新试剂对甲氧基苯基偶氮水杨基荧光酮的合成及绿色萃取体系的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立稀散属高灵敏检测方法和适合湿法冶的绿色萃取体系具有现实意义。基于荧光酮类试剂结构与性能关系的规律性研究,成功设计合成一种新荧光酮试剂-对甲氧基苯基偶氮水杨基荧光酮(p-MOPASF)。合成对甲氧基苯基偶氮水杨醛中间体,并对其进行元素分析,再与偏苯三酚三乙酯缩合得p-MOPASF,试剂总产率为41%;采用紫外(UV)、红外(IR)和电喷雾质谱(EIS)对试剂进行了结构表征;提出离子液体绿色工艺路线,成功应用于1-辛基-3-甲基咪唑六氟磷酸盐离子液体([C8mim][PF6])的合成。
     以钼、钨、锗、镓、铟五种属元素作为稀散属的代表,分别研究了p-MOPASF与钼、钨、锗、镓和铟的显色反应。在硫酸介质和十六烷基三甲基溴化铵(CTMAB)存在下,p-MOPASF与钼和钨均发生灵敏的显色反应,均形成配位比为3:1的橘红色配合物,配合物的最大吸收波长分别为526nm和519nm,表观摩尔吸光系数分别可达1.43×105 L·mol-1·cm-1和1.36×105L·mol-1·cm-1。钼(VI)和钨(VI)含量分别在0~15μg/25mL和0~30μg/25mL内符合比尔定律。此外,继续研究了p-MOPASF与锗的显色反应。在磷酸介质和聚乙二醇辛基苯基醚(OP)存在下,p-MOPASF与锗发生灵敏的显色反应,形成配位比为3:1的橘红色配合物,配合物的最大吸收波长为507nm,表观摩尔吸光系数达1.44×105L·mol-1·cm-1,0~2.5μg/25mL锗(IV)符合比尔定律。在此基础上,我们进一步研究了p-MOPASF与镓和铟的显色反应。在NaAc-HAc缓冲溶液和CTMAB存在下,p-MOPASF与镓和铟均发生灵敏的显色反应,均形成配位比为3:1的红色配合物,配合物的最大吸收波长分别为558nm和559nm,表观摩尔吸光系数分别可达1.23×105 L·mol-1·cm-1和1.68×105L·mol-1·cm-1,镓(III)、铟(III)含量均在1~10μg/25mL内符合比尔定律。从上面数据可以看出,对甲氧基苯基偶氮水杨基荧光酮是一种优良的螯合剂,可用于稀散属的分析和湿法冶等领域。
     尽管p-MOPASF与稀散属的显色反应具有较高灵敏度,但对复杂样品中超痕量测定仍显不足。为了进一步提高方法灵敏度,采用离子液体替代易挥发的有机溶剂作为萃取介质,应用于稀散属的液-液萃取。本文选择萃取效率高、相分离速率快的[C8mim][PF6]作为萃取剂。在1000mL容量瓶中,钼、钨、锗、镓和铟与p-MOPASF形成稳定的配合物后,向体系中加入5mL[C8mim][PF6],振荡5min,配合物迅速进入离子液体相。在离子液体相中加入一定体积的丙酮溶液稀释,再加入适量的活性炭吸附,剧烈振荡5min后向活性炭相中加入4.0mol/LNaOH溶液,分出的水相由光度法测定钼、钨、锗、镓、铟的含量。本课题重点讨论了钼的萃取体系,该方法应用于环境水样中超痕量钼的测定,钼的萃取率和反萃率均较高,同时结合原子吸收光谱法进行了测定,结果令人满意。离子液体是一种绿色溶剂,用它替代湿法冶中使用的大量有机溶剂,从而可消除由有机溶剂挥发而产生的环境污染。我们还进一步研究了锗的萃取体系。该萃取体系应用于模拟的锌电解液中锗的回收尝试,萃取率和反萃率均取得了较满意结果。
Research new methods on determination of trace rare metals with better sensitivity and development of rare metals with green extaction system on metallurgy industry are very important increasingly. Based on the consideration of the relationship of the structure of phenylfluorone reagents and their analytical characteristics, a new reagent, 5-p-methoxyphenylazosalicylfluorone (p-MOPASF), was designed and synthesized in this laboratory. Firstly, element analysis was applied to confirm the intermediate of 5-p-methoxyphenylazosalicylaldehyde. The 5-p-methoxyphenylazosalicylaldehyde reacted with 1,2,4-triacetoxybenzene and then p-MOPASF can be obtained by condensation and the product ratio can be up to 41%. After purified, the molecular structure of the reagent was confirmed by ultraviolet spectrum (UV), infrared spectrum (IR) and EIS-/EIS+. The green process route with ionic liquid was developed and 1-octyl-3-methyl-imidazolium hexafluorophosphate ionic liquid was also synthesized successfully.
     Molybdenum, tungsten, germanium, gallium and indium were choiced as representatives of rare metals. Firstly, we investigated color reaction of p-MOPASF with molybdenum tungsten, germanium, gallium and indium, respectively. In the presence of sulfuric acid and CTMAB, p-MOPASF reacted with molybdenum and tungsten rapidly to form 3:1 orange complex with the maximum absorption peaks at 526nm and 519nm, respectively. The apparent molar absorptivity were found to be 1.43×105L·mol-1·cm-1 and 1.36×105L·mol-1·cm-1, respectively. Beer’s law is obeyed in the range of 0~15μg/25mL and 0~30μg/25mL for molybdenum and tungsten, respectively. Furthermore, we also studied the color reaction of p-MOPASF with germanium. In the presence of phosphate acid and OP, p-MOPASF reacted with germanium rapidly to form 3:1 orange complex with the maximum absorption peak at 507nm. The apparent molar absorptivity was found to be 1.44×105L·mol-1·cm-1. Beer’s law is obeyed in the range of 0~2.5μg/25mL for germanium. Moreover, on the basis of above color reaction between p-MOPASF and rare metal ions, we studied the color reaction of p-MOPASF with gallium and indium. In the presence of NaAc-HAc buffer solution and CTMAB, p-MOPASF reacted with gallium and indium rapidly to form 3:1 red complex with the maximum absorption peaks at 558nm and 559nm, respectively. The apparent molar absorptivity were found to be 1.23×105L·mol-1·cm-1 and 1.68×105L·mol-1·cm-1, respectively. Beer’s law is obeyed in the range of 0~10μg/25mL for gallium and indium. Based on the above datas, 5-p-methoxyphenylazosalicylfluorone is a new chelator and can be employed on rare metals on analysis and on metallurgy industry.
     Although color reaction of p-MOPASF with rare metal ions have high sensitivity, the methods are not good enough to determine ultra trace Mo, W, Ge, Ga and In in complicated samples. In order to advance the sensitivity further more, room temperature ionic liquid was used to replace traditional volatile organic reagents in liquid-liquid extraction of molybdenum, tungsten, germanium, gallium and indium. 1-octyl-3-methylimidazolium hexafluorophosphate [C8mim][PF6] with high extraction efficiency was chosen as medium. After the complex of molybdenum, tungsten, germanium, gallium and indium with p-MOPASF were formed in optimal conditions in 1000mL calibrated bottle, 5mL [C8mim][PF6] were added into the solution and the complex were extracted to ionic liquid phase after 5 minutes’surge. A certain volume of acetone and some amount of activated carbon were added into the ionic liquid phase with 5 minutes’surge. The complex was back-extracted by 4.0mol/LNaOH solution and then molybdenum, tungsten, germanium, gallium and indium in water phase were determined by spectrophotometry. We focused on the extraction system of molybdenum, and the method was chosen and applied to determine ultra trace molybdenum in environmental water samples. Combined by graphite furnace atomic absorption spectrometry, both the extraction efficiency and stripping efficiency were very high, and the results are satisfying. Ionic liquids are“green reagents”. In order to avoid environmental pollution caused by organic reagents’volatilization, they can be used to replace traditional organic reagents in hydrometallurgy. Furthermore, the extraction system of germanium was also studied and the system was suitable to enrich germanium from simulated hydrometallurgical zinc electrolyte. It is proved that the results are satisfying.
引文
1 Li Zaijun, Tang Jian, Liu Huizhen, etc. Determination of trace amounts of germanium in food and fruit by spectrophotometry with p-methybenzeneazosalicylflurone[J]. Journal of Food Composition and Analysis, 2007, 20(1):1-6
    2龚琦,李向欣,韦小玲,等.苯基荧光酮沉淀捕集-GFAAS测定痕量镓、锗、钼和铟[J].光谱学与光谱分析,2006,26(6):1162-1166
    3 Vinay Kumar Singh, Narinder Kumar Agnihotri, Har Bhajan Singh, etc. Simultaneous determination of gallium (III) and indium (III) by derivative spectrophotometry[J]. Talanta, 2001, 55(4):799-806
    4 Quanmin Li, Xiaohong Zhao, Xia Guan, etc. A novel method of the separation/preconcentration and determination of trace molybdenum (VI) in water samples using microcrystalline triphenylmethane loaded with salicyl fluorine[J]. Analytica Chimica Acta, 2006, 562(1):44-50
    5 Chang Heon Lee, Moo Yul Suh, Kwang Soon Choi, etc. Determination of Ru, Rh, Pd, Te, Mo and Zr in spent pressurized water reactor fuels by ion exchange and extraction chromatographic separations and inductively coupled plasma atomic emission spectrometric analysis[J]. Analytica Chimica Acta, 2003, 475(1-2,3):171-179
    6张立芳,曹伟,傅艳静,等.5'硝基水杨基荧光酮分光光度法测定钼[J].理化检验:化学分册,2007,43(9):751-752,755
    7刘慧珍,李在均.对甲苯偶氮水杨基荧光酮应用于大豆酶解液中钼的形态分布研究[J].光谱学与光谱分析,2007,27(5):957-960
    8 Ana P G Gervasio, Paula R Fortes, Silvia R P Meneses, etc. An improved flow-injection system for spectrophotometric determination of molybdenum and tungsten in tool steels[J]. Talanta, 2006, 69(4):927-931
    9 Li Zaijun, Yang Yuling, Tang Jian, etc. 9-(2,4-dihydroxyphenyl)-2,3,7-trihydroxyl-6-fluorone as analytical reagent for spectrophotometric determination of molybdenum in plant tissues[J]. Journal of Food Composition and Analysis, 2005, 18(6):561-569
    10 Li Zaijun, Pan Jiaomai, Tang Jan. Spectrophotometric method for determination of germanium in foods with new color reagent trimethoxylphenylfluorone[J]. Analytica Chimica Acta, 2001, 445(2):153-159
    11周慧晶.石墨炉原子吸收光谱法测定水中的痕量钼[J].辽宁城乡环境科技,2007,27(2):47-49
    12 Sérgio L C Ferreira, Hilda C dos Santos, Reinaldo C Campos. The determination of molybdenum in water and biological samples by graphite furnace atomic spectrometry after polyurethane foam column separation and preconcentration[J]. Talanta, 2003, 61(6):789-795
    13董晓民,赵宏风,张伟民.熔片X射线荧光光谱法测定矿物中钨和钼[J].冶分析,2007,27(5):25-29
    14荣英建.络合吸附极谱波测定痕量钼[J].理化检验:化学分册,2007,43(6):440-442
    15马爱枝,白玉萍,王娥,等.ICP等离子发射光谱仪测量复混肥料中铜、铁、锰、锌、硼、钼的含量[J].分析仪器,2007,(3):40-42
    16 Germund Tyler. Ionic charge, radius, and potential control rootysoil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol[J]. Science of The Total Environment, 2004, 329(1-3):231-239
    17开小明,李成,王杰,等.ICP-AES测定粉末冶材料中钨、钼等八种元素[J].光谱学与光谱分析,2007,27(12):2578-2580
    18 Y Zheng, B Weinman, T Cronin, etc. A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry:application in Chesapeake Bay[J]. Applied Geochemistry, 2003, 18(4):539-549
    19 Ana Paula G Gervasio, Gilmara C Luca, Amauri A Menegário, etc. On-line electrolytic dissolution of alloys in flow injection analysis Determination of iron, tungsten, molybdenum, vanadium and chromium in tool steels by inductively coupled plasma atomic emission spectrometry[J]. Analytica Chimica Acta, 2000, 405(1-2):213-219
    20 Liu Pengyu, Li Na, Shao Rongzhen, etc. ICP-AES Determination of Germanium in GdSiGe Series Alloys as Magnetic Refrigeration Material[J]. Journal of Rare Earths, 2007, 25(3):377-380
    21郭鹏.电感耦合等离子体质谱法测定高纯氧化钽中28种痕量杂质元素[J].分析试验室,2008,27(3):106-109
    22胡净宇,王海舟.激光剥蚀-电感耦合等离子体质谱内标定量法测定高温合中痕量元素[J].冶分析,2008,28(1):1-5
    23王佳丽,李东雷,段英楠.ICP-MS测定生物样品中的微量属元素[J].吉林地质,2007,26(4):69-72
    24干宁,李天华,王鲁雁,等.流动注射氢化物发生与动态反应池-电感耦合等离子体质谱法分析镍基超合中锗砷硒[J].冶分析,2007,27(11):7-11
    25吴梅贤,李献华,刘颖,等.电感耦合等离子体质谱法测定水中痕量元素[J].理化检验:化学分册,2007,43(5):391-393
    26聂玲清,纪红玲,陈英颖.激光烧蚀进样电感耦合等离子体质谱法在冶分析中的应用进展[J].冶分析,2007,27(5):30-36
    27侯晔.中子活化法在老寨湾矿微量元素特征分析上的应用[J].物探与化探,2007,31(4):323-324
    28杨瑞瑛.中子活化法研究唐巴勒蛇绿岩中超镁铁质岩的地球化学特征[J].2006,12(6):18-20
    29刘慧珍,李在均,刘丽萍,等.9-(2-羟基-5-偶氮对甲苯)苯基荧光酮与钼显色反应的研究及应用[J].冶分析,2007,27(3):33-36
    30白桦,侯永根,倪静安,等.2,6,7-三羟基-9-(4-甲氧基-3-硝基苯基)-6-荧光酮与钼(VI)显色反应及其应用[J].江南大学学报(自然科学版),2007,6(1):96-99
    31常世科,汤家华,李在均,等.2-羟基-3-甲氧基苯基荧光酮光度法测定合钢中的微量钼[J].化学分析计量,2005,14(1):23-25
    32汪小丰.SAF-CTM分光光度法测定饮用天然矿泉水中的钼[J].江苏预防医学,2006,17(2):61-62
    33樊海燕,敖登高娃.4-甲氧基苯基荧光酮吸光光度法测定合钢中钼[J].理化检验-化学分册,2004,40(11):667-668
    34 N C Martínez A, Adela Bermejo Barrera, P Bermejo B. Indium determination in different environmental materials by electrothermal atomic absorption spectrometry with Amberlite XAD-2 coated with 1-(2-pyridylazo)-2-naphthol[J]. Talanta, 2005, 66(3):646-652
    35 Pei Liang, Qian Li, Rui Liu. Determination of trace molybdenum in biological and water samples by graphite furnace atomic absorption spectrometry after separation and preconcentration on immobilized titanium dioxide nanoparticles[J]. Microchim Acta
    36 Janaina Levandowski, Wolfgang Kalkreuth. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil[J]. International Journal of Coal Geology, 2008:1-13
    37 Lukman Hakim, Akhmad Sabarudin, Koji Oshita, etc.Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo,V and Cu[J]. Talanta, 2008, 74(4):977-985
    38 Akhmad Sabarudin, Mitsuko Oshima, Osamu Noguchi, etc. Functionalization of chitosan with 3-nitro-4-amino benzoic acid moiety and its application to the collection/concentrationof molybdenum in environmental water samples [J]. Talanta, 2007, 73:831-837
    39 P V Subba Rao, Vaibhav A Mantri, K Ganesan. Mineral composition of edible seaweed Porphyra vietnamensis[J]. Food Chemistry, 2007, 102(1):215-218
    40 Jun Hu, Baoshan Zheng, Robert B. Finkelman, etc. Concentration and distribution of sixty-one elements in coals from DPR Korea[J]. Fuel, 2006, 85(5-6):679-688
    41潘教麦,李在均,张其颖.新显色剂及其在光度分析中的应用[M].北京:化学工业出版社,2003,82
    42冯泳兰,邝代治.DDMBAB-p-HNF-Sn(IV)、Ge(IV)、Sb(III)和Mo(VI)显色配合物光谱性能的研究[J].衡阳师范学院学报(自然科学),2002,23(6):56-59
    43段群章.荧光酮在钼锆(铪)光度分析中的应用[J].上海有色属,2001,22(3):125-131
    44李在均,汤坚,潘教麦.2,4-二羟基苯基荧光酮用于光度法测定植物和种子中钼的研究[J].化学试剂,2002,24(4):211-213
    45白桦,侯永根,倪静安,等.2,3,7-三羟基-9-(5’-苯偶氮)水杨基荧光酮与钼(VI)显色反应及其应用[J].化学试剂,2006,28(2):89-90;94
    46冯泳兰,王超.3’-甲氧基-4-羟基苯基荧光酮光度法测定微量钼[J].衡阳师范学院学报,2005,26(6):35-37
    47林文军,刘全军.锗综合回收技术的研究现状[J].云南冶,2005,34(3):20-23
    48张邦胜,肖连生.沉淀法分离钨钼的研究进展[J].江西有色属,2001,15(2):26-29
    49熊雪良,谢美求,陈坚,等.离子交换法回收废钨催化剂碱浸液中钨的研究[J].属材料与冶工程,2008,36(1):12-14
    50刘敏婕,马全智,李辉.离子交换法综合处理钼酸铵生产废水的研究[J].中国钼业,2006,30(3):27-29
    51逯宝娣.溶剂萃取法分离提取硒碲的应用[J].内蒙古石油化工,2005,31(5):12-13
    52周智华,莫红兵.稀散属锗富集回收技术的研究进展[J].中国矿业,2006,15(2) :64-67
    53 Y K Agrawal, K R Sharma. Speciation, liquid–liquid extraction, sequential separation, preconcentration, transport and ICP-AES determination of Cr (III), Mo (VI) and W (VI) with calix-crown hydroxamic acid in high purity grade materials and environmental samples [J]. Talanta, 2005, 67(1):112-120
    54王献科,李玉萍.液膜分离富集、测定痕量钼[J].中国钼业,2001,25(5):32-34
    55陈佩环.液膜法提取铟锗镓的研究[J].株冶科技,1992,20(3):180-184;214
    56林奋生,周令治.电解法从铁中提取镓和锗[J].有色属:冶炼部分,1992,(1):18-21;12
    57佘旭.高纯镓电解精炼的研究[J].稀有属,2007,31(6):871-874
    58汤兵,张秀娟.液膜技术提取稀散属研究进展[J].有色属:冶炼部,1998,(1) :40-43
    59宋桂兰,郭英,任皞.液膜分离富集二甲氧基羟基苯基荧光酮荧光猝灭法测定微量钼的研究[J].分析试验室,2005,24(5):44-47
    60李锟.聚氯酯泡沫塑料富集-ICP-MS测定化探样中微量的方法[J].化工矿产地质,2007,29(4):242-244
    61郑亚西,陈鹰.乙醚硅胶柱反相萃取层析法分离和测定镓的研究[J].矿物岩石,1999,19(2):93-95
    62欧阳开,龚琦,洪欣.2-(5-溴-吡啶偶氮)-5-二乙氨基苯酚改性硅胶富集石墨炉原子吸收光谱法测定痕量铟[J].冶分析,2007,27(8):47-49
    63刘奇,李坤威,李永芳.活性炭柱吸附富集-分光光度法测定饮用水中痕量钼(VI)[J].分析试验室,2004,23(2):68-70
    64李坤威,孔晓朵.水中痕量钼(VI)的4-(2-吡啶偶氮)-间苯二酚螯合活性炭吸附富集分光光度法测定[J].分析测试学报,2003,22(2):81-83
    65刘奇,李全民.负载8-羟基喹啉的活性炭吸附富集-分光光度法测定水中痕量钨[J].冶分析,2001,21(1):20-23
    66汤又文,莫胜均.生物藻分离富集法在痕量元素分析中的应用及进展[J].化学通报,1994,(1):1-4
    67 D O Flamini, S B Saidman, J B Bessone. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process[J]. Thin Solid Films, 2007, 515(20-21):7880-7885
    68徐徽,皮关华,陈白珍,等.用溶剂萃取法从碱浸液中回收钼的研究[J].湖南师范大学自然科学学报,2007,30(1):43-46
    69张子岩,简椿林.溶剂萃取法在钨湿法冶中的应用[J].湿法冶,2006,25(1):1-9
    70曾东铭,舒万艮.低酸浸出-溶剂萃取法从含铟渣中回收铟[J].有色属,2002,54(3):41-44
    71于澄洁,王大伟.室温离子液体及其在绿色化学中的应用[J].西安石油学院学报:自然科学版,2002,17(5):59-65
    72丁琪,乐长高.室温离子液体在萃取中的应用[J].化工时刊,2006,20(7):64-67
    73邵媛,邓宇.离子液体的合成及其在萃取分离中的应用[J].精细石油化工进展,2005,6(11):48-52
    74刘晓庚,陈梅梅,刘长鹏,等.室温离子液体在化学合成和萃取分离中的应用[J].化学世界,2006,(10):629-635
    75罗友云,周方钦,荣辉,等.萃淋树脂微色谱柱分离富集-苯基荧光酮光度法测定中草药中痕量锗和钼[J].分析科学学报,2007,23(2):216-218
    76张春红,乐长高.离子液体在萃取中的应用研究[J].江西化工,2007,(2):12-12
    77王良,闫永胜,侯延民,等.离子液体在萃取中的应用研究[J].冶分析,2007,27(12):21-27
    78 Luisa Alonso, Alberto Arce, Maa Francisco, etc. Solvent extraction of thiophene from n-alkanes (C7, C12 and C16) using the ionic liquid [C8mim][BF4][J]. The Journal of Chemical Thermodynamics, 2008, 40(6):966-972
    79 Po-Yu Chen. The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition[J]. Electrochimica Acta, 2007, 52(17):5484-5492
    80 WANG Jian-long, Di-shun ZHAO, Er-peng ZHOU, etc. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2007, 35(3):293-296
    81沈兴海,徐超,刘新起,等.离子液体在属离子萃取分离中的应用[J].核化学与放射化学,2006,28(3):129-138
    82吕江平,王九思,来风习,等.离子液体的特点及在液-液萃取中的应用研究[J].甘肃联夸大学学报(自然科学版),2007,21(1):70-75
    83 Zaijun Li, Naping Lu, Xia Zhou, etc. Extraction spectrophotometric determination of aluminum in dialysis concentrates with 3,5-ditertbutylsalicylfluorone and ionic liquid1-butyl-3-trimethylsilylimidazolium hexafluorophosphate[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43(5):1609-1614
    84范旭,李在均.新型离子液体作为溶剂萃取光度法测定环境水中超痕量钼[J].分析试验室,2008,27(3):17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700