芎芍胶囊对动脉粥样硬化兔胆固醇逆向转运及炎症反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察芎芍胶囊对动脉粥样硬化(AS)兔血管壁AS形成的影响,从促进主动脉胆固醇跨膜转运、肝脏胆固醇代谢影响胆固醇逆向转运(RCT)过程,抑制炎症反应及保护高密度脂蛋白(HDL)抗炎作用等方面探讨活血化瘀中药抗AS的新机制。
     实验方法和结果:60只新西兰兔随机分为6组:空白对照组,模型组,芎芍小、中、大剂量组,辛伐他汀组。采用单纯高脂喂养法复制兔AS模型,分别在给药前,给药6周、12周及15周末4个时间点经耳缘静脉采血,15周末麻醉后处死动物,取胸主动脉及肝脏。肉眼观察大体标本各组兔脂纹、脂斑情况,HE染色观察各组兔AS斑块形成情况,油红O染色观察各组兔动脉壁脂质沉积情况;酶联免疫吸附法(ELISA)测定血清白介素-2(IL-2)、肿瘤坏死因子-α(TNF-α)、髓过氧化物酶(MPO)、对氧磷酶1(PON1)水平,测定动脉血管平滑肌细胞内总胆固醇(TC)、游离胆固醇(FC)水平,肝脏细胞内肝X受体α(LXRα)水平;凝胶迁移实验(EMSA)测定核因子·-κB (NF-κB)p65活性;蛋白印迹法(WB)测定主动脉壁内小凹蛋白-1(cav-1)、亲环素A表达量,肝脏B类Ⅰ型清道夫受体(SB-B Ⅰ)表达量;实时定量聚合酶链式反应(real-time PCR)测定主动脉壁cav-lmRNA、亲环素A mRNA、NF-κB mRNA表达量,肝脏SR-BI mRNA, LXRαmRNA表达量结果显示:空白对照组兔主动脉管壁表面光滑,内皮细胞连续完整,无脂质沉积;模
     型组兔主动脉管壁满布脂质斑块,平滑肌层细胞内见大量脂质沉积;芎芍小、中、大剂量组随用药剂量增加,管壁表面脂纹逐渐减少,显微镜下见形成斑块逐渐减少,管壁细胞内脂质沉积减少;其中芎芍大剂量组与辛伐他汀组在大体标本及HE染色、油红O染色结果上无明显差异。15周末模型组兔平滑肌细胞内TC较空白对照组明显升高(P=0.006,P<0.01),FC呈现相同的趋势(模型组与空白对照组比P=0.008,P<0.01)。芎芍中剂量组较模型组细胞内TC明显减少(P=0.035,P<0.05),芎芍大剂量降低效果更加明显(P=0.004,P<0.01)。芎芍小剂量组较模型组FC明显减少(P=0.024,P<0.05),芎芍中、大剂量组(P=0.001,P<0.01)及辛伐他汀组FC水平降低更明显(P=0.006,P<0.01),模型组兔cav-1表达量明显下降(P=0.001,P<0.01),芎芍中、大剂量组较模型组表达增加(P=0.022<0.05,P=0.002<0.01),辛伐他汀组及芎芍小剂量组与模型组相比cav-1表达也有增加趋势,但无统计学意义(P=0.063,P=0.179)。模型组兔亲环素A表达量较对照组增加(P=0.013,P<0.05),芎芍中、大剂量组及辛伐他汀组较模型组亲环素A表达减少(P=0.017<0.05,P=0.006,0.000<0.01)。与对照组相比,模型组兔明显下降(P=0.001,P<0.01),辛伐他汀组及芎芍大剂量组较模型组增加cav-lmRNA(P=0.014,P<0.05;P=0.001,P<0.01)。模型组兔亲环素表达量与对照组相比AmRNA有下降趋势,但无统计学差异(P=0.884,P>0.05);芎芍大剂量组及辛伐他汀组与模型组相比明显增加(P=0.003,P=0.004<0.01),余治疗组较模型组无明显差异。肝细胞测定结果显示,模型组兔LXRα表达量较空白对照组下降(P=0.798,P>0.05),但没有统计学差异。芎芍大剂量组较模型组表达增加(P=0.005,P<0.01),余治疗组与模型组相比表达有增加趋势,但无统计学意义。模型组LXRamRNA较空白对照组表达量明显增加(P=0.000,P<0.01),各治疗组较模型组无明显差异(P>0.05),模型组与空白对照组兔相比肝脏SR-BI蛋白表达量有减少趋势,但无统计学差异(P=0.281,P>0.05),而芎芍胶囊各治疗组较模型组SR-B Ⅰ蛋白表达量有增多趋势,无统计学差异。辛伐他汀组兔与模型组相比,SR-BI蛋白表达量增多明显(P=0.049,P<0.05),其与芎芍大剂量组相比表达量无明显差异。模型组兔SR-BI基因表达量较空白对照组明显增加(P=0.021,P<0.05)。各给药组与模型组相比,基因转录水平无明显增多(P>0.05)。芎芍中剂量组、大剂量组及辛伐他汀组兔SR-BI基因转录水平有升高趋势,且大剂量组较中剂量组更加明显。
     炎症因子方面,对4个不同时间点的测量结果显示,造模及给药时间长短、不同治疗方法均对各组兔IL-2、TNF-α水平产生影响。模型组与空白对照组相比IL-2水平增加,但无统计学差异(P=0.790,P>0.05),与模型组相比,芎芍中、大剂量组及辛伐他汀组兔血浆IL-2水平均明显降低,有统计学意义(P=0.004<0.01,P=0.026,P=0.013,P<0.05)。模型组兔TNF-α水平较空白对照组升高,但无统计学差异(P=0.120,P>0.05),芎芍中、大剂量组及辛伐他汀组较模型组兔TNF-α水平明显降低(P=0.032,P=0.013,P=0.049,P<0.05)。模型组比空白对照组兔主动脉NF-κBp65表达量增多,但并无统计学差异(P=0.169,P>0.05),各给药组与模型组相比蛋白表达量减少,其中芎芍大剂量组(P=0.035,P<0.05),辛伐他汀组(P=0.001,P<0.01)与模型组相比下降更明显。模型组NF-κBmRNA表达量与空白对照组相比略有减少,但无统计学差异(P=0.893,P>0.05),芎芍大剂量组表达量较模型组增加(P=0.031,P<0.05),各给药组基因表达量与空白对照组无明显差异(P>0.05)。各治疗组兔PON1水平无明显差异(P>0.05),模型组兔与空白对照组兔血浆PON1亦无差异(P=0.697,P>0.05)。模型组兔血浆MPO水平与空白对照组相比明显升高(P=0.025,P<0.05),芎芍中剂量组及大剂量组、辛伐他汀组较模型组血浆MPO水平明显下降(P=0.028,P=0.013,P<0.05;P=0.004,P<0.01),芎芍中、大剂量组与辛伐他汀组间比较无差异护>0.05)。
     结论:
     1.芎芍胶囊能够抑制AS兔主动脉斑块形成,减少动脉壁细胞内脂质沉积。
     2.芎芍胶囊能够通过保护AS兔主动脉平滑肌细胞内cav-1蛋白表达,增加主动脉细胞内胆固醇跨膜转运促进细胞内胆固醇流出,从而减少主动脉细胞内TC及FC含量,起到抗AS作用。
     3.芎芍胶囊能够促进AS兔肝脏表达LXRα,促进肝脏内胆固醇代谢,推动RCT过程,其对SR-BI促进作用不明显。
     4.芎芍胶囊能够降低AS兔血浆IL-2、TNF-a水平,降低主动脉细胞核内NF-κBp65的活性水平,抑制AS中的炎症反应。
     5.芎芍胶囊能够降低AS兔血浆中MPO水平,保护HDL抗炎功能,维持其正常运载脂质的作用,其对血浆PON1水平作用不明显。
Objective:To observe the effects of Xiongshao Capsule(XSC) on plaques of rabbit models of atherosclerosis(AS) and investigate the new mechanisms of traditional Chinese medicines for invigorating blood circulation and eliminating stasis against AS through promotion of transmembrane transport of cholesterol in aorta, effect of cholesterol metabolism in liver on reverse cholesterol transport(RCT), inhibition of inflammatory response and protection of the anti-inflammatory action of high density lipoprotein(HDL).
     Experimental methods and results:There were60New Zealand rabbits divided into six groups randomly:blank control group, model group, XSC low, middle, and high dose group, and simvastatin group. The rabbits of AS were established by simple high-fat feeding method. The blood samples were collected from ear marginal veins before and after drug administration for6weeks,12weeks, and15weeks. The thoracic aortas and livers of the animals were taken after execution under anesthesia at the end of15weeks. The rabbit fatty streaks and fatty plaques of gross specimen were inspected by visual study. The formation of rabbit arterial plaque was observed by HE staining. The lipidosis in arterial wall was viewed by oil red o staining.The levels of interleukin-2(IL-2),tumor necrosis factor-a (TNF-a), myeloperoxidasein(MPO) paraoxonase-1(PON1) in serum were measured by enzyme-linked immuno sorbent assay(ELISA). The total cholesterol(TC), free cholesterol(FC) in vascular smooth muscle cell and liver X receptor a(LXRa) in livers were determined. The activity of nuclear factor-κBp65(NF-KBp65) was tested by electrophoretic mobility shift assay(EMSA). The caveolin-1(cav-1) and expressions of cyclophilin A(CyPA) and scavenger receptor claBs B type I (SR-B I) in liver were measured by western blot(WB). The expressions of mRNA of cav-1mRNA, CyPA and NF-κB in arterial wall, mRNA of SR-B I in liver and mRNA of LXRawere evaluated by real-time quantitative polymerase chain reaction(real-time PCR).
     Results:The surface of aortic wall in blank control group is smooth and the endothelial cells are continuous without lipidosis. The aortic wall in model group is covered with lipid plaques, in which plaques and lipidosis in smooth muscle cells can be found obviously. The fatty streak in the surface of aortic wall, formation of plaques under microscope, and lipidosis in the cells of aortic wall are declining with the increasing administration of drug in XSC low, middle, and high dose group. There are no differences in gross samples, results of HE staining and red oil0staining between XSC high group and simvastatin group.TC in smooth muscle cells in model group is significantly higher than that in blank control group at the end of15weeks(P=0.006,P<0.01), while FC shows the same trends in both groups(P=0.008,P<0.01). TC in cells in XSC middle dose group is significantly lower than that in model group(P=0.035,P<0.05), which is even much lower in XSC high dose group, compared to model group(P=0.004,P<0.01). FC in XSC low dose group is significantly lower than that in model group(P=0.024,P<0.05), and it is even much lower in XSC middle and high dose group and simvastatin group, compare to model group(P=0.001,P<0.01,P=0.006,P<0.01, respective ly). The expression of cav-1in model group is significantly declining (P=0.024,P<0.05), but it is improved in XSC middle and high dose group(P=0.001,P<0.01). Com pared to model group, the expression of cav-1in simvastatin and XSC low dose groups presents a trend of increasing, which shows no statistical signify cance(P=0.063,P=0.179).The expression of CyPA in model group is higher than that in control group (P=0.013,P<0.05), while those in XSC middle and high dose group and simvastatin group are lower than that in model group(P=0.017<0.05,P=0.006,0.000<0.01,respectively). Compared to control group, the cav-1mRNA in model group is significantly lower(P=0.001,P<0.01) but higher in simvastatin group and XSC middle and high group(P=0.014,P<0.05,P=0.001,P<0.01, respectively). Compared to control group, the expression of CyPA mRNA in model group presents a downward trend, which has no statistical significance (P=0.884,P>0.05). And the expressions of CyPA mRNA in XSC high dose and simvastatin groups are higher than that in model group(P=0.003,P=0.004, respectively, both P<0.01), while there is no difference between other treatment groups. The test results of liver cells show that the expression of LXRa in model group declines slightly than that in blank control group, which shows no statistical significance(P=0.798,P>0.05). And compared to model group, the expression in XSC high dose group presents an upward trend(P=0.005,P<0.01) and other treatment groups show the same trend without statistical significance. The expression of LXRa in model group is significantly higher than that in blank control group(P=0.000,P<0.01) and there is no significant difference between each treatment group and model group (P>0.05).Compared with blank control group, the protein expression of SR-B I in model group presents a down ward trend, which has no statistical signi ficance(P=0.281,P>0.05). Compared to model group, the protein expressions of SR-B I in XSC low, middle and high dose groups show an upward trend, which doesn't show statistical significance, either. The expression in simvastatin group is significantly higher than that in model group(P=0.049,P<0.05), while there is no difference between simvastatin group and XSC high dose group. The gene expression of SR-B I in model group is significantly higher than that in blank control group(P=0.049,P<0.05). There is no significantly difference in the level of gene transcription between each treatment group and model group(P>0.05).The gene transcription levels of SR-B I in XSC middle and high dose groups and simvastatin group show an upward trend, and XSC high dose group is especially more obvious than XSC middle dose group.
     In the matter of inflammatory factors, the measurement results from the4different time points show that modeling, time for the drug administration, and different treatment methods all have effects on the levels of IL-2and TNF-a in each group. Compared to model group, the serum level of IL-2in XSC middle and high dose groups and simvastatin group are significantly lower, in which there are statistical significances (P=0.004<0.01,P=0.026, P=0.013, respectively, both P<0.05). The level of TNF-a in model group is higher than that in blank control group, which has no statistical significance(P=0.120,P>0.05). The level of TNF-a in XSC middle and high dose groups and simvastatin group is significantly lower than that in model group(P=0.032,P=0.013,P=0.049, respectively, all P<0.05). Compared to blank control group, the expression of NF-κBp65in artery in model group is higher, which shows no statistical significance(P=0.169,P>0.05). The expression of protein in each treatment group is lower than that in model group, in which XSC high dose group(P=0.035,P<0.05) and simvastatin group(P=0.001,P<0.01) are especially significant. The expression of NF-κB mRNA in model group is slightly lower than that in blank control group, which shows no statistical signify cance(P=0.893,P>0.05). The expression in XSC high dose group is higher than that in model group(P=0.031,P<0.05). There is no significant difference in gene expression between each treatment group and blank control group(P>0.05).No significant difference has been found in the level of PON1between each treatment group(P>0.05). There is also no difference in the serum level of PON1between model group and blank control group(P=0.697,P>0.05). The serum level of MPO in model group is significantly higher than that in blank control group(P=0.025,P<0.05). Compared to model group, the same decline in the serum level of MPO is also significant in XSC middle and high dose groups as well as simvastatin group(P=0.028,P=0.013,P<0.05,P=0.04,P<0.01, respectively). There is no differ rence between XSC middle and high dose group and simvastatin group(P>0.05).
     Conclusions:1. XSC can inhibit the plaque formation in artery of rabbits with AS and reduce lipidosis in artery wall cells.2. XSC can reduce the contents of TC and FC in artery cells through protecting the protein level of cav-1and increasing transmembrane transport of cholesterol in artery cells to promote cellular cholesterol efflux, which has an effect on anti-AS.3. XSC can promote the expression of LXRa, cholesterol metabolism in liver and the process of RCT, and it has no obvious effect on SR-B I.4. XSC can reduce the serum level of IL-2and TNF-a in rabbits with AS, and lower the activity level of NF-κBp65in artery cell nuclear, which inhibit the inflammatory response in AS.5. XSC can reduce the serum level of MPO in rabbits with AS, protect the anti-inflammatory function of HDL to maintain the normal lipid transport function and has no significant effect on PON1.
引文
1. Luu W, Sharpe LJ, Gelissen IC, et al. The role of signaling in cellular cholester ol homeostasis. IUBMB Life,2013,65(8):675-684.
    2. Miller NE, Olszewski WL, Hattori H, et al. Lipoprotein remodeling generates li pid-poor apolipoprotein A-I particles in human interstitial fluid. Am J Physiol En docrinol Metab, 2013, 304(3):E321-328.
    3. Fu Y. Rate-limiting factors of cholesterol efflux in reverse cholesterol transport:acceptors and donors. Clin Exp Pharmacol Physiol, 2010,37(7):703-709.
    4. Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life,2013,65(6):505-512.
    5. Li XA, Everson WV, Smart EJ. Cavelae, lipid rafts, and vascular disease. Trends Cardiovascular Medicine,2005,15(3):92-96.
    6. Jose M Fernandez-Real, Victoria Catalan, Jose M Moreno-Navarrete, et al. Stu dy of caveolin-1 gene expression in whole adipose tissue and its subfractions and during differentiation of human adipocytes.Nutrition&Metabolism, 2010,7:20-29.
    7. Piotukh K, GuW, Koflerm, et al. Cyclophilin A binds to linear pep tide motifs containing a consensus that is present in many human proteins. J Biol Chem, 2005,280(25):23668-2366 74.
    8. Meshulam T, et al. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry, 2006,45(9):2882-2893.
    9. Pavlides S, Gutierrez-Pajares JL, Danilo C, et al. Atherosclerosis, caveolae and caveolin-1. Adv Exp Med Biol, 2012,729:127-144.
    10. Fu Y, Moore XL, Lee MK, et al. Caveolin-1 plays a critical role in the differentiation of monocytes into macrophages. Arterioscler Thromb Vasc Biol, 2012,32:el 17-125.
    11. Engel D, Beckers L, Wijnands E, et al. Caveolin-1 deficiency decreases athero sclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response. FASEB J, 2011,25:3838-3848.
    12. Taguchi I, Abe S, Inoue T. Cyclophilin A is a promising predictor of coronary artery disease. Circ J,2013,77:321-322.
    13. Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to me diate cholesterol export to apoA. Artherioscler Thromb Vasc Biol, 2006, 26(3):534-540.
    14.唐艳艳,陆五军,路倩,等.ABCA1的胞内运输及功能研究新进展.生物化学与生物物理进展,2013,40(6):510-519.
    15. Yu XH, Jiang HL, Chen WJ, et al. Interleukin-18 and interleukin-12 together down regulate ATP-binding cassette transporter Al expression through the inter leukin-18R/nuclear factor-kappa B signaling pathway in THP-1 macrophage derive ed foam cells. Circulation J: Official J Japanese Circulation Society, 2012,76(7):1780-1791.
    16. Dela Llera, Moya M, McGillicuddy FC, et al. Inflammation modulates human HDL composition and function in vivo. Atherosclerosis, 2012,222(2):390-394.
    17. Westerterp M, Murphy AJ, Wang M. Deficiency of ATP-binding cassette trans porters Al and G1 in macrophages increases inflammation and accelerates athero sclerosis in mice. Circ Res,2013,112(11):1456-1465.
    18. Mineo C, Shaul PW. Functions of scavenger receptor class B, type I in athero sclerosis. Curr Opin Lipidol, 2012,23(5):487-493.
    19. Ibanez B, Giannarelli C, Cimmino G, et al. Recombinant HDL (Milano) exerts greater antiinflammatory and plaque stabilizing properties than HDL (wild type). Atherosclerosis, 2012,220(1):72-77.
    20. Pei Y, Chen X, Aboutouk D, et al. SR-BI in bone marrow derived cells protects mice from diet induced coronary artery atherosclerosis and myocardial infarction. PLoS One, 2013, 8(8):e72492.
    21.高桂荣,董莹.肝X受体在脂代谢中的研究进展.上海交通大学学报(医学版),2013,33(11):1529-1532.
    22. Hozoji Inada M, Munehira Y, Ueda K, et al. Liver X receptor beta(LXRbeta) interacts directly with ATP-binding cassette Al(ABCAl)to promote high density lipoprotein formation during acute cholesterol accumulation.J Biol Chem, 2011,286(22):20117-20124.
    23. Spillmann F, Van Linthout S, Miteva K, et al. LXR agonism improves TNF-a induced endothelial dysfunction in the absence of its cholesterol modulating effect s. Atherosclerosis, 2014,232(1):1-9.
    24. Kappus MS, Murphy AJ, Abramowicz S, et al. Activation of liver X receptor decreases atherosclerosis in Ldlr-/-mice in the absence of ATP-binding cassette transporters Al and G1 in myeloid cells. Arterioscler Thromb Vasc Biol, 2014,34(2):279-284.
    25. Kannisto K, Gafvels M, Jiang ZY, et al. LXR driven induction of HDL cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression. Lipids, 2014, 49(1):71-83.
    26. Alwaili K, Awan Z, Alshahrani A, Genest J. High density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther, 2010,8(3):413-423.
    27. Zabczyk M, Hondo L, Krzek M, et al. High-density cholesterol and apoli-poprotein AI as modifiers of plasma fibrin clot properties in apparently healthy individuals. Blood Coagul Fibrinolysis, 2013,24(1):50-54.
    28.Triolo M, Annema W, Dullaart RP, et al. Assessing the functional properties of high-density lipoproteins:an emerging concept in cardiovascular research. Bio mark Med, 2013, 7(3):457-472.
    29. Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol, 2010,21(3):229-238.
    30.丁岚,田英,乔新惠,等.冠心病患者血浆胆固醇酯转运蛋白水平与高密度脂蛋白亚类组成的关系.中国动脉硬化杂志,2013,21(9):812-816.
    31. Verdier C, Martinez LO, Ferrieres J, et al. Targeting high-density lipoproteins:update on a promising therapy. Arch Cardio vasc Dis, 2013,106(11):601-611.
    32. Sorci Thomas MG, Thomas MJ. Why Targeting HDL Should Work as a Thera peutic Tool, but Has Not. J Cardiovasc Pharmacol,2013,62(3):239-246.
    33. Rohrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta, 2013,1831 (11):1626-1633.
    34.傅明德.人血浆高密度脂蛋白亚类分布与动脉粥样硬化.中国动脉硬化杂志,2012,20(10):865-870.
    35. Phillips MC. New insights into the determination of HDL structure by apoli poproteins: Thematic Review Series:High Density Lipoprotein Structure Function and Metabolism. J Lipid Res, 2013,54(8):2034-2048.
    36. Wroblewska M. The origin and metabolism of a nascent pre-β high density lipoprotein involved in cellular cholesterol efflux. Acta Biochim Pol,2011,58(3):275-285.
    37. Kunnen S, Van Eck M. Lecithin: cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res, 2012,53(9):1783-1799.
    38. Maugeais C, Perez A, vonder Mark E, et al. Evidence for a role of CETP in HDL remodeling and cholesterol efflux:Role of cysteine 13 of CETP. Biochim Bio phys Acta, 2013,1831(11):1644-1650.
    39. Ansell BJ, Watson KE, Fogelman AM, et al. High-density lipoprotein function recent advances. J Am Coll Cardiol,2005,46(10):1792-1798.
    40. Kotosai M, Shimada S, Kanda M, et al. Plasma HDL reduces none sterified fatty acid hydro peroxides originating from oxidized LDL:a mechanism for its antioxidant ability. Lipids, 2013,48(6):569-578.
    41. Fuhrman B, Gantman A, Aviram M. Paraoxonase 1 (PON1) deficiency in mice is associated with reduced expression of macrophage SR-BI and consequently the loss of HDL cyto protection against apoptosis.Atherosclerosis, 2010,211(1):61-68.
    42. Aharoni S, Aviram M, Fuhrman B. Paraoxonase 1 (PON1) reduces macrophage inflamematory responses.Atherosclerosis, 2013,228(2):353-361.
    43. Lau D, Baldus S. Myelo Peroxidase and its contributory role in inflammatory vaseular disease. PhannaeolTher, 2006, 111(1):16-26.
    44. Hewing B, Parathath S, Barrett T, et al. Effects of Native and Myelo pero xidase Modified Apolipoprotein A-I on Reverse Cholesterol Transport and Atherosclerosis in Mice. Arterio scler Thromb Vasc Biol, 2014,34(4):779-789.
    45.谭迎,田迪,赖文岩,等.急性冠脉综合征患者高密度脂蛋白亚组分的抗炎、抗氧化功能研究.解放军医学杂志,2013,38(2):129-132.
    46. Kim JB, Hama S, Hough G, et al. Heart Failure is Associated With Impaired Anti- Inflammatory and Antioxidant Properties of High-Density Lipoproteins. Am J Cardiol, 2013, 112(11):1770-1777.
    47. Ji A, Wroblewski JM, Cai L, et al. Nascent HDL formation in hepatocytes and role of ABCA1,ABCG1,and SR-BI.J Lipid Res, 2012,53(3):446-455.
    48. Reboul E, Dyka FM, Quazi F. Cholesterol transport via ABCA1: new insights from solidphase binding assay. Biochimie, 2013,95(4):957-961.
    49. Wang S, Gulshan K, Brubaker G, et al. ABCA1 mediates unfolding of apoli poprotein AI Nterminus on the cell surface before lipidation and release of nascent high-density lipoprotein. Arterioscler Thromb Vasc Biol,2013,33(6):1197-1205.
    50. Lv YC, Yin K, Fu YC, et al. Posttranscriptional Regulation of ATP-Binding Cassette Transporter A1 in Lipid Metabolism. DNA Cell Biol, 2013,32(7):348-358.
    51. Nagata KO, Nakada C, Kasai RS, et al. ABCA1 dimermonomer interconversion during HDL generation revealed by single molecule imaging. Proc Natl Acad Sci USA, 2013,110 (13):5034-5039.
    52. Guay SP, Brisson D, Munger J, et al. ABCA1 gene promoter DNA methylation is associateed with HDL particle profile and coronary artery disease in familial hyper cholesterolemia. Epigenetics, 2012,7(5):464-472.
    53. Rizzo JA, Mallow PJ, Waters HC, et al. Managing to low-density lipoprotein particles compared with low-density lipoprotein cholesterol: a cost effectiveness analysis. J Clin Lipidol,2013,7(6):642-652.
    54. Srisawasdi P, Vanavanan S, Rochanawutanon M, et al. Heterogeneous proper ties of intermediate and low-density lipoprotein subpopulations. Clin Biochem, 2013,46(15): 1509-1515.
    55. Koba S. Statin therapy for atherogenic hypertriglyceridemia. Nihon Rinsho, 2013,71(9): 1655-1660.
    56.于群,王惠民.小而密低密度脂蛋白的检测方法.临床检验杂志,2013,31(5):339-343.
    57. Gentile M, Panico S, Mattiello A, et al. Association between small dense LDL and early atherosclerosis in a sample of menopausal women. Clin Chim Acta, 2013,426:1-5.
    58. Zambon A, Puato M, Faggin E, et al. Lipoprotein remnants and dense LDL are associateed with features of unstable carotid plaque:a flag for non-HDL-C. Athero sclerosis, 2013, 230(1):106-109.
    59. Diditchenko S, Gille A, Pragst I, et al. Novel Formulation of a Reconstituted High-Density Lipoprotein (CSL112) Dramatically Enhances ABCA1-Dependent Cholesterol Efflux. Arterioscler Thromb Vasc Biol,2013,33(9):2202-2211.
    60. Murphy AJ, Hoang A, Aprico A, et al. Anti-inflammatory functions of apo lipoprotein A-I and high-density lipoprotein are preserved in trimeric apolipo protein A-I. J Pharmacol Exp Ther, 2013,344(1):41-49.
    61.张凤香,关宁,李晨光,等.MicroRNA-125a-5p对巨噬细胞THP-1泡沫化.中国生物制品学杂志,2014,27(1):67-71.
    62. Lee SM, Moon J, Cho Y, et al. Quercetin up-regulates expressions of peroxi some proliferator activated receptor y, liver X receptor a, and ATP binding cas sette transporter Al genes and increases cholesterol efflux in human macrophage cell line. Nutr Res, 2013,33(2): 136-143.
    63. Jun HJ, Hoang MH, Yeo SK, et al. Induction of ABCA1 and ABCG1 ex pression by the liver X receptor modulator cineole in macrophages. Bioorg Med Chem Lett, 2013,23(2): 579-583.
    64.李琛.罗格列酮在动脉粥样硬化模型中改善高密度脂蛋白功能的研究.南方医科大学硕士学位论文,2011.
    65.钟建开.普罗布考在动脉粥样硬化模型中改善高密度脂蛋白功能的研究.南方医科大学硕士学位论文,2011.
    66. Zhang Q, Ma AZ, Song ZY, et al. Nifedipine enhances cholesterol efflux in RAW264.7 macrophages. Cardiovasc Drugs Ther, 2013,27(5):425-431.
    67.艾青,马康华.阿昔莫司对RAW264.7细胞三磷酸腺苷结合盒转运子A1表达及其调控的影响.中国生物制品学杂志,2013,26(5):681-684.
    68.廖玉华,程翔.后他汀时代的调脂治疗策略.临床心血管病杂志,2012,28(1):4-6.
    1.郝秀霞,王睿琦,刘永胜.高脂血症、动脉粥样硬化与脑梗死.内蒙古中医药,2010,7:83-85.
    2.蒋世伟,吕晓东.通脉化浊汤对实验性动脉粥样硬化大鼠载脂蛋白的影响.辽宁中医药大学学报,2012,14(7):74-76.
    3.王远航,李微.活血化瘀中药在动脉粥样硬化形成中对血管内皮细胞功能的影响.中国中医急症,2009,18(3):431.
    4.王春田,李敏.丹参煎剂对高脂血症动脉粥样硬化大鼠血脂影响随机平行对照研究.实用中医内科学杂志,2012,26(5):32-33.
    5.张扬,薛凌.丹酚酸B对动脉粥样硬化CD40-CD40配体信号通路的影响.中国医学工程,2012,11(20):6-9.
    6.张文洁,杨英,张辉.山楂叶提取物对高血脂大鼠的影响.辽宁中医杂志,2008,35(2):307.
    7.王伟,杨滨,王岚等.丹参-山楂协同抗大鼠动脉粥样硬化的实验研究.中国实验方剂学杂志,2012,18(19):212-216.
    8.牛文贵,张红珍.川芎嗪对动脉粥样硬化模型血脂的影响.现代中医药,2012,32(6):67-69.
    9.蒋世伟,吕晓东.通脉化浊汤对实验性动脉粥样硬化大鼠载脂蛋白的影响.辽宁中医药大学学报,2012,14(7):74-76.
    10.张红珍.补阳还五汤对动脉粥样硬化大鼠模型血脂的影响.中西医结合心脑血管病杂志,2012,10(11):1346-1347.
    11.魏自敏.活血化瘀法干预动脉粥样硬化的临床研究.光明中医,2011,26(2):277-278.
    12.郭方圆.丹蒌片对兔动脉粥样硬化斑块的影响.上海,第二军医大学,2012:42-47.
    13.智晓文,苏显明.丹红注射液对U937细胞SR-A Ⅰ及ABCA1 mRNA表达的影响.西安交通大学学报(医学版),2012,33(5):654-657.
    14.韩凤丽,于铭泉.动脉粥样硬化模型兔血管平滑肌细胞增殖与癫狂梦醒汤的干预.中国组织工程研究,2012,16(24):4509-4513.
    15.王志强,张学平,张怀印,等.化痰通络法改善颈AS患者血管内皮功能研究.辽宁中医药大学学报,2009,8(11):8.
    16.彭哲,王硕仁,李秋梅,等.解毒活血益气方药物血清对兔血管平滑肌细胞增殖及脂质过氧化的影响.中国医药学报,2004,19(6):341-343.
    17. Zhang HX, Liu JG, Shi DZ. Effects of Qi xue Bing zhi prescription on hyper sensitive creative protein and other indexes in the patient of cervical atherosclero sis. J Tradit Chin Med, 2004,45(12):907.
    18.陈晨,刘倩,高华.活血化瘀药药理作用研究进展.中国药事,2011,25(6):603-605.
    19.文川,徐浩,黄启福,等.几种活血中药对ApoE缺陷小鼠动脉粥样硬化斑块的影响.中国病理生理杂志,2005,21(5):864-867.
    20.周明学,徐浩,陈可冀,等.活血解毒中药有效部位对ApoE基因敲除小鼠血脂和动脉粥样硬化斑块炎症反应的影响.中国中西医结合杂志,2008,28(2):126-130.
    21.杨广,江巍,张敏州等.化痰中药半夏及山慈菇抗动脉粥样硬化的作用机制研究.中药新药与临床药理,2013,24(3):230-232.
    22.职玉娟,黄水清.黄芪、当归药对及当归补血汤对小鼠巨噬细胞吞噬氧化低密度脂蛋白的作用.广州中医药大学学报,2013,30(2):200-204.
    23.夏晓莉,罗思聪,刘淑玲,等.柴胡疏肝散对代谢综合征大鼠肝X受体的影响.中医杂志,2013,54(16):1404-1407.
    24.罗尧岳,周小青,谢小兵,等.活血化瘀类方对动脉粥样硬化家兔血脂、血液流变学变化的影响.湖南中医学院学报,2003,23(1):9.
    25.李立志,刘剑刚,马鲁波,等.芎芍胶囊对兔动脉粥样硬化模型脂质代谢及血小板聚集的影响.中国中西医结合杂志,2008,28(12):1100-1105.
    26.周小青,罗尧岳,谢小兵,等.活血化瘀方对高脂饮食致家兔动脉粥样硬化的影响.中国中医药信息杂志,2004,11(5):401.
    27.贾连群,杨关林,罗莹,等.化瘀祛痰方及其拆方对HepG2细胞胆固醇代谢的影响及机制研究.中国实验方剂学杂志,2012,18(16):158-162.
    28.刘美霞.急性冠脉综合征瘀毒证及解毒活血抗动脉粥样硬化的分子机制研究.广州:广州中医药大学,2010:46.
    29. Rader DJ, Tall AR. The not-so-simple hdl story: Is it time to revise the hdl cho lesterol hypothesis? Nat Med, 2012,18:1344-1346.
    30. Ohashi R, Mu H, Wang X, et al. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM, 2005,98:845-856.
    31. Duffy D, Rader DJ. Update on strategies to increase hdl quantity and function. Nat Rev Cardiol,2009,6:455-463.
    32. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol trans port. J Lipid Res,1995,36:211-228.
    33.高英英,欧芹,魏晓东,等.山楂叶总黄酮对AS模型大鼠PPARα、LXR、ABCA1 mRNA 表达的影响.中国老年学杂志,2011,31(13):2502-2504.
    34.韩春婷.姜黄素对ABCA1转运体表达的影响.长沙:中南大学,2006.
    35.罗映,何琦,金磊,等.小檗碱对动脉粥样硬化家兔模型脂代谢及动脉粥样硬化的影响.中国生物制品学杂志,2012,25(2):193-196,199.
    36.常冠楠,徐新,张社兵.荷叶生物碱对THP-1单核细胞源性巨噬细胞泡沫化及B类Ⅰ型清道夫受体表达的影响.中国动脉硬化杂志,2012,20(7):611-615.
    37. Xu X, Li Q, Pang L, et al. Arctigenin promotes cholesterol efflux from THP-1 macro phages through PPAR-y/LXR-a signaling pathway. Biochem Biophys Res Commun, 2013,441 (2):321-326.
    38. Liu Z, Wang J, Huang E, et al. Tanshinone IIA suppresses cholesterol accumu lation in human macrophages:role of hemeoxygenase-1. J Lipid Res, 2014,55(2):201-213.
    39. Ohara K, Wakabayashi H, Taniguchi Y, et al. Quercetin-3-O-glucuronide induc es ABCA1 expression by LXRa activation in murine macrophages. Biochem Bio phys Res Commun, 2013,441(4):929-934.
    40. Chen JH, Wang CJ, Wang CP, et al. Hibiscus sabdariffa leaf polyphenolic extra ct inhibits LDL oxidation and foam cell formation involving up-regulation of LXR α/ABCA1 pathway. Food Chem, 2013,141(1):397-406.
    41. Mohammadi A, Oshaghi EA. Effect of garlic on lipid profile and expression of LXRa in intestine and liver of hyper cholesterol emic mice. J Diabetes Metab Dis ord, 2014,13(1):20.
    42.智晓文,苏显明.丹红注射液对U937细胞SR-AI及ABCA1 mRNA表达的影响,西安交通大学学报(医学版),2013,33(5):654-657.
    43.贾连群,杨关林,赵钢,等.化瘀祛痰方药对巨噬细胞源性泡沫细胞ABCA1、CD36表达的影响.辽宁中医杂志,2013,40(2):234-237.
    44.信学雷,李维琪,张云峰,等.三种降脂中成药对ApoA I及SR-B I相互作用影响的研究.中药药理与临床,2007,2(5):129-131.
    45. Xue X, Chen T, Wei W, et al. Effects of Alisma Decoction on lipid metabolism and inflammatory response are mediated through the activation of the LXRa path way in macrophage derived foam cells. Int J Mol Med, 2014,33(4):971-977.
    46.梁日欣,黄璐琦,刘菊福,等.药对川芎和赤芍对高脂血症大鼠降脂、抗氧化及血管内皮功能的实验观察.中国实验方剂学杂志,2002,8(1):43-45.
    47.文川,徐浩,黄启福,等.6种活血中药及芎芍胶囊对APOE基因缺陷小鼠动脉粥样硬化斑块胶原沉积及其代谢的影响.国际血瘀证及活血化瘀研究学术大会一中西医结合防治循环系统疾病高层论坛论文集,2007年.
    48.张璐,薛梅,马晓娟,等.赤芍川芎有效部位对兔动脉粥样硬化基质金属蛋白酶的影响.中国中西医结合杂志,2009,29(6):514-518.
    49.徐浩,史大卓,陈可冀,等.芎芍胶囊对猪冠状动脉球囊损伤后血管重塑的影响.中国中西医结合杂志,2001,21(8):591-594.
    50.刘倩.白细胞介素-8对动脉粥样硬化斑块稳定性的影响及芎芍胶囊的干预效应研究.北京,中国中医科学院,2012.
    51.史连义,姜玲玲.胆固醇的跨膜外向转运及调控.医学研究生学报,2009,22(2):198-202.
    52.江巍,毛炜,李松,等.化痰活血法对ApoE(-/-)小鼠主动脉胆固醇逆向转运相关蛋白表达的影响.山东中医药大学学报,2012,36(14):334-337.
    1. Luu W, Sharpe LJ, Gelissen IC, et al. The role of signaling in cellular cholesterol homeo-stasis. IUBMB Life,2013,65(8):675-684.
    2. Miller NE, Olszewski WL, Hattori H, et al. Lipoprotein remodeling generates lipidpoor apolipoprotein A-I particles in human interstitial fluid. Am J Physiol Endocrinol Metab, 2013,304(3):E321-328.
    3. Verdier C, Martinez LO, Ferrieres J, et al. Targeting high-density lipoproteins: update on a promising therapy. Arch Cardio vasc Dis, 2013,106(11):601-611.
    4.李立志,刘剑刚,马鲁波,等.芎芍胶囊对兔动脉粥样硬化模型脂质代谢及血小板聚集的影响.中国中西医结合杂志,2008,28(12):1100-1103.
    5.徐凤芹,徐浩,刘剑刚,等.芎芍胶囊对兔实验性动脉粥样硬化血管重构的影响.中国中西医结合杂志,2004,24(4):331-335.
    6.徐凤芹,徐浩,马鲁波,等.芎芍胶囊对动脉粥样硬化兔血管平滑肌细胞凋亡的影响.中西医结合心脑血管病杂志,2008,6(7):794-796.
    7.徐凤芹,徐浩,刘剑刚,等.芎芍胶囊对动脉粥样硬化兔血管平滑肌细胞增殖的影响.中国中西医结合杂志,2008,28(10):912-916.
    8.徐凤芹,陈可远,马晓昌,等.芎芍胶囊治疗冠心病心绞痛的临床观察.中国中西医结合杂志,2003,23(1):16-18.
    9.符凌,常小荣,等.免疫损伤-高脂喂养法建立兔动脉粥样硬化模型的方法与体会.中西医结合心脑血管病杂志,2010,8(7):853-854.
    10. Mohamed AK, Abdelhalim NJ, Siiddiqi, et al. Effects of Feeding Periods of High Cholesterol and Saturated Fat Diet on Blood Biochemistry and Hydroxyproline Fractions in Rabbits.Bioinformatics and Biology Insights, 2008,2:95-100.
    11.张璐,薛梅,马晓娟,等.赤芍川芎有效部位对兔AS基质金属蛋白酶的影响.中国中西医结合杂志,2009,29(6):514-518.
    12.廖瑞芳.小凹蛋白-1与细胞胆固醇运动.基础医学与临床,2009,29(增刊):22-23.
    13. Li XA, Everson WV, Smart EJ. Caveolae, lipid rafts, and vascular disease. Trends Cardio vasc Med,2005,15:92-96.
    14. Pavlides S, Gutierrez-Pajares JL, Danilo C, et al. Atherosclerosis, caveolae and caveo lin-1. Adv Exp Med Biol, 2012,729:127-144.
    15. Fu Y, Moore XL, Lee MK, et al. Caveolin-1 plays a critical role in the differentiation of monocytes into macrophages.Arterioscler Thromb Vasc Biol, 2012,32:e117-125.
    16. Engel D, Beckers L, Wijnands E, et al. Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response. FASEB J, 2011,25:3838-3848.
    17. Taguchi I, Abe S, Inoue T. Cyclophilin A is a promising predictor of coronary artery di-sease. Circ J,2013,77:321-322.
    18.严鹏科,廖端芳,杨永宗.Caveolin-1表达对血管平滑肌细胞胆固醇逆转运的调节作用.中国动脉硬化杂志,2002,10:379-383.
    19.钱宗杰,李全忠.肝X受体信号途径在动脉粥样硬化发病机制中的研究进展.医学综述,2013,19(8):1355-1358.
    20. Mineo C, Shaul PW. Functions of scavenger receptor class B, type I in atherosclerosis. Curr Opin Lipidol, 2012,23(5):487-493.
    21. Leiva A, Verdejo H, Benitez ML, et al. Mechanisms regulating hepatic SR-BI expres sion and their impact on HDL metabolism. Atherosclerosis, 2011,217(2):299-307.
    22.夏丰,成名翔,涂兵,等.肝X受体激动剂对大鼠肝移植缺血再灌注损伤的保护作用.中国生物制品学杂志,2013,26(10):1430-1433.
    23.高桂荣,董莹.肝X受体在脂代谢中的研究进展.上海交通大学学报(医学版),2013,33(11):1529-1532.
    24. Hozoji Inada M, Munehira Y, Ueda K, et al. Liver X receptor beta(LXRbeta) interacts directly with ATP-binding cassette A1(ABCA1)to promote high density lipoprotein forma-tion during acute cholesterol accumulation.J Biol Chem, 2011,286(22):20117-20124.
    25. Spillmann F, Van Linthout S, Miteva K, et al. LXR agonism improves TNF-a induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis, 2014,232(1):1-9.
    26. Kappus MS, Murphy AJ, Abramowicz S, et al. Activation of liver X receptor decreases atherosclerosis in Ldlr-/-mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol, 2014,34(2):279-284.
    27. Kannisto K, Gafvels M, Jiang ZY, et al. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression. Lipids, 2014,49(1):71-83.
    28. Xue X, Chen T, Wei W, et al. Effects of Alisma Decoction on lipid metabolism and in-flammatory response are mediated through the activation of the LXRa pathway in macro-phage derived foam cells. Int J Mol Med, 2014,33(4):971-977.
    29. Mohammadi A, Oshaghi EA, et al. Effect of garlic on lipid profile and expression of LXR alpha in intestine and liver of hypercholesterolemic mice. J Diabetes Metab Disord, 2014,13(1):20.
    30. Xu X, Li Q, Pang L, et al. Arctigenin promotes cholesterol efflux from THP-1 macro-phages through PPAR-γ/LXR-α signaling pathway. Biochem Biophys Res Commun, 2013, 441(2):321-326.
    31. Steffensen KR, Jakobsson T, Gustafsson JA. Targeting liver X receptors in inflamma-tion. Expert Opin Ther Targets, 2013,17(8):977-990.
    32. Loren J, Huang Z, Laffitte BA, et al. Liver X receptor modulators: a review of recently patented compounds (2009-2012). Expert Opin Ther Pat, 2013,23(10):1317-1335.
    33. Pei Y, Chen X, Aboutouk D, et al. SR-BI in bone marrow derived cells protects mice from diet induced coronary artery atherosclerosis and myocardial infarction. PLoS One, 2013,8(8):e72492.
    34. Antonino PG, Lin AP, John S, et al. A coding variant in SR-B I (I179N)significantly in-creasees atherosclerosis in mice. Mamm Genome,2013,24(7-8):257-265.
    35.曾颖,冯惊涛,孙玉慧,等.SR-BI过表达对J774细胞胆固醇转运的影响.中南医学科学杂志,2011,39(1):10-13:
    36. ChengjL, Ren YG, Juan YL, et al. The Transcription Levels of ABCA1, ABCG1 and SR-BI are Negatively Associated with Plasma CRP in Chinese Populations with Various Risk Factors for Atherosclerosis. Inflammation, 2012,35(5):1641-1648.
    37. ZHANG Lu, JIANG Yue-rong, GUO Chun-yu, et al. Effects of Active Components of Red Paeonia and Rhizoma Chuanxiong on Angiogenesis in Atherosclerosis Plaque in Rabbits. Chinese Journal of Integrative Medicine, 2009,15(5):359-365.
    38.张京春,陈可冀,郑广娟,等.解毒活血中药配伍对载脂蛋白E基因敲除小鼠主动脉NF-κB与MMP-9表达的调控作用.中国中西医结合杂志,2007,27(1):40-44.
    39.张杨,张望德,侯生才.NF-κB与动脉粥样硬化.医学研究杂志,2013,42(2):5-7.
    40.赵国军.NF-κB-SREBPs途径介导巨噬细胞胆固醇流出和炎症因子的产生.南华大学博士学位论文,2013.
    41. Wu WB, Hung DK, Chang FW, et al. Anti-inflammatory and antiangiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells.Food Funct, 2012,3(10):1068-1081.
    42. Zhang Y, Yang X, Bian F, et al. TNF-α promotes early atherosclerosis by increasing tr-anscytosis of LDL across endothelial cells: Crosstalk between NF-κB and PPAR-γ. J Mol Cell Cardiol,2014,72C:85-94.
    43.李银萍,薛莉.冠心病患者核因子-κB与血管细胞黏附分子-1的变化及其相关性.重庆医科大学学报,2013,38(12):1445-1448.
    44. Cai Y, Li JD, Yan C. Vinpocetine attenuates lipid accumulation and atherosclerosis formation.Biochem Biophys Res Commun, 2013,434(3):439-443.
    45.翟慧,杨毅宁,马依彤,等.氧化型低密度脂蛋白对NF-κB信号通路的作用.细胞与分子免疫学杂志,2013,29(12):1254-1257.
    46.吴明绘,朱清,岳欣.血管紧张素Ⅱ通过NF-κB信号传导途径促进人脐静脉内皮细胞内皮脂肪酶表达.山东大学学报(医学版),2013,51(6):11-14.
    47.徐凤芹,徐浩,刘剑刚,等.芎芍胶囊对动脉粥样硬化兔血管平滑肌细胞增殖的影响.中国中西医结合杂志,2008,28(10):912-916.
    48. Ye X, Jiang X, Guo W, et al. Overexpression of NF-κB p65 in macrophages ameliorates atherosclerosis in apoE-knockout mice. Am J Physiol Endocrinol Metab, 2013,305(11): E1375-1383.
    49. Djuric Z, Kashif M, Fleming T, et al. Targeting activation of specific NF-κB subunits prevents stress-dependent atherothrombotic gene expression. Molecular Medicine, 2012,20 (18):1375-1386.
    50. Sorci-Thomas MG, Thomas MJ. Why Targeting HDL Should Work as a Therapeutic Tool, but Has Not. J Cardiovasc Pharmacol, 2013,62(3):239-246.
    51. Alwaili K, Awan Z, Alshahrani A, et al. High-density lipoproteins and cardiovascular disease:2010 update. Expert Rev Cardiovasc Ther, 2010,8(3):413-423.
    52. De la Llera Moya M, McGillicuddy FC, Hinkle CC, et al. Inflammation modulates human HDL composition and function in vivo.Atherosclerosis, 2012,222(2):390-394.
    53. Ansell BJ, Watson KE, Fogelman AM, et al. High-density lipoprotein function recent advances. J Am Coll Cardiol,2005,46(10):1792-1798.
    54. Kotosai M, Shimada S, Kanda M, et al. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL:a mechanism for its antioxidant ability. Lipids, 2013,48(6):569-578.
    55. Triolo M, Annema W, Dullaart RP, et al. Assessing the functional properties of high density lipoproteins:an emerging concept in cardiovascular research. Biomark Med, 2013, 7(3):457-472.
    56.吴建祥.氧化高密度脂蛋白对内皮祖细胞功能影响及机制研究.第二军医大学博士学位论文,2010.
    57. Soumyarani VS, Jayakumari N. Oxidatively modified high density lipoprotein promot es inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2. Mol Cell Biochem, 2012,366(1-2):277-285.
    58.谭迎,田迪,赖文岩,等.急性冠脉综合征患者高密度脂蛋白亚组分的抗炎、抗氧化功能研究.解放军医学杂志,2013,38(2):129-132.
    59. Fuhrman B, Gantman A, Aviram M. Paraoxonase 1 (PON1) deficiency in mice is asso-ciated with reduced expression of macrophage SR-BI and consequently the loss of HDL cyto-protection against apoptosis.Atherosclerosis, 2010,211(1):61-68.
    60. Aharoni S, Aviram M, Fuhrman B. Paraoxonase 1 (PON1) reduces macrophage infla-mmatory responses.Atherosclerosis, 2013,228(2):353-361.
    61. Eren E, Yilmaz N, Aydin O. Functionally Defective High-Density Lipoprotein and Paraoxonase:A Couple for Endothelial Dysfunction in Atherosclerosis. Cholesterol, 2013, 2013:792090.
    62. Kar S, Patel MA, Tripathy RK, et al. Oxidized-phospholipids in reconstituted high density lipoprotein particles affect structure and function of recombinant paraoxonase 1. Biochim Biophys Acta, 2013,1831(12):1714-1720.
    63.周齐艳.血清对氧磷酶1水平与急性冠脉综合征分型的相关性研究.中国全科医学,2013,16(9C):3189-3191.
    64. Zhou C, Cao J, Shang L, et al. Reduced paraoxonase 1 activity as a marker for severe coronary artery disease. Dis Markers, 2013,35(2):97-103.
    65. Lau D, Baldus S. Myelo Peroxidase and its contributory role in inflammatory vaseular disease. PhannaeolTher, 2006,111(1):16-26.
    66. Hewing B, Parathath S, Barrett T, et al. Effects of Native and Myeloperoxidase Modified Apolipoprotein A-I on Reverse Cholesterol Transport and Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol, 2014,34(4):779-789.
    67. Shao B, Tang C, Sinha A, et al. Humans with Atherosclerosis have Impaired ABCA1 Cholesterol Efflux and Enhanced HDL Oxidation by Myeloperoxidase. Circ Res, 2014 Mar 19.[Epub ahead of print]
    68. Sokolov AV, Kostevich VA, Runova OL, et al. Proatherogenic modification of LDL by surface bound myeloperoxidase. Chem Phys Lipids, 2014,180:72-80.
    69. Delporte C, Van Antwerpen P, Vanhamme L,et al. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm, 2013, 2013:971579.
    70.马庆华,邓爱云,张钲,等.髓过氧化物酶对胸痛患者的临床意义.检验医学,2013,28(1):25-29.
    71. Rudolph TK, Schaper N, Klinke A, et al. Liberation of vessel-adherent myeloperoxi dase reflects plaque burden in patients with stable coronary artery disease. Athero sclerosis, 2013, 231(2):354-358.
    72. Huang Y, Wu Z, Riwanto M, et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest, 2013,123(9):3815-3828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700