Silber J H, Radcliffe J, Peckham V, et al. Whole-brain irradiation and decline in intelligence:the influence of dose and age on IQ score[J].J Clin Oncol,1992,10(9):1390-1396.
    [160]Crossen J R, Garwood D, Glatstein E, et al. Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J].J Clin Oncol,1994,12(3):627-642.
    [161]Armstrong C L, Hunter J V, Ledakis G E, et al. Late cognitive and radiographic changes related to radiotherapy:initial prospective findings[J]. Neurology,2002,59(1):40-48.
    [162]朱广迎,梁克,欧广飞,等.全脑照射后昆明鼠的学习、记忆力损伤及其变化规律[J].中华精神科杂志,2001,34(1):38-41.
    [163]Meyers C A, Wefel J S. The use of the mini-mental state examination to assess cognitive functioning in cancer trials:no ifs, ands, buts, or sensitivity[J].J Clin Oncol,2003,21(19):3557-3558.
    [164]Mehta M P, Shapiro W R, Glantz M J, et al. Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases:centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points[J]. J Clin Oncol,2002,20(16): 3445-3453.
    [165]Mehta M P, Rodrigus P, Terhaard C H, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases [J]. J Clin Oncol,2003,21(13):2529-2536.
    [166]Regine W F, Schmitt F A, Scott C B, et al. Feasibility of neurocognitive outcome evaluations in patients with brain metastases in a multi-institutional cooperative group setting:results of Radiation Therapy Oncology Group trial BR-0018[J]. Int J Radiat Oncol Biol Phys,2004,58(5):1346-1352.
    [1]Valk P E, Dillon W P. Radiation injury of the brain[J]. AJNR Am J Neuroradiol,1991,12(1):45-62.
    [2]Laack N N, Brown P D. Cognitive sequelae of brain radiation in adults [J]. Semin Oncol,2004,31(5):702-713.
    [3]陈旺生,李建军,王奋,等.鼻咽癌放射治疗过程中颢叶脑损伤的磁共振波谱和扩散张量[J].中华肿瘤防治杂志,2010,17(15):1214-1216.
    [4]Mukherjee P, Berman J I, Chung S W, et al. Diffusion tensor MR imaging and fiber tractography:theoretic underpinnings[J]. AJNR Am J Neuroradiol,2008,29(4):632-641.
    [5]Nelles M, Block W, Traber F, et al. Combined 3T diffusion tensor tractography and 1H-MR spectroscopy in motor neuron disease[J]. AJNR Am J Neuroradiol,2008,29(9):1708-1714.
    [6]Yokoyama K, Matsuki M, Shimano H, et al. Diffusion tensor imaging in chronic subdural hematoma:correlation between clinical signs and fractional anisotropy in the pyramidal tract[J]. AJNR Am J Neuroradiol,2008,29(6):1159-1163.
    [7]Zhuang L, Wen W, Zhu W, et al. White matter integrity in mild cognitive impairment:a tract-based spatial statistics study[J]. Neuroimage,2010,53(1):16-25.
    [8]王宏琢,邱士军,王燕钰,等.鼻咽癌放射治疗后放射性脑损伤的扩散张量成像与1H-MR波谱研究[J].中华放射学杂志,2010,44(7):677-681.
    [9]Wang H Z, Qiu S J, Lv X F, et al. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy[J]. Clin Radiol,2012,67(4):340-345.
    [10]熊炜烽,邱士军,江新青,等.鼻咽癌放射治疗后颞叶常规MRI表现正常 脑白质的扩散张量成像初步研究[J].中华放射学杂志,2012,46(2):130-134.
    [11]Xiong W F, Qiu S J, Wang H Z, et al. (1) H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation:Initial experience[J]. J Magn Reson Imaging,2013,37(1):101-108.
    [12]Welzel T, Niethammer A, Mende U, et al. Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer:first results of a prospective study[J]. AJNR Am J Neuroradiol,2008,29(2):379-383.
    [13]Laitinen T, Sierra A, Pitkanen A, et al. Diffusion tensor MRI of axonal plasticity in the rat hippocampus [J]. Neuroimage,2010,51(2):521-530.
    [14]Wang S, Wu E X, Qiu D, et al. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model[J]. Cancer Res,2009,69(3):1190-1198.
    [15]Nagesh V, Tsien C I, Chenevert T L, et al.Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors:a diffusion tensor imaging study [J]. Int J Radiat Oncol Biol Phys,2008,70(4):1002-1010.
    [16]Haris M, Kumar S, Raj M K, et al. Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas[J]. Radiat Med,2008,26(3):140-150.
    [17]陈旺生,李建军,洪澜,等.鼻咽癌放射性脑损伤的MR扩散张量成像研究[J].临床放射学杂志,2010,29(6):747-749.
    [18]官键,陈龙华,李志勇.单次大剂量照射活体动物脑的放射区域代谢和超微结构的研究[J].实用放射学杂志,2007,23(1):115-118.
    [19]宋琼,夏黎明,王承缘,等.超急性期放射性脑损伤的MRS和DTI研究[J].放射学实践,2007,22(7):687-690.
    [20]Mukherjee P, Berman J I, Chung S W, et al. Diffusion tensor MR imaging and fiber tractography:theoretic underpinnings [J].AJNR Am J Neuroradiol,2008,29(4):632-641.
    [21]Mukherjee P, Chung S W, Berman J I,et al. Diffusion tensor MR imaging and fiber tractography:technical considerations [J]. AJNR Am J Neuroradiol,2008,29(5):843-852.
    [22]Lee P W, Hung B K, Woo E K, et al. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma[J]. J Neurol Neurosurg Psychiatry,1989,52(4):488-492.
    [23]Cheung M, Chan A S, Law S C, et al. Cognitive function of patients with nasopharyngeal carcinoma with and without temporal lobe radionecrosis[J]. Arch Neurol,2000,57(9):1347-1352.
    [24]Parkin A J, Hunkin N M. Memory loss following radiotherapy for nasal pharyngeal carcinoma--an unusual presentation of amnesia[J]. Br J Clin Psychol,1991,30 (Pt 4):349-357.
    [25]Hua M S, Chen S T, Tang L M, et al. Neuropsychological function in patients with nasopharyngeal carcinoma after radiotherapy [J]. J Clin Exp Neuropsychol,1998,20(5):684-693.
    [26]Bederson J B, Harsh G T, Walker J A, et al. Radiation-induced bilateral cystic temporal lobe necrosis:reversal of memory deficit after fenestration and internal shunting. Case report[J]. J Neurosurg,1990,72(3):503-505.
    [27]Parkin A J, Hunkin N M. Memory loss following radiotherapy for nasal pharyngeal carcinoma--an unusual presentation of amnesia[J]. Br J Clin Psychol,1991,30 (Pt 4):349-357.
    [28]Chu C C, Huang C C, Chen H J. Kluver-Bucy syndrome:report of a case with nasopharyngeal cancer after irradiation and chemotherapy [J]. Zhonghua Yi Xue Za Zhi (Taipei),1994,54(6):432-435.
    [29]Hsiao K Y, Yeh S A, Chang C C, et al. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma:a prospective study[J]. Int J Radiat Oncol Biol Phys,2010,77(3):722-726.
    [30]Laack N N, Brown P D. Cognitive sequelae of brain radiation in adults[J]. Semin Oncol,2004,31(5):702-713.
    [31]Smith S M, Jenkinson M, Woolrich M W, et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage,2004,23 Suppl 1:S208-S219.
    [32]Smith S M, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage,2006,31 (4):1487-1505.
    [33]Smith S M, Nichols T E. Threshold-free cluster enhancement:addressing problems of smoothing, threshold dependence and localisation in cluster inference[J].Neuroimage,2009,44(1):83-98.
    [34]Zarei M, Damoiseaux J S, Morgese C, et al. Regional white matter integrity differentiates between vascular dementia and Alzheimer disease [J]. Stroke,2009,40(3):773-779.
    [35]Nichols T E, Holmes A P. Nonparametric permutation tests for functional neuroimaging:a primer with examples[J]. Hum Brain Mapp,2002,15(1):1-25.
    [36]Basser P J, Mattiello J, Lebihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J,1994,66(1):259-267.
    [37]Chenevert T L, Brunberg J A, Pipe J G. Anisotropic diffusion in human white matter:demonstration with MR techniques in vivo[J]. Radiology,1990,177(2):401-405.
    [38]Dudink J, Larkman D J, Kapellou O, et al. High b-value diffusion tensor imaging of the neonatal brain at 3T[J]. AJNR Am J Neuroradiol,2008,29(10):1966-1972.
    [39]Saupe N, White L M, Stainsby J, et al. Diffusion tensor imaging and fiber tractography of skeletal muscle:optimization of B value for imaging at 1.5 T[J]. AJR Am J Roentgenol,2009,192(6):W282-W290.
    [40]Andreisek G, White L M, Kassner A, et al. Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T:optimization of b value[J].Skeletal Radiol,2009,38(1):51-59.
    [41]Tan X P, Zhao J Q, Liang B L, et al. Diagnostic value of MR diffusion tensor imaging on radiation-induced early brain injury of nasopharyngeal carcinoma after radiotherapy[J]. Ai Zheng,2004,23(11):1334-1337.
    [42]饶晶晶,漆剑频,王承缘.扩散张量成像扩散梯度方向与DTI图像质量的相关性研究[J].放射学实践,2008,23(3):320-323.
    [43]Yoshiura T, Wu O, Zaheer A, et al. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter[J]. Magn Reson Med,2001,45(5):734-740.
    [44]Neil J J, Shiran S I, Mckinstry R C, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging[J]. Radiology,1998,209(1):57-66.
    [45]Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review[J]. NMR Biomed,2002,15(7-8):435-455.
    [46]Bonekamp D, Nagae L M, Degaonkar M, et al. Diffusion tensor imaging in children and adolescents:reproducibility, hemispheric, and age-related differences[J].Neuroimage,2007,34(2):733-742.
    [47]Jellison B J, Field A S, Medow J, et al. Diffusion tensor imaging of cerebral white matter:a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns[J]. AJNR Am J Neuroradiol,2004,25(3):356-369.
    [48]Horsfield M A, Larsson H B, Jones D K, et al. Diffusion magnetic resonance imaging in multiple sclerosis[J]. J Neurol Neurosurg Psychiatry,1998,64 Suppl 1:S80-S84.
    [49]Jones D K, Dardis R, Ervine M, et al. Cluster analysis of diffusion tensor magnetic resonance images in human head injury [J]. Neurosurgery,2000,47(2):306-314.
    [50]Guo A C, Macfall J R, Provenzale J M. Multiple sclerosis:diffusion tensor MR imaging for evaluation of normal-appearing white matter [J]. Radiology,2002,222(3):729-736.
    [51]Eichler F S, Itoh R, Barker P B, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy:initial experience[J]. Radiology,2002,225(1):245-252.
    [52]Makki M I, Chugani D C, Janisse J, et al. Characteristics of abnormal diffusivity in normal-appearing white matter investigated with diffusion tensor MR imaging in tuberous sclerosis complex[J].AJNR Am J Neuroradiol,2007,28(9):1662-1667.
    [53]Song S K, Sun S W, Ju W K, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia[J].Neuroimage,2003,20(3):1714-1722.
    [54]Wang S, Wu E X, Qiu D, et al. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model[J]. Cancer Res,2009,69(3):1190-1198.
    [55]Nagesh V, Tsien C I, Chenevert T L, et al. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors:a diffusion tensor imaging study[J]. Int J Radiat Oncol Biol Phys,2008,70(4):1002-1010.
    [56]Song S K, Sun S W, Ju W K, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia[J]. Neuroimage,2003,20(3):1714-1722.
    [57]Song S K, Sun S W, Ramsbottom M J, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water [J]. Neuroimage,2002,17(3):1429-1436.
    [58]Song S K, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain[J]. Neuroimage,2005,26(1):132-140.
    [59]Schultheiss T E, Kun L E, Ang K K, et al. Radiation response of the central nervous system[J]. Int J Radiat Oncol Biol Phys,1995,31(5):1093-1112.
    [60]Shu N, Li J, Li K, et al. Abnormal diffusion of cerebral white matter in early blindness[J]. Hum Brain Mapp,2009,30(1):220-227.
    [61]Zhang T, Davatzikos C. Optimally-discriminative voxel-based analysis[J].Med Image Comput Comput Assist Interv,2010,13(Pt 2):257-265.
    [62]Schultheiss T E, Kun L E, Ang K K, et al. Radiation response of the central nervous system[J]. Int J Radiat Oncol Biol Phys,1995,31(5):1093-1112.
    [63]Tofilon P J, Fike J R. The radioresponse of the central nervous system:a dynamic process[J]. Radiat Res,2000,153(4):357-370.
    [64]Zhao J Q, Liang B L, Shen J, et al. Magnetic resonance perfusion weighted imaging manifestation of late radiation-induced encephalopathy at temporal lobe[J]. Ai Zheng,2005,24(9):1102-1105.
    [65]王玉林,有慧,张爱莲,等.MR灌注成像在鉴别胶质瘤复发与放射性脑损伤中的价值[J].中华放射学杂志,2011,45(7):618-622.
    [66]赵继泉.MR脑血流灌注、扩散张量及波谱在鼻咽癌放疗后放射性脑损伤中的临床应用研究[D].中山大学,2004.
    [67]林曰增,张雪林,阎卫平.鼻咽癌放疗后放射性脑病的CT灌注研究[J].中华放射学杂志,2002,36(4):339-343.
    [68]Price S J, Jena R, Green H A, et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue:a sequential dynamic susceptibility imaging study of cerebral perfusion[J]. Clin Oncol (R Coll Radiol),2007,19(8):577-587.
    [69]Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone[J]. J Biol Chem,2004,279(15):15167-15176.
    [70]Ramanan S, Zhao W, Riddle D R, et al. Role of PPARs in Radiation-Induced Brain Injury[J]. PPAR Res,2010,2010:234975. doi:10.1155/2010/234975.
    [71]Kim J H, Brown S L, Jenrow K A, et al. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials[J]. J Neurooncol,2008,87(3):279-286.
    [72]Crossen J R, Garwood D, Glatstein E, et al. Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J]. J Clin Oncol,1994,12(3):627-642.
    [73]Kitahara S, Nakasu S, Murata K, et al. Evaluation of treatment-induced cerebral white matter injury by using diffusion-tensor MR imaging:initial experience[J]. AJNR Am J Neuroradiol,2005,26(9):2200-2206.
    [74]Khong P L, Kwong D L, Chan G C, et al. Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma:a pilot study[J]. AJNR Am J Neuroradiol,2003,24(4):734-740.
    [75]Mukherjee P, Mckinstry R C. Reversible posterior leukoencephalopathy syndrome:evaluation with diffusion-tensor MR imaging[J]. Radiology,2001,219(3):756-765.
    [76]赵继泉,梁碧玲,朱新进,等.鼻咽癌放疗后颞叶脑放射性损伤的磁共振扩散张量成像的表现[J].实用放射学杂志,2008,24(4):445-447.
    [77]刚宪祯,汪延明.鼻咽癌放疗后放射性脑损伤的MRI扩散加权成像研究[J].中华临床医师杂志(电子版),2008,2(2):160-166.
    [78]Peiffer A M, Shi L, Olson J, et al. Differential effects of radiation and age on diffusion tensor imaging in rats[J].Brain Res,2010,1351:23-31.
    [79]Harsan L A, Poulet P, Guignard B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging[J]. J Neurosci Res,2006,83(3):392-402.
    [80]Huang J, Friedland R P, Auchus A P. Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease:preliminary evidence of axonal degeneration in the temporal lobe[J]. AJNR Am J Neuroradiol,2007,28(10):1943-1948.
    [81]Haris M, Kumar S, Raj M K, et al. Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas[J]. Radiat Med,2008,26(3):140-150.
    [82]Burger P C, Mahley M J, Dudka L, et al. The morphologic effects of radiation administered therapeutically for intracranial gliomas:a postmortem study of 25 cases[J]. Cancer,1979,44(4):1256-1272.
    [83]Lo E H, Delapaz R L, Frankel K A, et al. MRI and PET of delayed heavy-ion radiation injury in the rabbit brain[J]. Int J Radiat Oncol Biol Phys,1991,20(4):689-696.
    [84]Corn B W, Yousem D M, Scott C B, et al. White matter changes are correlated significantly with radiation dose. Observations from a randomized dose-escalation trial for malignant glioma (Radiation Therapy Oncology Group 83-02) [J]. Cancer,1994,74(10):2828-2835.
    [85]Price R E, Langford L A, Jackson E F, et al. Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brain[J]. J Med Primatol,2001,30(2):81-87.
    [86]Pickering J E, Vogel F S. Demyelinization induced in the brains of monkeys by means of fast neutrons; pathogenesis of the lesion and comparison with the lesions of multiple sclerosis and Schilder's disease[J]. J Exp Med,1956,104(3):435-442.
    [87]Li H, Li J P, Lin C G, et al. An experimental study on acute brain radiation injury:dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology[J]. Eur J Radiol,2012,81(11):3496-3503.
    [88]Carano R A, Li F, Irie K, et al. Multispectral analysis of the temporal evolution of cerebral ischemia in the rat brain[J]. J Magn Reson Imaging,2000,12(6):842-858.
    [89]Liu Y, D'Arceuil H E, Westmoreland S, et al. Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates[J]. Stroke,2007,38(1):138-145.
    [90]Hoeft F, Barnea-Goraly N, Haas B W, et al. More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome[J]. J Neurosci,2007,27(44):11960-11965.
    [91]Thomason M E, Thompson P M. Diffusion imaging, white matter, and psychopathology[J]. Annu Rev Clin Psychol,2011,7:63-85.
    [92]Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research[J].Neuron,2006,51(5):527-539.
    [93]Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury-areview[J]. NMR Biomed,2002,15(7-8):561-569.
    [94]Bhagat Y A, Hussain M S, Stobbe R W, et al. Elevations of diffusion anisotropy are associated with hyper-acute stroke:a serial imaging study[J]. Magn Reson Imaging,2008,26(5):683-693.
    [95]Kodama F, Ogawa T, Sugihara S, et al. Transneuronal degeneration in patients with temporal lobe epilepsy:evaluation by MR imaging[J]. Eur Radiol,2003,13(9):2180-2185.
    [96]Beirowski B, Adalbert R, Wagner D, et al. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves[J]. BMC Neurosci,2005,6:6.
    [97]Schlaug G, Marchina S, Norton A. Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy[J].Ann N Y Acad Sci,2009,1169:385-394.
    [98]Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury-a review[J]. NMR Biomed,2002,15(7-8):561-569.
    [99]Sen P N, Basser P J. A model for diffusion in white matter in the brain[J]. Biophys J,2005,89(5):2927-2938.
    [100]朱长庚.神经解剖学[M].北京市:人民卫生出版社,2002:700-747.
    [101]Constine L S, Konski A, Ekholm S, et al. Adverse effects of brain irradiation correlated with MR and CT imaging[J]. Int J Radiat Oncol Biol Phys,1988,15(2):319-330.
    [102]van der Putten J J, Hobart J C, Freeman J A, et al. Measuring change in disability after inpatient rehabilitation:comparison of the responsiveness of the Barthel index and the Functional Independence Measure[J]. J Neurol Neurosurg Psychiatry,1999,66(4):480-484.
    [103]Armstrong C L, Corn B W, Ruffer J E, et al. Radiotherapeutic effects on brain function:double dissociation of memory systems[J]. Neuropsychiatry Neuropsychol Behav Neurol,2000,13(2):101-111.
    [104]Cole P D, Kamen B A. Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia[J]. Ment Retard Dev Disabil Res Rev,2006,12(3):174-183.
    [105]Chang E L, Akyurek S, Avalos T, et al. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma[J].Int J Radiat Oncol Biol Phys,2007,68(1):144-150.
    [106]Surma-Aho O, Niemela M, Vilkki J, et al. Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients[J]. Neurology,2001,56(10):1285-1290.
    [107]Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice[J]. Exp Neurol,2004,188(2):316-330.
    [108]Yoneoka Y, Satoh M, Akiyama K, et al. An experimental study of radiation-induced cognitive dysfunction in an adult rat model [J].Br J Radiol,1999,72(864):1196-1201.
    [109]Madsen T M, Kristjansen P E, Bolwig T G, et al. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat[J]. Neuroscience,2003,119(3):635-642.
    [110]Robbins M E, Payne V, Tommasi E, et al. The AT1 receptor antagonist, L-l 58,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment[J]. Int J Radiat Oncol Biol Phys,2009,73(2):499-505.
    [111]Shi L, Linville M C, Iversen E, et al. Maintenance of white matter integrity in a rat model of radiation-induced cognitive impairment[J]. J Neurol Sci,2009,285(1-2):178-184.
    [112]Turken A, Whitfield-Gabrieli S, Bammer R, et al. Cognitive processing speed and the structure of white matter pathways:convergent evidence from normal variation and lesion studies[J].Neuroimage,2008,42(2):1032-1044.
    [113]Tang Y, Luo D, Rong X, et al. Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury[J]. PLoS One,2012,7(6):e36529.
    [114]Karasawa K, Horikawa N, Kawase E, et al. Assessment of psychological responses in patients about to receive radiotherapy[J]. Radiat Med,2005,23(7):478-484.
    [115]Lam L C, Leung S F, Chan Y L. Progress of memory function after radiation therapy in patients with nasopharyngeal carcinoma[J].J Neuropsychiatry Clin Neurosci,2003,15(1):90-97.
    [116]Cheung M C, Chan A S, Law S C, et al. Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma[J]. Cancer,2003,97(8):2019-2026.
    [117]欧广飞,蔡伟明.鼻咽癌放射治疗后长期生存病人的记忆力减退与脑损伤相关性的研究[J].中华放射肿瘤学杂志,1999,8(2):14-16.
    [118]Trivedi R, Khan A R, Rana P, et al. Radiation-induced early changes in the brain and behavior:serial diffusion tensor imaging and behavioral evaluation after graded doses of radiation[J]. J Neurosci Res,2012,90(10):2009-2019.
    [119]Vaessen M J, Jansen J F, Vlooswijk M C, et al. White matter network abnormalities are associated with cognitive decline in chronic epilepsy[J]. Cereb Cortex,2012,22(9):2139-2147.
    [120]Bosma I, Reijneveld J C, Klein M, et al. Disturbed functional brain networks and neurocognitive function in low-grade glioma patients:a graph theoretical analysis of resting-state MEG[J]. Nonlinear Biomed Phys,2009,3(1):9.
    [121]Li Y, Liu Y, Li J, et al. Brain anatomical network and intelligence[J]. PLoS Comput Biol,2009,5(5):e1000395.
    [122]van den Heuvel M P, Stam C J, Kahn R S, et al. Efficiency of functional brain networks and intellectual performance [J]. J Neurosci,2009,29(23):7619-7624.
    [123]Behin A, Delattre J Y. Complications of radiation therapy on the brain and spinal cord[J]. Semin Neurol,2004,24(4):405-417.
    [124]陈颖,李娜,贾守强,等.放射性脑病相关发生因素低场MR研究[J].实用诊断与治疗杂志,2007,21(5):357-358.
    [125]冉雄.鼻咽癌放射性脑病相关发生因素分析及MRI动态随访研究[D].南方医科大学,2011.
    [126]Lee A W, Kwong D L, Leung S F, et al. Factors affecting risk of symptomatic temporal lobe necrosis:significance of fractional dose and treatment time[J].Int J Radiat Oncol Biol Phys,2002,53(1):75-85.
    [127]Meyers C A, Wefel J S.The use of the mini-mental state examination to assess cognitive functioning in cancer trials:no ifs, ands, buts, or sensitivity [J].J Clin Oncol,2003,21(19):3557-3558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700