桑沟湾、浙闽沿岸铝的分布、季节变化及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是陆源物质向海洋输送的一种有效示踪剂,可以用来指示沙尘在大洋中沉降的位置和规模、示踪不同水团的运动,因此铝的海洋生物地球化学循环研究越来越受到科学家们的广泛关注。目前,关于溶解态铝在海洋中的清除机制研究方面还存在较大的争议。本文在此背景下,对桑沟湾养殖区和浙闽沿岸海域铝的分布、季节变化及影响因素进行了初步的研究,深化人们对铝在浮游植物生物量相对较大的养殖型海湾和受陆源径流影响相对较大的沿岸区域生物地球化学循环过程的认识。
     根据2006年4月、7月、11月和2007年1月对桑沟湾进行的调查,分析了水体、悬浮颗粒物、表层沉积物中铝的分布及季节变化。结果表明,桑沟湾溶解态铝的分布呈现出明显的季节变化,夏季最高,浓度为64.1±45.1 nmol/L;春、秋季次之,浓度分别为60.8±29.1 nmol/L、60.3±15.5 nmol/L;冬季最低,浓度为31.2±9.6 nmol/L。因悬浮颗粒物的来源及类型不同,春季和冬季颗粒物中铝的含量较高,夏季和秋季颗粒物中铝的含量较低;颗粒物中铝主要以残渣态存在。颗粒物中可交换态铝(醋酸提取态)在颗粒态铝中所占的比例为春季和夏季比较高,其中夏季醋酸提态所占的比例可高达(2.19±0.88)%。春、夏、秋、冬四个季节表层沉积物中铝的平均含量分别为6.85%±0.60%、6.70%±0.68%、7.09%±0.47%、6.83%±0.50%,其含量季节变化不大,分布趋势主要受陆源输入的影响。根据获得的不同季节桑沟湾溶解态和颗粒态铝的含量,讨论了颗粒物对溶解态铝分布的影响并计算了铝在颗粒物表面的分配系数。铝的界面分配系数Kd的范围为0.24×105~1.3×106 mL/g,平均值为3.6×105±2.6×105 mL/g,其中SPM的范围为8.0~60.6 mg/L。根据箱式模型,考虑桑沟湾中各种来源铝的贡献和桑沟湾中溶解态铝的总量,在水量平衡和盐量平衡的基础上初步估算了溶解态铝的存留时间约为(36±17) d。
     2007年5月和2008年5月分别对浙闽沿岸海域溶解态铝进行了调查研究,初步分析了研究区域水体中溶解态铝的分布、年际变化及其影响因素,并在海上进行了藻类现场培养,初步探讨生源颗粒物对铝的清除作用。结果表明,2007年5月浙闽沿岸海域表、底层溶解态铝的平均浓度分别为49.6±40.9 nmol/L和54.8±25.6 nmol/L;2008年5月浙闽沿岸海域表、底层溶解态铝的平均浓度分别为45.0±29.2 nmol/L和53.4±25.1 nmol/L。由此可见,浙闽沿岸海域溶解态铝含量的年际变化不大。两个航次中溶解态铝的水平分布规律基本类似,均表现为近岸浓度较高,随离岸距离的增加浓度逐渐下降,表现出明显的陆源输入的特点。选取受长江冲淡水影响的S1断面和位于台湾海峡北部的S6断面来讨论断面分布,结果发现受长江冲淡水、浙闽沿岸水及台湾暖流等水团的影响,溶解态铝的断面分布基本呈现出近岸高、外海低的特点。但对于特定断面而言,由于受到断面所处位置、长江径流量的年际变化、水体中悬浮颗粒物含量和浮游植物生物量等影响因素的共同作用,分布特点略有差异。对典型站位溶解态铝等要素的垂直变化规律讨论后发现,溶解态铝垂直分布规律基本一致,为中层最小值类型。即表层浓度较高,中层最小,底层浓度随着深度的增加而增大。这种剖面分布反映了研究区域溶解态铝有两个主要来源,表层水体主要受长江冲淡水和浙闽沿岸水等陆源输入的影响,底层则受沉积物再悬浮和悬浮颗粒物的吸附解吸作用的影响。对于发生水华的站位,溶解态铝的垂直剖面变化规律与硅酸盐基本类似,显示出营养盐型的剖面特点,而与叶绿素含量反相关。叶绿素含量比较高的站位,表层溶解态铝的浓度明显降低,藻类现场培养过程中也发现了这一现象,表明藻类的水华过程在一定程度上对水体中的溶解态铝产生了清除作用,具体的机理仍需进一步深入探讨。
Aluminum is an ideal tracer for the input of terrestrial materials into the ocean. It can be used to indicate the location and magnitude of aeolian dust deposition and to trace the movements of different water masses in the ocean. Therefore, the research on marine biogeochemical cycle of aluminum has attracted more and more attention by scientists. At present, there still exist controversies on the scavenging mechanism of dissolved aluminum in the ocean. Under this background, the distributions, seasonal variations and the influencing factors of aluminum in the Sanggou Bay and coastal area of Zhejiang and Fujian are primarily studied in this article.
     Four cruises were carried out in the Sanggou Bay in April, July and November of 2006 and January of 2007. This dissertation presents the results of the distributions and seasonal variations of aluminum in the seawater, suspended particulate matter and surface sediments. The distributions of dissolved aluminum in the Sanggou Bay show obvious seasonal variations. The concentrations of dissolved aluminum in four seasons are 60.8±29.1 nmol/L, 64.1±45.1 nmol/L, 60.3±15.5 nmol/L and 31.2±9.6 nmol/L, respectively. Due to different sources and types of suspended particulate matter, the concentrations of particulate aluminum are higher in the spring and the winter than that in the summer and the autumn. Particulate aluminum exists mainly in residual form. The exchangeable portion of the particulate aluminum is high in the spring and the summer, which can reach as high as (2.19±0.88) % in the summer. The average concentrations of aluminum in the surface sediments of four seasons are 6.85%±0.60%, 6.70%±0.68%, 7.09%±0.47% and 6.83%±0.50%, respectively, which have no obvious seasonal variations. The distributions of aluminum in the surface sediments are mainly affected by land-source input. Partitioning of aluminum between solid and solution phases is described by distribution coefficient, Kd, which varies from 0.24×105 to 1.3×106 mL/g with a mean of 3.6×105±2.6×105 mL/g. Based on the simple box model, a residence time of 36±17 days for dissolved aluminum has also been worked out.
     Two cruises were carried out in coastal area of Zhejiang and Fujian in May of 2007 and 2008, respectively. The distributions, annual variations and the influencing factors of dissolved aluminum are primarily studied in this area. At the same time, in situ culture experiment was carried out during the cruise of May 2008, in order to discuss the effects of biogenic particles on scavenging of dissolved aluminum in the seawater. The results show that, the average concentrations of dissolved aluminum in the surface and bottom layers of the coastal area of Zhejiang and Fujian in May of 2007 are 49.6±40.9 nmol/L and 54.8±25.6 nmol/L, respectively; the average concentrations of dissolved aluminum in the surface and bottom layers of the coastal area of Zhejiang and Fujian in May of 2008 are 45.0±29.2 nmol/L and 53.4±25.1 nmol/L, respectively. Thus it can be seen, the annual variations of dissolved aluminum in the coastal area of Zhejiang and Fujian are relatively small. The horizontal distributions of dissolved aluminum in two cruises show similar profiles, with higher concentrations in the coastal area and decreasing by the distance of offshore, which indicate the characteristic of land-source input.
     The distributions of the dissolved aluminum in S1 and S6 sections are influenced by several water masses, such as Changjiang diluted water, Zhe-Min coastal water and Taiwan Warm Current. Thus the concentrations of dissolved aluminum decrease with the distance off the coast. However, there is a slightly different distribution characteristic for the particular section due to the combined influencing factors including the location, Changjiang runoff, suspended particulate matters and phytoplankton biomass.
     The vertical profiles of dissolved aluminum in typical stations of the coastal area of Zhejiang and Fujiang are basically identical, with the middle-depth minimum types. The concentration of dissolved aluminum is higher in the surface and near bottom, while is lower in the mid-depth. This kind of profile indicates two main sources of dissolved aluminum in the study area. The dissolved aluminum in the surface water mainly comes from the Changjiang diluted water and other riverine inputs in Zhejiang and Fujian provinces. The source of dissolved aluminum in the bottom water comes from the re-suspension of sediments and surface adsorption and desorption reactions of suspended particulate matter. The concentrations of dissolved aluminum show negative correlations with the chlorophyll contents at the surface layers of bloom stations. The similar phenomenon also exists in the culture experiments. So in certain extent dissolved aluminum can be scavenged by phytoplankton during spring bloom. But the scavenging mechanism needs further research.
引文
[1] Buesseler K O, Bauer J E, Chen R F, et al. An intercomparison of cross-flow ultrafiltration technique used for sampling marine colloids: Overview and organic carbon results [J]. Marine Chemistry, 1996, 55: 1-31
    [2] Caschetto S, Wollast R. Vertical distribution of dissolved aluminum in the Mediterranean Sea [J]. Marine Chemistry, 1979, 7: 141-155
    [3] Chen L Y L, Chen H Y, Gong G C, et al. Phytoplankton production during a summer coastal upwelling in the East China Sea [J]. Continental Shelf Research, 2004, 24: 1321-1338
    [4] Chou L, Wollast R. Biogeochemical behavior and mass balance of dissolved aluminum in the western Mediterranean Sea [J]. Deep-Sea Research, 1997, 44: 741-768
    [5] de Jong J T M, BoyéM, Gelado-Caballero M D, et al. Inputs of iron, manganese and aluminium to surface waters of the Northeast Atlantic Ocean and the European continental shelf [J]. Marine Chemistry, 2007, 107: 120-142
    [6] GEOTRACE Science Plan: An international study of biogeochemical cycles of trace elements and isotopes. Draft version, 2006
    [7] Gelado-Caballero M D, Torres-Padron M E, Hernandez-Brito J J, et al. Aluminium distributions in Central East Atlantic waters (Canary Islands) [J]. Marine Chemistry, 1996, 51: 359-372
    [8] Guerzoni S, Landuzzi W, Lenaz R, et al. Mineral atmospheric particulate from south to northwest Mediterranean: Seasonal variations and characteristics [J]. Water Pollution Research Report, 1992, 28: 483-493
    [9] Guieu C, Zhang J, Thomas A J, Martin J M, Brun-Cottan J C. Significance of the atmospheric fallout on the upper layer water chemistry of the northwestern Mediterranean [J]. Journal of Atmospheric Chemistry, 1993, 17: 45-60
    [10] Gustafson O, Gschwend P M. Aquatic colloids: concepts, definitions and current challenges [J]. Limnology and Oceanography, 1997, 42: 519-528
    [11] Hall I R, Hydes D J, Statham P J, et al. Seasonal variations in the cycling of aluminum, cadmium and manganese in a Scottish sea loch: Biogeochemical process involving suspended particles [J]. Continental Shelf Research, 1999, 19: 1783-1808
    [12] Hydes D J, de Lange G J, de Baar H J W. Dissolved aluminium in the Mediterranean [J].Geochimica et Cosmochimica Acta, 1988, 52: 2107-2114
    [13] Hydes D J, Kremling K. Patchiness in dissolved metals (Al, Cd, Co, Cu, Mn, Ni) in North Sea surface waters: seasonal differences and influence of suspended sediment [J]. Continental Shelf Research, 1993, 13: 1083-1101
    [14] Hydes D J, Liss P S. Fluorimetric method for the determination of low concentrations of dissolved aluminum in natural waters [J]. Analyst, 1976, 101: 922-931
    [15] Jickells T D. Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects [J]. Marine Chemistry, 1995, 48: 199-214
    [16] Jickells T D. The inputs of dust derived elements to the Sargasso Sea; a synthesis [J]. Marine Chemistry, 1999, 68: 5-14
    [17] Kramer J, Laan P, Sarthou G, et al. Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean [J]. Marine Chemistry, 2004: 85-101
    [18] Kramer J, Laan P, van Ooijen J C, et al. Distribution of dissolved aluminium in the subtropical waters of the North Atlantic Ocean [J]. Geophysical Research Abstracts, 2003, 5: 02253
    [19] Li J B, Ren J L, Zhang J, et al. The distribution of dissolved aluminum in the Yellow and East China Seas [J]. Journal of Ocean University of China, 2008, 7: 48-54
    [20] Mackenzie F T, Stoffyn M, Wollast R. Aluminum in seawater: Control by biological activity [J]. Science, 1978, 199: 680-682
    [21] Maring H B, Duce R A. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface waters, 1. Aluminum [J]. Earth and Planetary Science Letters, 1987, 84: 381-392
    [22] Markewitz D, Richter D D. The bio in aluminum and silicon geochemistry [J]. Biogeochemistry, 1998, 42: 235-252
    [23] Martin J M, Meybeck M. Elemental mass balance of matter carried by major world rivers [J]. Marine Chemistry, 1979, 7: 173-206
    [24] Measures C I. The role of entrained sediments in sea ice in the distribution of aluminum and iron in the surface waters of the Arctic Ocean [J]. Marine Chemistry, 1999, 68: 59-70
    [25] Measures C I, Edmond J M. Aluminum as a tracer of the deep outflow from theMediterranean [J]. Journal of Geophysical Research, 1988, 93(1): 591-595
    [26] Measures C I, Grant B, Khadem M, et al. Distribution of Be, Al, Se and Bi in the surface waters of the western North Atlantic and Caribbean [J]. Earth and Planetary Science Letters, 1984, 71: 1-12
    [27] Measures C I, Vink S. On the use of dissolved aluminumin surface waters to estimate dust deposition to the ocean [J]. Global Biogeochemical Cycles, 2000, 14(1): 317-327
    [28] Measures C I, Vink S. Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea [J]. Deep-Sea Research, 1999, 93: 591-595
    [29] Minakawa M, Watanabe Y. Aluminum in the East China Sea and Okinawa Trough, Marginal Sea Areas of the Western North Pacific [J]. Journal of oceanography, 1998, 54: 629-640
    [30] Moon D S, Hong G H, Kim S H, Chung C S, Kim Y I, Shon B J, Ren J L, Zhang J. Chemical composition of marine aerosol particles in the Northeast Asian marginal Sea. In: Hong G H, Zhang J, Chung C S (Eds.), Impact of Interface Exchange on the Biogeochemical Processes of the Yellow Sea and East China Sea. Bum Shin Press, Seoul, 2002, 31-68
    [31] Moore R M. Oceanographic distributions of zinc, cadmium, copper and aluminum in waters of the central Arctic Ocean [J]. Geochimica et Cosmochimica Acta, 1981, 45: 2475-2482
    [32] Moran S B, Moore R M. Kinetics of the removal of dissolved aluminum by diatoms in seawater: A comparison with thorium [J]. Geochimica et Cosmochimica Acta, 1992, 56: 3365-3374
    [33] Moran S B, Moore R M. Temporal variations in dissolved and particulate aluminum during a spring bloom [J]. Estuarine, Coastal and Shelf Science, 1988, 27: 205-215
    [34] Moran S B, Moore R M. The distribution of colloidal aluminum and organic carbon in coastal and open waters off Nova Scotia [J]. Geochim Cosmochim Acta, 1989, 53: 2519-2527
    [35] Moran S B, Moore R M. The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water [J]. Geochim Cosmochim Acta, 1991, 55: 2745-2751
    [36] Moran S B, Moore R M, Westerlund S. Dissolved Al in the Weddle Sea [J]. Deep-Sea Research, 1992, 39: 537-547
    [37] Orians K J, Bruland K W. Dissolved aluminium in the central North Pacific [J]. Nature, 1985,316: 427-429
    [38] Orians K J, Bruland K W. The biogeochemistry of aluminum in the Pacific Ocean [J]. Earth and Planetary Science Letters, 1986, 78: 397-410
    [39] Reitmeyer R, Powell R T, Landing W M, et al. Colloidal aluminum and iron in seawater: An intercomparison between various cross-flow ultrafiltration systems [J]. Marine Chemistry, 1996, 55: 75-91
    [40] Ren J L, Zhang J, Li J B, et al. Dissolved aluminum in the Yellow Sea and East China Sea—Al as a tracer of Changjiang (Yangtze River) discharge and Kuroshio incursion [J]. Estuarine, Coastal and Shelf Science, 2006, 68: 165-174
    [41] Ren J L, Zhang J, Luo J Q, et al. Improved fluorimetric determination of dissolved aluminum by micelle-enhanced lumogallion complex in natural waters [J]. Analyst, 2001, 126: 698-702
    [42] Schropp S T, Lewis F G, Windom H L, et al. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element [J]. Estuaries, 1990, 13: 227-235
    [43] Schü?üer U, Balzer W, Deeken A. Dissolved Al distribution, particulate Al fluxes and coupling to atmospheric Al and dust deposition in the Arabian Sea [J]. Deep-Sea Research, 2005, 52: 1862-1878
    [44] Spokes L J, Jickells T D. Factors controlling the solubility of aerosol trace metals in the atmosphere on mixing into seawater [J]. Aquatic Geochemistry, 1996, 1: 355-374
    [45] Tria J, Bulter E C V, Haddad P R. Determination of aluminium in natural water samples [J]. Analytica Chimica Acta, 2007, 588: 153-165
    [46] Turner A, Millward G E. Suspended particles: Their role in estuarine biogeochemical cycles [J]. Estuarine, Coastal and Shelf Science, 2002, 55: 857-883
    [47] Uematsu M, Wang Z F, Uno I. Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model [J]. Geophysical Research Letters, 2003, 30: 1342-1344
    [48] Upadhyay S. Sorption model for dissolved and particulate aluminium in the Conway estuary, UK [J]. Estuarine, Coastal and Shelf Science, 2008, 76: 914-919
    [49] Upadhyay S, Gupta R S. Aluminum in the northwestern Indian Ocean (Arabian Sea) [J]. Marine Chemistry, 1994, 47: 203-214
    [50] Upadhyay S, Gupta R S. The behaviour of aluminium in waters of the Mandovi estuary, west coast of India [J]. Marine Chemistry, 1995, 51: 261-276
    [51] Van Bennekom A J, Buma A G J, Nolting R F. Dissolved aluminum in the Weddle-Scotia confluence and effect of Al on the dissolution kinetics of biogenic silica [J]. Marine Chemistry, 1991, 35: 423-434
    [52] Vink S, Measures C I. The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic [J]. Deep-Sea Research, 2001, 48: 2787-2809
    [53] Wen L S, Santschi P H, Gill G, et al. Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase [J]. Marine Chemistry, 1999, 63: 185-212
    [54] Wu Y, Zhang J, Li D J, et al. Isotope variability of particulate organic matter at the PN section in the East China Sea [J]. Biogeochemistry, 2003, 65: 31-49
    [55] Xu H, Zhang J, Ren J L, et al. Aluminum in the macrotidal Yalujiang Estuary: partitioning of Al along the estuarine gradients and flux [J]. Estuaries, 25(4A): 608-621
    [56] Yeats P A, Dalziel J A, Moran S B. A comparison of dissolved and particulate Mn and Al distributions in the Western North Atlantic [J]. Oceanologica Acta, 1992, 15: 609-619
    [57] Zhang C S, Wang L J, Zhang S. Speciation of metal in sediments and suspended matter in the lower and middle reaches of the Changjiang River [J]. Journal of Basic Science and Engineering, 1994, 2(4): 321-332
    [58] Zhang J, Ren J L, Liu S M, et al. Dissolved aluminum and silica in the Changjiang (Yangtze River): Impact of weathering in sub-continental scale [J]. Global Biogeochemical Cycles, 2003, 17(3): 1077-1087
    [59] Zhang J, Xu H, Ren J L. Fluorimetric determinations of dissolved aluminum in natural waters after liquid-liquid extraction into n-hexanol [J]. Analytica Chimica Acta, 2000, 405: 31-42
    [60] Zhang J, Xu H, Yu Z G. Dissolved aluminum in four Chinese estuaries: evidence of biogeochemical uncoupling of Al with nutrients [J]. Journal of Asian Earth Sciences, 1999, 17: 333-343
    [61]蔡力胜,方建光,董双林.桑沟湾养殖海区沉积物-海水界面氮、磷营养盐的交换通量[J].海洋水产研究, 2004, 25: 57-64
    [62]陈国珍.海水痕量元素分析[M].海洋出版社, 1995. 75-100
    [63]陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重属研究介质的合理性及有在粒级转换模型研究[J].环境科学学报, 1994, 14(4): 419-425
    [64]陈怀满.环境土壤学[M].北京:科学出版社, 2005. 49
    [65]陈倩,黄大吉,章本照.浙江近海潮汐潮流的数值模拟[J].海洋学报, 2003, 25: 9-20
    [66]陈倩,黄大吉,章本照,等.浙江近海潮流和余流的特征[J].东海海洋, 2003, 21: 1-14
    [67]陈则实.中国海湾引论[M].北京:海洋出版社, 2007
    [68]范时清.海洋地质科学[M].北京:海洋出版社, 2007
    [69]方建光,匡世焕,孙慧玲,等.桑沟湾栉孔扇贝养殖容量的研究[J].海洋水产研究, 1996, 17: 18-31
    [70]方建光,孙慧玲,匡世焕,等.桑沟湾海带养殖容量的研究[J].海洋水产研究, 1996, 17: 7-17
    [71]傅献彩,沈文霞,姚天扬.物理化学(第四版下册)[M].北京:高等教育出版社, 1990. 987
    [72]国家海洋局第一海洋研究所.桑沟湾增养殖环境综合调查研究[M].青岛:青岛出版社, 1988. 3-8
    [73]胡珀,侯一筠,乐肯堂,等.东海黑潮及琉球群岛以东海流研究进展[J].海洋科学集刊, 2007, 48: 28-34
    [74]蒋增杰,方建光,门强,等.桑沟湾贝类筏式养殖与环境相互作用研究[J].南方水产, 2006, 2(1): 23-29
    [75]匡世焕,方建光,孙慧玲,等.桑沟湾海水中悬浮颗粒物的动态变化[J].海洋水产研究, 1996, 17(2): 60-67
    [76]李凤岐,苏育篙.海洋水团分析[M].青岛:青岛海洋大学出版社, 2000
    [77]刘慧,方建光,董双林,等.莱州湾和桑沟湾养殖海区浮游植物的研究Ⅱ[J].海洋水产研究, 2003, 24(3): 20-27
    [78]刘素美,张经.沉积物中重属的归一化问题—以Al为例[J].东海海洋, 1998, 16(3): 48-55
    [79]刘霞,孙耀,石晓勇,等.桑沟湾养殖海域沉积物中N的溶出动力学特性[J].海洋环境科学, 2008, 27: 305-308
    [80]任景玲,刘素美,张经,等.陆源物质输送对赤潮高发区的影响—以铝为例[J].应用生态学报, 2003, 14(7): 1117-1121
    [81]任景玲,吴莹,王江涛,等.鸭绿江口溶解态铝的行为[J].青岛海洋大学学报, 1999,增刊: 167-172
    [82]任景玲,张经.罗纳河中的铝、营养盐及常量元素的研究[J].青岛海洋大学学报, 2002, 32(6): 993-1000
    [83]任景玲,张经. Al的海洋生物地球化学研究[J].海洋环境科学, 2002, 21(1): 68-74
    [84]山东省荣成市地方史志编纂委员会编.荣成市志[M].济南:齐鲁书社, 1999. 140
    [85]宋洪军,李瑞香,王宗灵,等.桑沟湾浮游植物多样性年际变化[J].海洋科学进展, 2007, 25: 332-339
    [86]苏纪兰,袁业立.中国近海水文[M].北京:海洋出版社, 2004. 198-206
    [87]孙湘平.中国近海区域海洋[M].北京:海洋出版社, 2006
    [88]孙耀,赵俊,周诗赉,等.桑沟湾养殖海域的水环境特征[J].中国水产科学, 1998, 5(3): 69-75
    [89]田玉红,余炜,刘正西.痕量属在悬浮颗粒物上的吸附交换机理[J].广西工学院学报, 2004, 15(2): 73-77
    [90]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社, 1995. 387-388
    [91]翁焕新,张兴茂.海洋沉积记录中环境与生物地球化学信息及其对全球变化的指示[J].第四纪研究, 2003, 23(5): 529-536
    [92]肖衍繁.物理化学(环境类)[M].天津:天津大学出版社, 2005. 243
    [93]谢亮,任景玲,张经,等.胶州湾中溶解态铝的初步研究[J].中国海洋大学学报, 2007, 37(1): 135-140
    [94]谢亮.胶体铝的紫外消化测定方法及铝在黄、东海海域的生物地球化学行为[D].青岛:中国海洋大学, 2005
    [95]徐韧,洪君超,王桂兰,等.长江口及其邻近海域的赤潮现象[J].海洋通报, 1994, 13(5): 25-29
    [96]余自力,程光磊.属离子分析技术[M].化学工业出版社, 2004. 271-272
    [97]张正斌.海洋化学[M].青岛:中国海洋大学出版社, 2004. 159
    [98]赵俊,周诗赉,孙耀,等.桑沟湾增养殖水文环境研究[J].海洋水产研究, 1996, 17(2): 68-79
    [99]赵睿新.环境污染化学[M].北京:化学工业出版社, 2004. 252-253
    [100]赵一阳,鄢明才.中国浅海沉积物地球化学[M].科学出版社, 1994. 19-22
    [101]中国海湾志编纂委员会.中国海湾志第三分册[M].北京:海洋出版社, 1991. 377-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700