离子交换纤维富集-GFAAS测定痕量铟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外对稀散元素铟的分离富集方法的现状及进展。根据离子交换纤维分子结构中所含的特殊功能基团,在合适的条件下能选择性地吸附某些属离子,使它们与其它元素的离子实现分离的特性,研究了将聚丙烯(PP)基阳离子交换纤维、聚丙烯(PP)基阴离子交换纤维、巯基棉(SCF)和黄原酯棉(CCX)作为离子交换剂,用于石墨炉原子吸收法(GFAAS)测定各种基体中痕量铟前的分离富集。
     1研究了聚丙烯(PP)基阳离子交换纤维富集铟的方法,对铟的富集和洗脱条件进行了优化。含铟富集液在pH=2-4,过柱流速小于16 mL·min~(-1)时,铟被定量富集。其饱和吸附量为32.23 mg·g~(-1)。用10 mL 1.8 mol·L~(-1)的硝酸可将被吸附的铟完全洗脱。该法方法检出限为0.023 ng·mL~(-1),回收率为96.8%~101%,RSD为0.1%~2.1%,富集倍数为5至3.3×10~3。测定自来水样,人工合成样,锌精矿和合成地矿样中的痕量铟,得到满意的结果。
     2研究了聚丙烯(PP)基阴离子交换纤维富集铟的条件,结果表明,在pH=4的HBr介质中,富集液流速在6 mL·min~(-1)以内,铟可被定量富集。其饱和吸附量为1.32 mg·g~(-1)。用6 mL 1.0 mol·L~(-1)的HNO_3能很好地洗脱交换柱上的痕量铟。该法能很好地富集自来水样,人工合成样,锌精矿和合成地矿样中的痕量铟。方法检出限为0.08 ng·mL~(-1),回收率为96%~102%,RSD为0.6%~3.9%,富集倍数为6至251。
     3研究了巯基棉(SCF)富集痕量铟的条件。结果表明,在pH=4的HNO_3介质中,富集液流速为3~4 mL·min~(-1)时,巯基棉能定量富集痕量铟。其饱和吸附量为181μg·g~(-1)。吸附的铟可被10 mL 0.8 mol·L~(-1)的HNO_3定量洗脱,该法用于自来水样,人工合成铝,锌基体样品和锌精矿等样品中痕量铟的富集和测定,回收率为92.8%~101%,RSD为0.4%~2.7%,富集倍数在58~4.9×10~3之间。
     4研究了黄原酯棉(CCX)富集痕量铟的条件。结果表明,在pH=5的HCl介质中,富集液流速在14 mL·min~(-1)内,黄原酯棉能定量富集痕量铟。其饱和吸附量为433μg·g~(-1)。吸附的铟可被10 mL 0.05 mol·L~(-1)的HNO_3定量洗脱,该法用于自来水样、人工合成样、锌焙砂和合成地矿样中痕量铟的测定,回收率为97.4%~112.6%,RSD为0.6%~3.1%,富集倍数为10至68。
On the basis of a review of the current situation and progress on separationand enrichment methods of indium at home and abroad, according to thecharacteristic that there are special functional groups in the molecule of exchangefiber, they can adsorb some metal ion selectively on right condition, make themseparate from other ions. So, in this paper, use polypropylene based cation ionexchange fiber, polypropylene based anion exchange fiber, sulfhydryl cotton andcotton cellulose xanthate to separate and enrich trace indium form various matrixbefore determination by graphite furnace atomic absorption spectrometer(GFAAS)were investigated.
     1 A method of enrich trace indium by polypropylene based cation ionexchange fiber was studied. The conditions of enrichment and eluent wereoptimized. When the pH of pregnant solution was 2~4, indium was enrichedquantitatively at the flow rate within 16 mL·min~(-1).Then it was desorbed from thecolumn completely by 10 mL 1.8 mol·L~(-1) HNO_3. The saturated capacity was32.23mg·g~(-1). The method was used to enrich trace indium in water samples,artificial samples and.zinc concentrate. The detection limit was 0.023 ng·mL~(-1), therecovery was 96.8%~101%, the RSD was between 0.1%~2.1%, the enrichmentmultiple was from 5 to 3.3×10~3.
     2 The factors for enrichment of trace indium by polypropylene based anionexchange fiber were investigated. The results showed that in HBr solution, whenpH=4 and flow rate within 6 mL·min~(-1), indium can be enriched quantitatively.Then it was desorbed form the column by 6 mL 1.0 mol·L~(-1) HNO_3. The saturatedcapacity was 1.32 mg·g~(-1). The method was used to enrich trace indium in watersamples, artificial samples and zinc concentrate. The detection limit was 0.08ng·mL~(-1), the recovery was 96%~102%, the RSD was between 0.6%~3.9%, the enrichment multiple was from 6 to 251.
     3 The factors for enrichment of trace indium by sulfhydryl cotton wereinvestigated. The results showed that in HNO_3 solution, when pH=4 and flow ratewas 3~4 mL·min~(-1), indium can be enriched quantitatively. The loaded indium waseluted quantitatively by 10mL 0.8 mol·L~(-1) HNO_3. The saturated capacity was 181μg·g~(-1). The method was used to enrich trace indium in water samples, artificialsamples and zinc concentrate. The recovery was 92.8%~101%, the RSD wasbetween 0.4%~2.7%, the enrichment multiple was from 58 to 4.9×10~3.
     4 The factors for enrichment of trace indium by cotton cellulose xanthatewere investigated. The results showed that in HCl solution, when pH=5 and flowrate within 14 mL·min~(-1), indium can be enriched quantitatively. The loaded indiumwas eluted quantitatively by 10 mL 0.05 mol·L~(-1) HNO_3. The saturated capacitywas 433μg·g~(-1). The method was used to enrich trace indium in water samples,artificial samples and zinc samples. The recovery was 97.4%~112.6%, the RSDwas between 0.6%~3.1%, the enrichment multiple was from 10 to 68.
引文
[1] 《化学分离富集方法及应用》编委会.化学分离富集方法及应用[M].湖南长沙:中南工业大学出版社,1997:3-4,310
    [2] 王志斌.分离富集在原子吸收光谱分析法中的应用[M].云南冶2003,32(6):41-42
    [3] 侬健桃.我国铟产业现状及发展[J].有色冶炼,2002,8(4):12
    [4] E.D.M. Ferreira, T. Morelli, I.M.N.S. Moreira, M.S. de Carvalho, Studies on indium sorption from iodide medium by polyurethane foam[J], Braz.Chem. Soc. 15 (2004) 563-569
    [5] O. Acar, Z. Kilic, A.R. Turker, Determination of bismuth, indium and lead in geological and sea water samples by electrothermal atomic absorption spectrometry with nickel-containing chemical modifiers[J],Anal. Chim. Acta, 1999, 382:329-338
    [6] S.L.C. Ferreira, A.C.S. Costa, H.A.S. Andrade, 2-(2-Thiazolylazo)-pcresol(TAC) as a reagent for the spectrophotometric determination of indium(Ⅲ)[J]. Microchem. 1991, 44:63-66
    [7] 刘世友.铟工业资源、应用现状与展望[J].有色属(冶炼部分),1999(2):30-32
    [8] 许秀莲,唐冠中,邹发英.P507D从稀硫酸溶液中萃取铟的研究[J].稀有属.2000,24(4):256-259
    [9] 谷,阚家义,聂磊,等.聚乙烯醇缩对甲酰基苯偶氮-8-羟基喹啉液-固萃取分离铟、铝的研究[J].化学世界,1999,(10):524-526
    [10] Bina Gupta, Akash Deep, poonma malik. Liquid-liquid extraction and recovery of indium using cyanex 923[J]. Analytica chimica Acta. 2004, 513:463-471
    [11] 张瑾,刘大星,王春,等.P204-Cyanex923混合溶剂萃取铟[J].应用化学,2000,17(4):401-404
    [12] 杨军红.石墨炉原子吸收法测定高温合中的痕量铟[J].光谱实验室,2000,17(2):176-179
    [13] 江瑜.用P350反相萃取柱色层分离铟及矿石中微量铟的测定[J].分析化学,1989,17(6):5511
    [14] 钱程.P350萃取色谱分离测定岩石中痕量镓和铟[J].分析试验室,1989,8(3):691
    [15] 钱程.P350萃取色层分离铟及岩石中铟的测定[J].理化检验:化学分册.1990,26(2):801
    [16] 刘军深,周保学,杨子超,等.CL-P204萃淋树脂分离铟(Ⅲ)镓(Ⅲ)锌(Ⅱ)[J].应用化学,1999,16(3):761
    [17] 刘军深,周保学,杨子超,等.CL-P204萃淋树脂吸萃铟(Ⅲ)的性能和机理[J].应用化学,1998,15(4):7111
    [18] 刘军深,何增光,蒋淑华,等.CL-P204萃淋树脂吸萃铟(Ⅲ)的离子交换动力学[J].稀有属,2003,27(1):1041
    [19] Kamio Eiji, et al. Separation of rare metal ions by a column packed with microcapsules containing an extractant [J]. Indus2trial and Engineering Chemistry Research,2002,41 (15): 3
    [20] Mustafa Tuzen, Mustafa Soylak. A solid phase extraction procedure for Indium prior to its graphite furnace atomic absorption spectrometric determination[J]. Journal of Hazardous Materials, 2006, B129: 179-185
    [21] 刘茉娥,陈欢林.新型分离技术基础[M].浙江大学出版社,1998:6691
    [22] 李玉萍,李莉芬,王献科.液膜分离富集、测定铟[J].上海有色属,200l,22(1):29-32
    [23] Kazuo,Yukihiro, Yamamoto, Michiaki Matsumoto. Separation of indium(Ⅲ) and gallium(Ⅲ) by a supported liquid membrane containing diisostearylphosphoric acid as a carrie[J].Journal of Membrane Science, 1997, 137:9-15
    [24] kazuo Kondo, Michiaki Matsumoto. Separation and concentration of indium(Ⅲ) by an emulsion liquid membrane containing diisostearylphosphoric acid as a mobile carrier [J]. Separation and Purification Techonolozy, 1998, 13:109-115
    [25] 冯彦琳,王靖芳,王爱英.乳状液膜法提取铟的研究[J].稀有属.1997,(1):37-39
    [26] 陈义镛.功能高分子[M].上海:上海科学技术出版社,1988.:3
    [27] Bolin Gong, Xueqiang Li, Fengrun Wang. Synthesis of spherical macroporous epoxy-dicyandiamide chelating resin and properties of concentration and separation of trace metal ions from samples[J]. Talanta, 2000, (52): 217-223
    [28] xiong Chunhua, Lu Biwen, Wang Yongjiang. Sorption behavior and mechannism of indium(Ⅲ) on to aminomethylenephosphonic aicd esin[J]. J.of Wuhan University of Technology, 2002, 17(2): 47-50
    [29] N.C. Martinez A.a, Adela Bermejo Barrerab, P. Bermejo B.b. Indium determination in different environmental materials by electrothermal atomic absorption spectrometry with Amberlite XAD-2 coated with 1-(2-pyridylazo)-2-naphthol[J]. Talanta, 2005(66): 646-652
    [30] 汤森进,管桂生.阳离子交换树脂分离石墨炉平台技术测定含铀地质样品中镓和铟[J].中国核科技报告,1990:1-11
    [31] Trochmiczuk,A.W.,Horwitz,E.P.,Alexandratos,S.D. Complexing properties of diphonix, a new chelating resin with diphosphonate ligands toward Ga(Ⅲ) and In(Ⅲ)[J]. Separation Science and Technology, 1994, 29(4): 543-549
    [32] 林昆华,胡书晖,郝新奇,等.偕胺肟螯合纤维的合成及对矿液中的吸附性能研究[J].化学研究与应用,2003,15(5):673-675
    [33] 陶庭先,赵择卿.阴离了交换纤维的制备及其对氟离子交换性能的影响的研究[J].合成纤维,2002,31(3):22-24
    [34] Xijun Chang, Xiulan Yangl, Xinjie Wei,etal. Efficiency and mechanism of new poly(acryl-phenylamidrazonephenylhydrazide) chelating fiber for adsorbingtrace Ga, In, Bi, V and Ti from solution[J]. Analytica Chimica Acta, 2001, (450): 231-238
    [35] Xijun Chang, Qingqiao Su, Dongying Liang.etal. Efficiency and application of poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber for pre-concentrating and separating trace Au(Ⅲ), Ru(Ⅲ), In(Ⅲ), Bi(Ⅲ), Zr(Ⅳ), V(Ⅴ), Ga(Ⅲ) and Ti(Ⅳ) from solution samples[J]. Talanta, 2002, (57): 253-261
    [36] Bolin Gonga, Xueqiang Li a, Fengrun Wang et al.Synthesis of polyacrylacylaminourea chelating fiber and properties of concentration and separation of trace metal ions from samples[J]. Analytica Chimica Acta,2001,(427): 287-291
    [37] H. Minamisawa, K. Murashima, M. Minamisawa, N. Arai, T. Okutani, Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan[J], Anal. Sci. 2003, 19:401-404
    [38] S. Kagaya, J. Ueda, Preconcentration of indium(Ⅲ) by coprecipitation with gallium phosphate for electrothermal atomization atomic-absorption spectrometry[J], Bull. Chem. Soc. Jpn. 1994, 67: 1965-1967
    [39] W. Yoshimura, L.X. Hong, A. Uzawa, Determination of trace amounts of indium in some sediments by means of coprecipitation with zirconium hydroxide and differential-pulse anodic-stripping voltammetry[J], Bunseki Kagaku 1994, 43:551-556
    [40] I.M.M. Kenawy, M.A.H. Hafez, S.A. Elwanees, Preconcentration and separation by electrodeposition of indium from its different solution complexes[J]. Bull. Soc. Chim. Fr. 1991, 5:677-683
    [41] L. Medvecky, J. Briancin. Possibilities of simultaneous determination of indium and gallium in binary InGa alloys by anodic stripping voltammetry in acetate buffer[J]. Chem. Pap. Chem. Zvesti, 2004, 58: 93-100
    [42] 周智华,莫红兵,徐国荣,等.稀有属铟富集与回收技术的研究进展[J].有色属,2005,57(1):75
    [43] 冯静.P350萃取色谱分离无火焰原子吸收光谱法测定地球化学样品中的铟[J].岩矿测试,2005,24(2):138-140
    [44] 杨德利.原子吸收光谱法测定矿渣、烟灰中的微量铟[J].湖南有色属,2005,2l(2):44-46
    [45] 周耀明.火焰原子吸收法测定铅锌冶炼物料中低含量铟[J].冶分析,2002,22(1):48-49
    [46] 邱红莲,刘继升.ICP-AES法测定属牙科材料中镓铟锡[J].理化检验:化学分册,2001,37(3):134-135
    [47] 范哲锋,杜黎明.微晶萘固相萃取ICP-AES法测定地质样品中的痕量铟[J].分析试验室,2000,19(3):63-64
    [48] 周俊明,方东.ICP-AES法测定环境水监控样中Ga、In、Ti、I[J].光谱实验室,1998,15(4):91-93
    [49] 汤志勇,泽祥.萃取富集-ICP-AES测定地质样品中痕量镓铟铊[J].岩矿测试,199l,10(2):100-102
    [50] 张勤,刘亚轩,吴健玲.电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊[J].岩矿测试,2003,22(1):21-27
    [51] 周长利,罗川南,张霞.配位吸附波同时测定Pb(II)和In(II)[J].分析化学,2004,32(10):1359-1361
    [52] 赵敬中,孙德志.微分吸附计时电位法测定矿石中微量铟[J].冶分析,2004,24(4):37-39
    [53] 袁玉霞.单扫示波极谱法直接测定CNI合中的铟[J].有色属,2003,55(3):140-142
    [54] Andreas Charalambous, Anastasios Economou. A study on the utility of bismuth-film electrodes for the determination of In(Ⅲ) in the presence of Pb(Ⅱ) and Cd(Ⅱ) by square wave anodic stripping voltammetry[J]. AnalyticaChimicaActa, 2005, 547:53-58
    [55] 徐政,华菊如.十年来铟的分析方法进展[J].冶分析,1995,15(4):23-28
    [56] 陈文宾,张雁秋,许兴友,等.4-(5-氯-2-吡啶偶氮)-1,3-二氨基苯分光光度法测定微量铟[J].淮海工学院学报(自然科学版),2005,14(1):48-51
    [57] 彭翠红,奚长生,龙来寿,等.In(Ⅲ)-5-Br-PADAP-O P分光光度法测定锌渣中微量铟[J].分析测试学报,2004,23(4):101-103
    [58] 郭军娜,张龙军.在CTMAB存在下3,4-二羟基偶氮苯-4-磺酸钠与铟(Ⅲ)显色反应的分光光度研究[J].光谱实验室,2001,18(4):502-505
    [59] 姜诚惠,熊道陵.二甲酚橙光度法测定耐磨合镀层及镀液中铟[J].江西冶,1998,18(5):29-31
    [60] 杜斌,吴丹,魏琴,等.巯基葡聚糖凝胶分离富集三甲氧基苯基荧光酮光度法测定痕量铟[J].分析化学,2005,33(1):142
    [61] 陈文宾,徐国想,范丽花,等.微乳液增敏-4,5-二溴苯基荧光酮光度法测定铟的研究[J].分析试验室,2005,24(4):14-16
    [62] 钟勇.乙酸丁酯萃取.苯基荧光酮一溴化十六烷基三甲基铵光度法测定化探样[J].及冶物料中微量铟[J].冶分析,2001,21(6):55-57
    [63] 段群章.矿冶物科中铟的光度分析[J].湿法冶,1998,66(2):67-70
    [64] 赵锦端,何应律,胡凌云,等.TBP萃淋树脂色谱分离荧光分析法测定岩中痕量铟[J].分析科学学报,1994,10(1):63
    [65] 罗兴寅,常希俊,苏致兴,等.无负载聚醚氨酯泡沫塑料富集废水中痕量铬、铅、铟、铋、钛等元素的化学光谱测定[J].理化检验,1985,21(6):336
    [66] 鲍长利,郭旭明.涂钼石墨管石墨炉原子吸收法测定地质样品中微量镓,铟和铊[J].长春地质学院学报,1995,25(2):232-236
    [67] 程信良,郭旭明.涂钼石墨管石墨炉原子吸收法测定镓,铟和铊热蒸发行为的探讨[J].分析化学,1994,22(5):512
    [68] 蔡绍勤,潘书慧.塞曼石墨炉平台原子化直接测定砷化镓中掺杂铟量[J].分析试验室,1995,14(4):1-4
    [69] 刘敬东,林茂青.石墨炉原子吸收光谱法测定岩石中的镓、铟、锗[J].化学分析计量,2003,12(1):31-33
    [70] 王克初,萧志德,蒙若兰.平台石墨炉原子吸收光谱法测定痕量铟[J].地质实验室,1998,14(3):168-169
    [71] 李凯,曾庆轩,李明愉.强酸性阳离子交换纤维的制备及磺化和其吸附性能研究[J].精细石油化工进展,2004,5(10):38
    [1] 王方.当代离子交换技术[M].北京:化学工业出版社.1993
    [2] 冯长根,杨海燕,曾庆轩.强酸型阳离子交换纤维的直接法制备[J].化工学报,2004,55(11):1884-1888
    [3] 周绍箕,汪继国,吴政.离子交换纤维处理农药废水的研究[J].工业用水与废水,2002,33(6):35~37
    [4] V. S. Soldatov, New Dev. Ion Exchange Process. Internationalconference. Ion Exchange.Japan, 1991: 511-516
    [5] Martha. H. Kotze. F. L. D. Cloete, New Dev. Ion Exchange Process. Intemational conference. Ion Exchange. Japan, 1991: 366-367
    [6] 陈励权,辛文达,董长发,等.阳离子交换纤维分离稀土的研究:Ⅱ稀土混合物的分离[J].兰州大学学报,1993,29(3):125
    [7] 王涛,李保,梁志宏,等.羧酸型阳离子交换纤维对过渡属离子的吸附性能研究[J].河南化工,2002(9):8-10
    [8] 陆耘,汤丽鸳.强酸型阳离子交换纤维对稀土和过渡属离子的交换性能研究[J].离子交换与吸附,1993,9(5):433-438
    [9] 张华,胡灵.聚苯乙烯基阳离子交换纤维对阳离子染料废液的脱色[J].环境污染与防治,1995,17(5):1-3
    [10] 宋光溥,蒋志贤.阳离子交换纤维对阳离子染料的脱色[J].水处理技术,1989,15(4):243-146
    [11] 丁传伟.聚丙烯腈磺基阳离子交换纤维在水有机介质中分离胰岛素的应用[J].产业用纺织品,1994,12(5):42-45
    [12] 张勤,张庆荣,黄志英,等.石墨炉子原吸收法测定铬铂中微量钡和银[J].现代仪器使用与维修,1999,2:15
    [13] 陈文宾,徐国想,范丽花,等.微乳液增敏-4,5-二溴苯基荧光酮光度法测定铟的研究[J].分析试验室,2005,24(04):14-16
    [14] 王惠君,施林妹.D113树脂对镝的吸附及机理[J].浙江海洋学院学报,2004,27(3):228
    [15] 周志瑞,庄向平,徐宏亮.二甲酚橙螯合形成树脂特征的研究[J].分析化学,1983,11(11):808-812
    [1] RoSENBLUM E, CLIFFORD D. The equilibrium arsenic capacity of activated alumina[R]. Final report, U S A Agreement No CR 807939, 2002
    [2] LIUBINKA V R. The sorption of arsenic onto activated carbon impregnated with metallic silver and copper[J]. Sep. Sci. Technol. 1992, 27(2): 1423-1433
    [3] 宋瑞,张爱军.离子交换纤维对HF气体的动态吸附研究[J].卫生研究,2002,31(5):50-53
    [4] 周林,周绍箕.离子交换纤维在气态吸附中的应用[J].离子交换与吸附,1993,9(6):486-490
    [5] SOIDATOV V S, EDINSON I S, SHUNKEVICH A A. Study on ion-exchange fibers and their applications[J]. Environ. Sci. Tech. 1986, 29:369-374
    [6] 周绍箕.离子交换纤维的合成、表征及性能研究[J].离子交换与吸附,1987,(315):51-55
    [7] 周绍箕.离子交换纤维制备和应用的研究进展[J].北京服装学院学报,2004,24(4):9-16
    [8] 李明愉,曾庆轩,冯长根,等.强碱性离子交换纤维的结构与性能[J].材料科学与工艺,2006,14(1):32-35
    [9] 冯长根,邓琼,曾庆轩,等.离子交换纤维对Cr(Ⅵ)的交换性能研究[J].功能材料,2005,36(1):142-145
    [10] 李云,王丽琼,曾庆轩,等.聚丙烯(PP)基阴离子交换纤维吸附钯研究[J].北京理工大学学报,2003,23(2):255-259
    [11] 冯长根,李鑫,曾庆轩,等.强碱阴离子交换纤维对活性染料的吸附性能研究[J].功能材料,2005,36(10):1568-1571
    [12] 李明愉,曾庆轩,冯长根,等.离子交换纤维吸附儿茶素的热力学[J].化工学报,2005,56(7):1164-1168
    [13] 吴友吉,盈,李子荣.阴离子交换纤维对溴离子交换性能的研究[J].安徽技术师范学院学报,2005,19(2):19-21
    [14] 吴友吉,盈,吴之传,等.阴离子交换纤维的制备及其对碘离子交换性能的影响[J].安徽化工,2005,31(4):18-20
    [15] 王方.当代离子交换技术[M].北京:化学工业出版社,1993
    [16] 周志瑞,庄向平,徐宏亮.二甲酚橙螯合形成树脂特征的研究[J].分析化学,1983,11(11):808-812
    [1] 丁喜峰,张景超.巯基棉分离-石墨炉原子吸收法测定催化剂中的钯和铂[J].物理测试,2000(2):26-29
    [2] 张锂,韩国才.巯基棉富集-光度法连续测定铬铁矿中的铂钯[J].矿物岩石,2005,25(4):111-114
    [3] 孙立群,林力.巯基棉分离富集原子吸收光谱法测定铜精矿中银[J].光谱实验室,2000,17(2):213-217
    [4] 陈文雄.巯基棉富集分离-酚藏花红显色乙酸异戊酯萃取光度法测定矿石中痕量[J].中国科技信息,2005(10A):85,90
    [5] 杨莉丽,李娜,张德强,等.巯基棉分离-氢化物原子荧光光谱法测定中药中不同形态的砷[J].分析测试学报,2004,23(4):51-53
    [6] 范彩玲,高歧,高琳,等.偶合化学发光法测定水样中的砷[J].中国农学通报,2006,22(5):126-127
    [7] 李迎霞,王未肖,哈婧.巯基棉分离富集-荧光分光光度法测定地下水中的痕量硒[J].岩矿测试,2005,24(4):311-313
    [8] 《化学分离富集方法及应用》编委会编著.化学分离富集方法及应用[M].湖南长沙:中南工业大学出版社,1997:311
    [9] 杜斌,王淑仁,魏琴,等..PAN-S光度法测定矿石中微量铟[J].矿物岩石,1995,15(2):97-100
    [10] 谯斌宗,杨元,田苇.巯基棉富集-端视ICP-OES法纯净水中痕量Pb、Cu、Cd[J].中国卫生检验杂志,2000,10(4):425-426
    [11] 秦大伟,林振强.巯基棉吸附分离法测定水中铬,镍[J].化学分析计量,2000,9(4):17-19
    [12] 陈文君,乙小娟.巯基棉分离富集、石英缝管FAAS法测定河水中痕量铋[J].化学分析计量,2001,10(6):17-18
    [13] 范顺利,吴志皓,吕超,等.流动注射无机偶合化学发光测定水样中痕量锑[J].分析试验室,2001,20(6):82-85
    [14] 高素香,陈治琴,何朋伟,等.巯基棉吸附分离-3,5-diBr-PADAP光度法测定矿石中微量铟[J].中南冶地质,1991(2):74-77
    [15] 高素香,何治安.巯基棉吸附分离-3,5-diBr-PADAP光度法测定矿石中微量铟[J].分析试验室,1992,11(4):35-37
    [16] 何治安.巯基棉富集-5-Br-DMPAP光度法测定矿石中痕量铟[J].冶分析,1995,15(1):20-22
    [17] 关学良.巯基棉的制备和检测[J].新疆化工,1991,(4):27
    [1] 薛光.矿石中银的快速测定[J].黄2001,22(2).44-46
    [2] 王敬涛,提淑华.黄原酯棉富集火焰原子吸收分析含镁矿样的痕量镉[J].环境保护科学,1999,25(2):11-12
    [3] 薛光.矿石中的快速测定-黄原酯棉富集分离-氢醌滴定法[J].黄地质,1996,2(1):77-79
    [4] 但德忠,冯培军.黄原酯棉分离富集催化极谱法测定天然水中痕量铜[J].矿物岩石,1997,17(3):91-93
    [5] 刘志民,张继县.黄原酯棉分离富集与石英缝管技术的FAAS测定环境水中痕量铅[J].光谱学与光谱分析,1996,16(6):103-106
    [6] 《化学分离富集方法与应用》编委会.化学分离富集方法与应用[M].长沙:中南工业大学出版社.2000.:320
    [7] 张维霏,张昆敏.Rh,Ir水合氯络合物与丁基黄药的相互作用[J].贵属,1984,5(4):16
    [8] 尹向春,曹晖扬.含硫纤维素衍生物的研究进展[J].纤维素科学与技术,1996,4(3):1-5
    [9] 谢建鹰 陈广大.黄原酯棉富集-火焰原子吸收法测定煤中痕量铜和铅[J].南昌大学学报(理科版),1999,23(01):98
    [10] 著.铟化学手册[M].北京:北京大出版社.2005:21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700