共沉淀分离富集—火焰原子吸收分光光度法测定水中重属离子的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对Mn~(2+)-phen-SCN~-、Mn~(2+)-Dipy-SCN~-两个三元络合体系共沉淀水中的铜、锌、镉、铅进行了研究。重点探讨了载体离子的选择、共沉淀剂加入顺序、共沉淀剂加入量、pH值、共存离子的干扰等因素对共沉淀作用的影响,确定了最佳的共沉淀条件。实验结果表明,Mn~(2+)-phen-SCN~-三元络合体系对Cuz~(2+)、Zn~(2+)、Cd~(2+)、pb~(2+)均有很好的共沉淀效果。Cu~(2+)离子浓度为0.01mg/L时,测定精密度为1.41%(n=11),检出限为5.08μg/L(3σ)。标准加入法测得桃李湖水中Cu~(2+)的含量为4.93μg/L,回收率在97%-105%之间。Zn~(2+)离子浓度为0.01mg/L时,测定精密度为2.93%(n=11),检出限为3.73μg/L(3σ)。标准加入法测得桃李湖水中Zn~(2+)的含量为0.576μg/L,回收率在99%-103%之间。Cd~(2+)离子浓度为0.01mg/L时,测定精密度为3.18%(n=11),检出限为1.64μg/L(3σ)。标准加入法测得桃李湖水中Cd~(2+)的含量为0.618μg/L,回收率在97%-101%之间。pb~(2+)离子浓度为0.1mg/L时,测定精密度为2.27%(n=11),检出限为24.2μg/L(3σ)。标准加入法未检出兴安盟长寿水中的pb~(2+),加标回收率在98%-101%之间。Mn~(2+)-Dipy-SCN~-三元络合体系则对Cd~(2+)有较好的选择性。Cd~(2+)离子浓度为0.01mg/L时,测定精密度为2.83%(n=11),检出限为1.91μg/L(3σ)。标准加入法测得桃李湖水中Cd~(2+)的含量为0.630μg/L,回收率在98%-101%之间。
     Mn~(2+)-phen-SCN~-、Mn~(2+)-Dipy-SCN~-两个三元络合物共沉淀体系对重属离子Cu~(2+)、Cd~(2+)、Zn~(2+)、Pb~(2+)有很好的分离富集效果,富集因子达50倍以上,消除了基体干扰。整个实验方法具有灵敏度高,检出限低,精密度高,回收率满足痕量元素分析准确度的要求等优点,为火焰原子吸收分光光度法测定水体中痕量Cu~(2+)、Cd~(2+)、Zn~(2+)、Pb~(2+)等环境危害性显著的重属离子提供了新的分析方法。
In this paper, the co-precipitation of Mn~(2+)-phen-SCN~-, Mn~(2+)-Dipy-SCN~- two ternary complex systems for copper, zinc, cadmium and lead in the water were studied. Focus on the choice of the carrier ion, co-precipitation agent to join the order, a total amount of precipitant, pH, ions and other factors on the interference effects of co-precipitation to determine the best conditions for co-precipitation. The results show that the Mn~(2+)-phen-SCN~- ternary complex system shows a better concentration effect for Cu~(2+), Cd~(2+), Zn~(2+). When the concentration of Cu~(2+) is 0.01mg/L, the measured precision is 1.41% (n=11), the detection limit is 5.08μg/L (3s). The concentration of Cu~(2+) in the Taoli Lake is 4.93μg/L measured by standard addition method and the recoveries are 98%-105%. When the concentration of Zn~(2+) is 0.01mg/L, the measured precision is 2.93% (n=11), the detection limit is 3.73μg/L (3s). The concentration of Zn~(2+) in the Taoli Lake is 0.576μg/L measured by standard addition method and the recoveries are 99%-103%. When the concentration of Cd~(2+) is 0.01mg/L, the measured precision is 3.18% (n=11), the detection limit is 1.64μg/L (3s). The concentration of Cd~(2+) in the Taoli Lake is 0.618μg/L measured by standard addition method and the recoveries are 98%-101%. When the concentration of Pb~(2+) is 0.01mg/L, the measured precision is 2.27% (n=11), the detection limit is 24.2μg/L (3s). Standard addition method doesn't detect Pb~(2+) in the Xing'an League water, and the recoveries of standard addition are 98%-101%. The Mn~(2+)-Dipy-SCN~- ternary complex system has a good selectivity to Cd~(2+). When the concentration of Cd~(2+) is 0.01mg/L, the measured precision is 2.83% (n=11), the detection limit is 1.91μg/L (3s ). The concentration of Zn~(2+) in the Taoli Lake is 0.630μg/L and the recoveries are 98%-101% measured by standard addition method.
     The Mn~(2+)-phen-SCN~-, Mn~(2+)-Dipy-SCN~- two ternary complex co-precipitation systems have good concentration effects for Cu~(2+), Cd~(2+), Zn~(2+) and Pb~(2+), whose enrichment factors get to 50 times, basically eliminate the matrix interference. The experimental method has high sensitivity, low detection limits, precision, recovery of trace element analysis to meet the requirements of accuracy, etc. The method provides a new way for the flame atomic absorption spectrophotometry to determinate the trace Cu~(2+), Cd~(2+), Zn~(2+), Pb~(2+)and the other environment significant danger of heavy metal ions in the water, which has a certain value.
引文
[1] Walsh A. The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta, 1955, 7(2): 108-117
    
    [2] Alkemade CTJ, Milatz J M W. A double --beam method of spectral selection with flames. Appl. Sci. Res. Sec. B, 1955, 4(4): 289-299
    
    [3] L' vov B V. Alan Walsh and the absolute analysis project. Spectrochim. Acta, 1999, 54B(14): 2063-2065
    
    [4] Massmann H.Vergleich von atomabsorption und atomfluoreszenzin der graphitkuvette. Spectrochim. Acta, 1968, 23B(4): 215-226
    
    [5] L vov B V. Electrothermal atomization-the way toward absolute methods of ato -mic absorption analysis. Spectrochim. Acta, 1978, 33B(5): 153-193
    
    [6] Slavin W, Manning D C, Carnrick G R. The stablilized temperature platform furnace. At. Spectrosc. , 1981, 2(5): 137-143
    
    [7] Slavin W, Carnrick G R, Manning D C, et al. Recent experiences with the stab -ilized temperature platform furnace and Zeeman background rorrection. Atomic Spectrosc. , 1983, 4(3): 69-86
    
    [8] Greet de Loos. Nicolo Omenetto. Preface. Spectrochim. Acta, 2001, 56B (9): 1473-1473
    
    [9] Willis J B. Nitrous oxide-acetylene flame in atomic absorption spectrometry. Nature, 1965, 207(4998): 715-716
    
    [10] Kirkbright G F, Johnson H N. Application of indirect methods in analysis by atomic absorption spectrometry. Talanta, 1973, 20(5): 433-451
    
    [11] Lau C, Held A, Stephens R. Sensitivity enhancements to flame AAS by use of a flame atom trap. Can. J. Spectrosc. , 1976, 21(4): 100-104
    
    [12] Watling R J. The use of slotted quartz tube for the determination of Arsenic, antimony, selenium and mercury. Anal. Chim. Acta, 1977, 94(1): 181-186
    
    [13] Watling RJ. The use of a slotted tube for the determination of lead, zinc, cadmium, bismuth, cobalt, manganese and silver by atomic absorption spectrometry. Anal. Chim. Acta, 1978, 97(2): 395-398
    
    [14] Matusiewicz H. Atom trapping and in situ preconcentration technique for flame atomic absorption spectrometry. Spectrochim. Acta, 1997, 52B(12): 1711-1736
    
    [15] Siemer D D, Woodriff R, Watne B. A simple technique for coating carbon atomic absorption atomizer components with pyrolytic carbon. Appl. Spectry. , 1974, 28 (6): 582
    [16] Volynsky A B. Application of graphite tubes modified with high-melting carbides in eletrothermalatomic absorption spectrometry. I. General approach. Spectrochim. Acta. , 1998, 53B(4): 509-535
    [17] 马怡载,何华焜,杨啸涛.石墨炉原子吸收分光光度法.北京:原子能出版社,1989.208
    [18] Smith S B, Hieftje Jr G M. A new background-correction method for atomic absorption spectrometry.Appl. Spectrosc. , 1983, 37(5): 419-424
    [19] Zander AT, O' Haver, Keliher P N. Continuum source Atomic absorption spectrometry with high resolution and wavelength modulation. Anal. Chem. , 1976, 48(8): 1168-1175
    [20] Hergenroder R, Niemax K. Laser atomic absorption spectroscopy applying semiconductor diode laser. Spectrochim. Acta. , 1988, 43B(12): 1443-1449
    [21] 何华焜,谢永松.LPDA技术在石墨炉原子吸收光谱分析中的应用研究.分析测试通报.1992,11(2):1-6
    [22] 张湘,张宁,刘长江等.时间分辨背景校正原子吸收光谱仪.光谱学与光谱分析.1992,12(6):65-70
    [23] Ediger R D, Peterson G E, Kerber J D. Application of the graphite furnace to saline water analysis.Atom. Absorp. Newslett. , 1974, 13(3): 61-64
    [24] 单孝全,倪哲明.基体改进效应应用于石墨炉原子吸收测定汞.化学学报.1979,37(4):261-266
    [25] Shuttler I L, Feuerstein M, Schlemmer G. Long-term stability of a mixed palladium+iridium trapping reagent for in situ hydride trapping within a graphite electrothermal atomizer. J. Anal. Atom. Spectrom. ,1992, 7(8): 1299-1301
    [26] Holak W. Gas-sampling technique for arsenic determination by atomic absorp- tion spectrophotometry.Anal. chem. , 1969, 41: 1712-1713
    [27] Kundson E J, Christian G D. Flameless atomic absorption determination of volatile hydrides. Anal. lett. ,1973, 6(12): 1039-1054
    [28] Busheina I S, Headridge J B. Determination of indium by hydride generation and atomic absorption spectrometry. Talanta, 1982, 29(6): 519-520
    [29] Lee D S. Determination of bismuth in environmental samples by flameless atomic absorption spectrometry with hydride generation. Anal. Chem. , 1982, 54 (10/11): 1682-1686
    [30] Wolf W R, Stewart K K. Automated multiple flow injection analysis for flame atomic absorption spectrometry. Anal. Chem. , 1979, 51(8): 1201-1205
    [31]Astrom O. Flow injection analysis for determination of bismuth by atomic absorption spectrometry with hydride generation. Anal.Chem. , 1982, 54(2): 190-193
    [32]Danielsson L G, Nord L. Sample workup for atomic absorption spectrometry using flow injection extraction. Anal. Proc. , 1983, 20(6): 298-298
    [33]Fang Zhaolun, Sperling M, Welz B. Flow injection on-line sorbent extraction perconcen-tration for graphite furnace atomic absorption spectrometry. J. Anal.At. Spectrom. , 1990, 5(7): 639-645
    [34]Kolk B, KemmnerG, Schleser F H, et al. Elementspezifische anzeige gaschrom- atographisch getrennter metallverbindungen mittels atom-absorptions-spektroskopie (AAS). Fresenius. Z. Anal. Chem. , 1966, 221:166-175
    [35]Segar DA. Flameless atomic absorption gas chromatography. Anal. Lett. , 1974, 7(1): 89-95
    [36]Welz B. Speciation Analysis. The future of atomic absorption spectrometry. J. Anal. At. Spectrom. ,1998, 13(5): 413-417
    [37]Loon J C Van, Radziuk B. A quartz 'T' tube furnace-Atomic absorption spect- roscopy system for metal speciation studies. Can. J. Spectrosc. , 1976, 21(2): 46-50
    [38]邓勃,何华焜.原子吸收光谱分析,北京:化学工业出版社,2004,5-7
    [39]武汉大学主编.分析化学(第四版),北京:高等教育出版社,2000,272
    [40]张树成.有机试剂与三元络合物,上海:上海科学技术出版社,1980,55
    [41]苏耀东,郝冰冰,李静等.应用内标的PAN-Ni体系快速共沉淀分离富集和火焰原子吸收光谱测定食盐中铅,理化检验,化学分册,2006,(02),97-99
    [42]苏耀东,李静,黄燕等.应用内标的APDC-Cu(Ⅱ)快速共沉淀分离富集和原子吸收光谱测定食盐中的铅,光谱学与光谱分析,2006,(03)
    [43]苏耀东,秦立俊,李静等.内标和快速共沉淀-火焰原子吸收光谱法测定食盐中的镉,岩矿测试,2005/03
    [44]戴克洋.共沉淀法测定食用盐中铅离子含量,海湖盐与化工,2005/01
    [45]彭义华,吴燕凌.共沉淀富集原子吸收法测定水中5种重属元素,上海环境科学,2004/05
    [46]王晓,关淑霞.Zn-DDTC共沉淀预富集火焰原子吸收光谱法测定水中微量镍,理化检验,化学分册,2004/06
    [47]苏耀东,程祥圣,肖红玺.硫酸锰中痕量铅的不加载体离子共沉淀分离富集及原子吸收光谱测定,光谱学与光谱分析,2003/05
    [48]刘建,徐文科.APDC-MIBK体系沉淀富集-火焰原子吸收法测定食品中铅,口岸卫生控制,2003/04
    [49]肖红玺,苏耀东,王玉科等.共沉淀分离富集原子吸收光谱法测定氯化物中痕量镉,理化检验,化学分册,2003/01
    [50]苏耀东,肖红玺,王玉科等.吡咯烷二硫代氨基甲酸铵及其氧化产物共沉淀分离富集氯化物中的痕量铅及原子吸收光谱测定,分析化学,2003/08
    [51]王光明,焦传英.共沉淀预富集-火焰原子吸收法测定水中的铅和镉,光谱实验室,2002-05-032
    [52]刘传仕.火焰原子吸收法测定冰铜中锑和铋,冶分析,2001-01-025
    [53]夏青,苏耀东,冉红锋等.痕量锰的共沉淀分离富集及其机理,同济大学学报(自然科学版),2000-03-026
    [54]李毓贵,张久春,陈治强.有机共沉淀-原子吸收法测定黄酒中铅,食品科学,2000-01-017
    [55]苏耀东,张冰如,夏青等.共沉淀分离富集法的应用与进展,理化检验,化学分册,1999-05-024
    [56]苏耀东,夏青,汪效祖等.碱土属盐中痕量铅的共沉淀分离富集及其机理研究,分析试验室,1999-02-012
    [57]徐引娟,袁惠娟.共沉淀富集饮用水中铜、铅、镉的原子吸收分析,上海大学学报(自然科学版),1998-04-008
    [58]鑫,刘劲松,陈恒武等.流动注射在线共沉淀预富集火焰原子吸收法测定痕量铜,理化检验,化学分册,1998-06-001
    [59]苏耀东,夏青,谭秀臣等.镍-1-(2-吡啶偶氮)-2-萘酚共沉淀分离富集碱属盐中痕量铅及铅的原子吸收光谱测定,分析化学,1998-11-025
    [60]苏耀东,冉红锋,赵维民.APDC共沉淀分离富集-火焰原子吸收分光光度法测定明矾中的痕量铅,光谱实验室,1997-05-004
    [61]劲草,陈恒武.用DDTC-Zn作载体流动注射在线共沉淀预富集火焰原子吸收法测定人发和水样中的痕量铅,分析测试学报,1997-01-004
    [62]王林涛,杨玲.水中痕量Pb、Cd测定方法的改进,云南环境科学,1995-01-015
    [63]肖宏展,梁树权.微晶萘共沉淀富集-石墨炉原子吸收法测定痕量银钯,岩矿测试,1995-01-007
    [64]苏耀东,陈俊,边永强等.PAN共沉淀富集原子吸收测定饮水和人发中的微量锰,广东微量元素科学,1994-04-013
    [65]董立平,方肇伦.痕量钴、镍和镉的流动注射在线共沉淀预浓集的研究及其FAAS测定,光谱学与光谱分析,1994-01-015
    [66] Aysegül Efendioglu, Mehtap Yagan, Bekir Bati. Bi(II])4-methylpiperidinedithio-carbamate coprecipitation procedure for separation-pre-concentration of trace metal ions in water samples by flame atomic absorption spectrometric determination, Journal of Hazardous Materials, 149(2007) 160-165
    
    [67] Funda Armagan Aydin, Mustafa Soylak. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples, Talanta , 73 (2007) 134-141
    
    [68] Mustafa Soylak, Mustafa Tuzen. Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations, Journal of Hazardous Materials, In Press, Corrected Proof, Available online, 17 July 2007
    
    [69] Mustafa Soylak, Nilgun D. Erdogan. Copper(II)--rubeanic acid coprecipitation system for separation -preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations, Journal of Hazardous Materials B, 137 (2006) 1035-1041
    
    [70] S. Saracoglu, M. Soylak, D. S. Kacar Peker, etc. A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry, Analytica Chimica Acta , 575(2006)133-137
    
    [71] P. Gopi Krishna, J. Mary Gladis, U. Rambabu, etc. Preconcentrative separation of chromium(VI) species from chromium(III) by coprecipitation of its ethyl xanthate complex onto naphthalene, Talanta, 63 (2004) 541-546
    
    [72] Q. Zhang, H. Minami, S. Inoue, etc. Differential determination of trace amounts of arsenic(III) and arsenic(V) in seawater by solid sampling atomic absorption spectrometry after preconcentration by coprecipitation with a nickel-pyrrolidine dithiocarbamate complex, Analytica Chimica Acta, 508 (2004) 99-105
    
    [73] Qiangbin Zhang, Hirotsugu Minami, Sadanobu Inoue, etc. Preconcentration by coprecipitation of chromium in natural waters with Pd/8-quinolinol/tannic acid complex and its direct determination by solid-sampling atomic absorption spectrometry, Analytica Chimica Acta, 401 (1999) 277-282
    
    [74] Hiroaki Minamisawa, Hiromi Kuroki, Nobumasa Arai, etc. Coprecipitation of ruthenium with chitosan and its determination by graphite furnace atomic absorption spectrometry, Analytica Chimica Acta, 398 (1999) 289-296
    
    [75] Xueqing Mao, Hengwu Chen, Jinsong Liu. Determination of Trace Amount of Silver by Atomic -Absorption-Spectrometry-Coupled Flow Injection On-Line Coprecipitation Preconcentration Using DDTC -Copper as Coprecipitate Carrier, Microchemical Journal, 59 (1998) 383-391
    
    [76] Hengwu Chen, Jincao Jin, Yufeng Wang. Flow injection on-line coprecipitation- preconcentration system using copper(II) diethyldithiocarbamate as carrier for flame atomic absorption spectrometric determination of cadmium, lead and nickel in environmental samples, Analytica Chimica Acta, 353 (1997) 181-188
    
    [77] Latif Elci, U(?)ur (?)ahin, Sibel Ozta(?). Determination of trace amounts of some metals in samples with high salt content by atomic absorption spectrometry after cobalt-diethyldithiocarbamate coprecipitation, Talanta, 44 (1997) 1017-1023
    
    [78] Masataka Hiraide, Zuo-Sheng Chen. Hiroshi Kawaguchi, Coprecipitation with disulfide for the determination of traces of cobalt in water by electrothermal atomic absorption spectrometry, Talanta, 43 1996 1131-1136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700