Decoy-ODN靶向性阻断STAT3信号通路抑制人脑胶质瘤生长的体内研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脑胶质瘤是中枢系统最常见的原发性肿瘤,其中胶质母细胞瘤占颅内肿瘤的近50%。虽然近年来手术及术后的放疗和化疗取得了很大的进步,但不幸的是,其确诊后的生存期仍然让人失望,只有12-15个月。因此,新的治疗胶质母细胞瘤的方法在改善预后和病人生活质量方面极需提高。到目前为止,人们普遍认为肿瘤的发生与发展是一个多种基因参与、多环节、多阶段、多步骤的复杂过程。所以仅仅干预一个肿瘤相关基因很难达到治疗胶质瘤的目的。近年来,一些转录因子被逐渐发现,它们在调节多个肿瘤相关基因方面起重要作用。换句话说,这些转录因子可以看作是肿瘤发生和发展的总开关。因此,靶向性阻断某个转录因子治疗肿瘤越来越受到人们的关注,也逐渐成为治疗胶质瘤的一个新策略。
     信号传导和转录活化因子3(STAT3,Signal Transducers and Activators ofTranscription 3)是细胞信号传导通路JAK2/STAT3途径的关键转录因子,存在于胞浆,参与调节胚胎发育,细胞的正常生长、分化和恶变等过程。持续活化的STAT3能够调控许多肿瘤发生的环节,包括细胞周期,凋亡,肿瘤血管形成及肿瘤细胞逃逸免疫系统等。因此它被看作癌基因并且实验证实阻断STAT3通路后可以使肿瘤细胞的增殖受到抑制,凋亡增加。这些都为STAT3作为分子靶点治疗胶质瘤提供了强有力的证据。
     到目前为止,已经有几种阻断STAT3通路的策略,包括显性负性调节,反义核苷酸,RNA干扰技术,生化制剂,双链或单链诱骗寡核苷酸技术。诱骗寡核苷酸技术(decoy oligodeoxynucleotide,Decoy-ODN),将体外人工合成,有高度亲和性,并且模拟目标转录因子靶基因上启动子顺式元件的序列合成的小分子“诱骗”DNA,转染导入肿瘤细胞,竞争性地抑制靶基因启动子与转录因子的结合,降低其转录活性,阻止这些致癌基因的转录激活,从而诱导凋亡,抑制肿瘤细胞增殖。由于它的高效,低成本和高特异性等优点,诱骗寡核苷酸技术广泛地应用于包括乳腺癌、肺癌、胰腺癌和头颈部鳞癌在内的多种肿瘤的研究。结果显示,阻断STAT3通路后肿瘤细胞的生长显著受到抑制并引起凋亡,然而,对胶质瘤在体内生长情况的影响却鲜为人知。本课题旨在研究和探讨应用Decoy-ODN靶向性阻断STAT3信号通路抑制人脑胶质瘤细胞增殖的体内效应和机制。研究内容分为三个部分。
     一、人脑胶质瘤组织细胞中STAT3异常表达研究
     目的
     检测人脑胶质瘤细胞系以及临床标本中STAT3及其磷酸化活化蛋白的表达情况,研究人脑胶质瘤中STAT3的异常表达及持续活化的意义,为针对STAT3治疗胶质瘤的实验研究奠定基础。
     方法
     1、Western印迹方法检测60例人脑胶质瘤标本和5例正常脑组织标本中STAT3及其磷酸化活化蛋白的表达,并对其异常表达及持续活化的情况进行统计学分析。
     2、Western印迹方法检测人脑胶质瘤细胞系U251中STAT3及其磷酸化活化蛋白的表达。
     结果
     1、人脑胶质瘤的临床标本中广泛存在着STAT3及其磷酸化的异常表达。与正常人脑组织相比,胶质瘤组织中存在着STAT3的过高表达和持续活化,其中,酪氨酸磷酸化的表达阳性率为80%(60例中有48例),丝氨酸磷酸化的表达阳性率为60%(60例中有36例)。而在正常脑组织中两种磷酸化均未明显表达。
     2、人脑胶质瘤细胞系U251中存在STAT3及其磷酸化(705位酪氨酸磷酸化STAT3与727位丝氨酸磷酸化STAT3)的异常表达。
     结论
     1、人脑胶质瘤组织和细胞中广泛存在着STAT3的过高表达及持续活化,说明STAT3信号传导通路在胶质瘤中具有重要意义,为抑制STAT3治疗胶质瘤的研究奠定了基础。
     2、U251细胞系中存在STAT3及其磷酸化的异常表达,可以作为本课题的研究对象。
     二、Decoy-ODN靶向性阻断STAT3信号通路抑制人脑胶质瘤细胞增殖并促进其凋亡的体外研究
     目的
     研究阳离子脂质体转染STAT3 Decoy-ODN的效果和效率。检测Decoy-ODN靶向性阻断STAT3信号通路对人脑胶质瘤细胞增殖的抑制效应。检测Decoy-ODN转染人脑胶质瘤细胞对其凋亡的影响。
     方法
     1、应用阳离子脂质体Lipofectamine ~(TM)2000介导的DNA转染法将STAT3Decoy-ODN转染导入人脑胶质瘤细胞系U251内。
     2、流式细胞术检测FITC标记的STAT3 Decoy-ODN在U251中的转染效率。
     3、细胞计数法检测Decoy-ODN靶向性阻断STAT3信号通路后对人脑胶质瘤细胞增殖的抑制效应。
     4、Annexin V/PI双染法检测Decoy-ODN靶向性阻断STAT3信号通路后U251细胞的凋亡情况。
     结果
     1、应用阳离子脂质体Lipofectamine ~(TM)2000介导的DNA转染技术,能够将STAT3 Decoy-ODN高效转染入人脑胶质瘤细胞。流式细胞术检测结果显示,100 nmol/L FITC-STAT3 Decoy-ODN被Lipofectamine ~(TM)2000介导转染后,U251细胞的转染效率是88.71%。
     2、STAT3 Decoy-ODN能够明显抑制人脑胶质瘤细胞增殖。细胞计数结果显示STAT3 Decoy-ODN能够抑制胶质瘤增殖,抑制效应和时间及ODN浓度呈正相关。
     3、STAT3 Decoy-ODN能够诱导胶质瘤细胞凋亡。Annexin V/PI双染色法检测结果表明,与对照组相比,25 nmol/L STAT3 Decoy-ODN干预24小时后,U251细胞凋亡率从1.23±0.48%增长至39.54±5.62%(P<0.05),作为对照,Scramble-ODN诱导的U251凋亡细胞仅增加了大约4.14%,无统计学意义(P>0.05)。
     结论
     1、应用阳离子脂质体Lipofectamine~(TM)2000介导的DNA转染技术,能够将STAT3 Decoy-ODN高效转染入人脑胶质瘤细胞内。
     2、STAT3 Decoy-ODN在体外能够抑制人脑胶质瘤细胞增殖。
     3、STAT3 Decoy-ODN在体外能够促进人脑胶质瘤细胞凋亡。
     三、Decoy-ODN靶向性阻断STAT3信号通路抑制人脑胶质瘤细胞增殖的体内研究
     目的
     评价裸鼠皮下种植U251细胞的效果,评价瘤内注射Decoy-ODN的效果,检测在体内Decoy-ODN对人脑胶质瘤细胞增殖和凋亡的影响,并对其相关基因和蛋白的表达水平进行统计学分析,进而深入探讨在体内Decoy-ODN靶向性阻断STAT3信号通路抑制人脑胶质瘤细胞增殖的相关机制。
     方法
     1、皮下注射法将U251细胞注入4周龄裸鼠右胁腹皮下。
     2、观察约一周时间,皮下瘤结节能明显触到后,瘤内注射Decoy-ODN并检测其在体内对人脑胶质瘤细胞生长的影响。
     3、免疫组织化学法检测体内STAT3 Decoy-ODN作用人脑胶质瘤细胞后对增殖标志物Ki67表达水平的影响。
     4、Tunel法检测在体内Decoy-ODN对人脑胶质瘤细胞凋亡的影响。
     5、RT-PCR检测分析在体内STAT3 Decoy-ODN对细胞周期控制基因和凋亡相关基因mRNA表达水平的影响。
     6、免疫组织化学法检测体内STAT3 Decoy-ODN对细胞周期控制基因和凋亡相关基因蛋白表达水平的影响。
     结果
     1、U251细胞可以在裸鼠体内成瘤。成瘤后随机分3组,进行瘤内注射。与对照组相比,40天后经PBS处理组的肿瘤平均体积为884±111 mm~3,而Decoy-ODN注射组的肿瘤平均体积为265±33 mm~3,体积缩小70%(P<0.05),Scramble-ODN注射组肿瘤平均体积为713±90 mm~3,体积缩小20%(P>0.05),无统计学意义。
     2、STAT3 Decoy-ODN能够在体内抑制胶质瘤细胞的增殖。免疫组织化学法检测切片中增殖标志物Ki67的表达情况,发现STAT3 Decoy-ODN组中Ki67的表达量与对照组相比减少73.2%,有显著性差异(P<0.05)。
     3、STAT3 Decoy-ODN能够在体内诱导胶质瘤细胞凋亡。Tunel法检测结果表明,与对照组相比,Decoy-ODN组中每高倍视野中阳性细胞数48.3±9个,Scramble-ODN组中每高倍视野中阳性细胞数9.3±1.5个,分别是对照组的5.6倍和1.1倍(P<0.05)。
     4、STAT3 Decoy-ODN能够在体内下调胶质瘤中细胞周期和抗凋亡相关基因的表达水平。RT-PCR检测结果显示,Decoy-ODN组的c-myc、cyclinE、cyclinD1、bcl-xl、bcl-2和survivin的mRNA表达水平分别下调了53.3%、46.3%、64.5%、50.7%、58.6%和69.6%,和对照组比较,有显著性差异(P<0.05)。
     5、STAT3 Decoy-ODN能够在体内降低细胞周期和抗凋亡相关蛋白的表达。切片的免疫组织化学结果显示,Decoy-ODN组的cyclinD1、bcl-xl和bcl-2的蛋白表达水平分别下调了68.5%、68.8%和75.1%。和对照组比较,有统计学意义(P<0.05)。
     结论
     1、U251细胞能够在裸鼠体内成瘤。
     2、STAT3 Decoy-ODN在体内能够显著抑制人脑胶质瘤细胞生长。
     3、STAT3 Decoy-ODN在体内能够显著抑制人脑胶质瘤细胞增殖。
     4、STAT3 Decoy-ODN在体内能够显著诱导人脑胶质瘤细胞凋亡。
     5、STAT3 Decoy-ODN在体内能够下调细胞周期和抗凋亡相关基因的表达。
     6、STAT3 Decoy-ODN在体内能够降低细胞周期和抗凋亡相关蛋白的表达。
     总之,通过本研究表明,在体内应用STAT3 Decoy-ODN能够抑制人脑胶质瘤的生长,增殖并诱导细胞凋亡。下调胶质瘤细胞中细胞周期和抗凋亡相关基因的表达,同时降低细胞周期和抗凋亡相关蛋白的表达。为人脑胶质瘤的体内基因治疗提供了一条有效途径。
Human malignant gliomas are the most common type of primary brain tumors, and glioblastoma multiforme (GBM) accounts for more than 50% of all intracranial gliomas. Regardless of advances in surgical resection, followed by radiotherapy and chemotherapy, unfortunately, the median survival time remains discouraging at 12-15 months from diagnosis. Novel therapies are needed to improve the prognosis and quality of life of patients with GBM. So far, it's well known that Carcinogenesis is a multiple-link, multi-stage, and multi-step process, which involves in a great number of oncogenes and antioncogenes. Therefore, it is difficult to treat glioma only by intervening one cancer-related gene. In recent years, some transcription factors have been discovered, which plays an important role in modulating multiple cancer-related genes. In other words, the transcription factors can be considered as a general switch of cancergenesis and aggravation. Therefore it has drawn more and more attentions on targeted inhibiting a specific transcription factor to treat variety of cancers, including human glioma and others.
     Signal transducer and activator of transcription 3 (STAT3), a member of the Janus kinase (JAK)/STAT signaling pathway, is a central cytoplasmic transcription factor, that is involved in the embyro development, physiologic regulation of cell growth, survival and differentiation, and pathogenesis of malignancies. The constitutive activation of STAT3 regulates a number of pathways important in tumorigenesis including cell cycle progression, apoptosis, tumor angiogenesis, and tumor cell evasion of the immune system. So STAT3 has been considered as an oncogene and many experiments have identified that blockade of STAT3 signaling pathway could result in a depressed proliferation and increased apoptosis in human cancer cells. The results offer strong evidences that STAT3 acts as a promising molecular target of gene therapy for glioma.
     Until now, several strategies were performed to block the signaling pathway of STAT3, including dominant negative, antisense, interference (siRNA), biochemical agent, double-stranded or single-stranded "decoy" oligonucleotides. The Decoy-ODN strategy is based on the competition between the endogenous cis-element within the regulatory regions of target genes promoters and exogenously added molecules mimicking the specific cis-elements. Transfection of STAT3 Decoy-ODN, a small molecule DNA synthesized in vitro and with high compatibility, into cells will competitively inhibit the binding of STAT3 with its endogenous cis-elements; prevent the transcription and activation of the oncogene, and subsequent result in cells apoptosis and inhibition of glioma cells proliferation. Due to its high efficiency, low cost and high specificity, Decoy-ODN strategy has been adopted in many cancers, such as breast cancer, lung cancer, pancreas cancer, and squamous cell carcinoma of the head and neck (SCCHN). The results have showed that after STAT3 signaling pathway was significantly blocked, the cancer cells were significantly suppressed growth and induced apoptosis. But the condition in glioma in vivo is known little. In the present study, the Decoy-ODN targeted inhibiting STAT3 pathway was employed to investigate the influence on human glioma cells in vivo. The study was divided into three parts.
     Part I Overexpression and Constitutively Activation of STAT3in Human Glioma Samples and U251 Cell Line
     Objective
     To study the expression level of STAT3 and its phosphorylation protein in human glioma cell lines and clinical specimens, and the significance of overexpression and constitutively activation of STAT3 signaling pathway in the pathogenesis of human glioma.
     Methods
     1. STAT3 and phosphorylated-STAT3 protein expression of 60 cases of human glioma samples and 5 cases of human normal brain tissue were detected by Western blot analysis, and phosphorylated-STAT3's frequence was evaluated in human glioma.
     2. The protein expression of human glioma cell line U251 was detected by Western blot analysis with anit-STAT3 and anti-phospho-specific STAT3 (Tyr705, Ser727) antibody.
     Results
     1. STAT3 existed in the human malignant glioma samples and normal brain tissues. Furthermore, in the human malignant glioma samples, 80% (48 of 60 cases) expressed Tyr-705-phospho-STAT3 and 60% (36 of 60 cases) expressed Ser-727-phospho-STAT3. In contrast, there was no obvious expression of phospho-STAT3 in nomal brain tissue.
     2. Overexpressed STAT3 and its two active forms, Tyr-705-phospho-STAT3 and Ser-727-phospho-STAT3, were identified in U251 cells.
     Conclusion
     1. Overexpression and constitutively activation of STAT3 is widely present in human glioma samples, suggesting that aberrant STAT3 signaling pathway play an important role in the pathogenesis of human glioma.
     2. Overexpression and constitutively activation of STAT3 is present in U251 cell line, that is, it could be used as an ideal model in vivo.
     Part II Targeted Blocking STAT3 Signaling Pathway with Decoy-ODN Suppresses the Growth and Induces the Apoptosis of Human Glioma Cells invitro
     Objective
     To study the transfection efficiency of STAT3 Decoy-ODN in U251 cells. To assay the inhibiting potency of STAT3 Decoy-ODN in glioma cell proliferation and the influence on apoptosis of glioma cells.
     Methods
     1. STAT3 Decoy-ODN was transfected into U251 cells mediated by Lipofectamine~(TM)2000.
     2. Flow cytometry was used to examine the transfection efficiency of STAT3 Decoy-ODN in U251 cells.
     3. Cell counting assay was used to examine the inhibitory effect of STAT3 Decoy-ODN in glioma cells.
     4. Annexin V/PI dual staining assay was used to examine cell apoptosis after transfection of STAT3 Decoy-ODN into U251 cells.
     Results
     1. STAT3 Decoy-ODN could be highly efficiently transfected into glioma cells by Lipofectamine~(TM)2000. The transfection efficiency detected by flow cytometry showed that the Decoy-ODN was efficiently transfected into U251 in a dose-dependent manner. The transfection efficiency of U251 cells reached a maximum of 88.71% at 100nmol/L Decoy-ODN.
     2. STAT3 Decoy-ODN could effectively inhibit cell proliferation in human glioma. The result of cell counting assay demonstrated that the growth of U251 cells were inhibited significantly after treatment with STAT3 Decoy-ODN and exhibited in a time- and dose-dependent manner (P<0.05).
     3. STAT3 Decoy-ODN induced apoptosis in glioma cells. Annexin V/PI staining assay showed that treatment with STAT3 Decoy-ODN could lead to a significant increase in apoptosis, from 1.23±0.48% to 39.54±5.62% in U251 cells. In contrast, Scramble-ODN only induced apoptosis at 4.14% (P>0.05).
     Conclusion
     1. STAT3 Decoy-ODN can be highly efficiently transfected into glioma cells mediated by Lipofectamine?2000.
     2. STAT3 Decoy-ODN can suppress the growth of human glioma cells with little side effect.
     3. STAT3 Decoy-ODN can induce apoptosis of human glioma cells with little side effect.
     Part III Targeted Blockade of STAT3 Signaling Pathway with Decoy-ODN Has Inhibitory Effect on Human Malignant Glioma Cells in vivo
     Objective
     To evaluate the effect of subcutaneous xenografts of U251 cells in nude mice. After intratumoral injection of STAT3 Decoy-ODN, the expression of caner-related genes and proteins in vivo are analyzed. Further, to study the relevant mechanisms on proliferative inhibition of targeted blocking STAT3 signaling pathway by the Decoy-ODN in the glioma cell lines.
     Methods
     1. U251 cells were subcutaneously injected into the right flank of 4-weeks old nude mice.
     2. Decoy-ODN was intratumorally injected after the tumor formation. The volume of the tumor was measured to evaluate the suppression of tumor growth.
     3. Ki67 was considered as the marker of proliferation and measured by immunohistochemistry.
     4. The effect of apoptosis in vivo was measured by Tunel.
     5. RT-PCR assay was used to examine the mRNA expression of STAT3 targeted genes in vivo.
     6. Immunohistochemistry analysis was used to examine the protein expression of STAT3- targeted genes in vivo.
     Results
     1. U251 cells could form xenografts in the nude mice. STAT3 Decoy-ODN was directly delivered into xenografts after the nude mice randomly divided into 3 groups. Contrast to control group with 884±111 mm~3 in average volume, the average volume of xenografts in Decoy-ODN treated group was 265±33 mm~3 , decreased by 70%(P<0.05), while in Scramble-ODN treated group was 713±90 mm~3, decreased by 20% (P>0.05).
     2. STAT3 Decoy-ODN suppressed proliferation of glioma cells in vivo. Ki67 labeling index decreased by 73.2% after treatment with decoy-ODN relative to that observed in the PBS or scramble-ODN groups (P<0.05).
     3. STAT3 Decoy-ODN induced apoptosis in glioma cells in vivo. Tunel analysis showed that 48.3±9 positive cells in per high power field in the group treatment with STAT3 Decoy-ODN, while in Scramble-ODN group, only 9.3±1.5 positive cells, that is, as 5.6-fold and 1.1-fold as control group, respectively (P<0.05).
     4. STAT3 Decoy-ODN could down-regulate the expression of STAT3 targeted genes in glioma cells in vivo. As showed in RT-PCR, the mRNA levels of c-my、cyclinE、cyclinD1、bcl-xl、bcl-2 and survivin in Decoy-ODN treatment group were decreased by 53.3 %、46.3%、64.5%、50.7%、58.6% and 69.6%, respectively (P<0.05). In contrast, the Scramble-ODN showed no effect on the mRNA levels of the malignant glioma cells in vivo.
     5. STAT3 Decoy-ODN could down-regulate the protein expression of STAT3 targeting genes in glioma cells in vivo. As shown in immunohistochemistry analysis, compared with control, the protein expression levels of cyclinD1、bcl-xl and bcl-2 in STAT3 Decoy-ODN treatment group decreased by 68.5%、68.8% and 75.1%, respectively (P<0.05).
     Conclusion
     1. U251 cells can form xenografts in the nude mice.
     2. STAT3 Decoy-ODN can suppress growth of glioma cells in vivo.
     3. STAT3 Decoy-ODN can inhibit proliferation of glioma cells in vivo.
     4. STAT3 Decoy-ODN can induce apoptosis of glioma cells in vivo.
     5. STAT3 Decoy-ODN can down-regulate the gene expression of STAT3 targeted genes in human glioma cells in vivo.
     6. STAT3 Decoy-ODN can down-regulate the protein expression of STAT3 targeting genes in human glioma cells in vivo.
     In conclusion, STAT3 Decoy-ODN could suppress growth, inhibit proliferation and induce apoptosis of human glioma cells via the significant downregulation of the downstream oncogenes and the low expression of related proteins in vivo. Furthermore, it is considered as a potentially effective gene therapeutic approach for glioma in vivo.
引文
1. Wechsler-Reya R, Scott MR The developmental biology of brain tumors (review). Annu Rev Neurosci, 2001,24:385-428.
    
    2. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet, 2002,359(9311):1011-8.
    
    3. Chan KS, Sano S, Kiguchi K, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest, 2004,114(5):720-8.
    
    4. Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future changes. Gene, 2002,285(1-2):1-24.
    
    5. Levy DE, Lee CK. What does STAT3 do? J Clin Invest, 2002, 109(9): 1143-8.
    
    6. Darnell JE Jr. STATs and gene regulation. Science, 1997,277(5332):1630-1635.
    
    7. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene,2000,19(21):2474-88.
    
    8. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 2002, 21(13):2000-8.
    
    9. Schlerte EJ, Medeiros LJ, Goy A, et al. Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol, 2004,22 (9):1682-8.
    
    10. Real PJ, Sierra A, De Juan A, et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells.Oncogene, 2002,21 (50):7611-8.
    
    11. Kube D, Holtick U, Vockerodt M, et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood, 2001,98 (3):762-70.
    
    12. Mora LB, Buettner R, Seigne J, et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res, 2002,62 (22):6659-66.
    13. Leong PL, Andrews GA, Johnson DE, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci USA, 2003,100(7):4138-43.
    
    14. Zhang X, Zhang J, Wang L, et al. Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer,2007,7:149.
    
    15. ChakrabortyA, TweardyDJ. STA T3 and G2CSF2 induced myeloid differentiation. Leuk lymphoma, 1998, 30: 433-442
    
    16. B romberg JF, W rzeszczynskaMH, Devgan G, et al. STA T3 as an oncogene.Cell, 1999, 98 (3): 295-303.
    
    17. Burke WM, Jin X, Lin HJ, et al. Inhibition of constitutively active STAT3 suppresses growth of human ovarian and breast cancer cells. Oncogene, 2001,20(55): 7925-7934.
    
    18. Leong PL, Andrew s GA, Johnson DE, et al. Targeted inhibition of STAT3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. ProcN at 1Acad Sci USA, 2003,100 (7):4138-4143.
    
    19. Lutticken C, et al. Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science, 1994,263:89-92.
    
    20. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res,2002, 8(4):945-54.
    
    21. Levy DE, Darnell JJ. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol, 2002, 3(9):651-662.
    
    22. Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene, 2000,19(21):2628-37.
    
    23. Bromberg JF. Activation of STAT proteins and growth control. BioEssays, 2001,23(2):161-9.
    
    24. Sasse J, Hemmann U, Schwartz C, et al. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol, 1997, 17(8):4677-86.
    25. Schaefera LK, Menterb DG, Schaefer TS. Activation of Stat3 and Stall DNA binding and transcriptional activity in human brain tumor cell lines by gp130 cytokines. Cellular Signalling, 2000,12 (3):143-51.
    
    26. Song L, Turkson J, Karras JG, et al. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene, 2003,22 (27):4150-65.
    
    27. Garcia R, Bowman TL, Niu G, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene, 2001,20 (20):2499-513.
    
    28. Gouilleux-Gruart V, Gouilleux F, Desaint C, et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood, 1996, 87(5): 1692-7.
    
    29. Grandis JR, Drenning SD, Zeng Q, et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA, 2000,97 (8): 4227-32.
    
    30. Huang M, Page C, Reynolds RK, et al. Constitutive activation of stat3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol, 2000, 79(l):67-73.
    
    31. Kanda N, Seno H, Konda Y, et al. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene, 2004,23(28):4921-9.
    
    32. Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs, 2005,16(6): 601-7.
    
    33. Haura EB, Turkson J, Jove R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer.Nat Clin Pract Oncol, 2005,2(6): 315-24.
    
    34. Takeda K, Clausen BE, Kaisho T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of STAT3 in macrophages and neutrophils.Immunity, 1999,10(l):39-49.
    
    35. Welte T, Zhang SS, Wang T, et al. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality:A critical role of STAT3 in innate immunity.Proc Natl Acad Sci USA,2003,100(4):1879-84.
    36.Lee CK,Raz R,Gimeno R,et al.STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation.Immunity,2002,17(1):63-72.
    37.Akasaki Y,Liu G,Matundan H,et al.A peroxisome proliferator-activated receptor-gamma agonist,troglitazone,facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells.J BIOCHEM,2006,281(10):6165-74.
    38.Rahaman SO,Vogelbaum MO,Haque SJ.Aberrant Stat3 signaling by interleukin-4 in malignant glioma cells:involvement of IL-13Ralpha2.Cancer Res,2005,65(7):2956-63.
    39.Halfter H,Postert C,Friedrich M,et al.Activation of the Jak-Stat- and MAPK-pathways by oncostatin M is not sufficient to cause growth inhibition of human glioma cells.Molecular Brain Research,2000,80(2):198-206.
    40.Wang H,Zhang W,et al.Analysis of the activation status of Akt,NFκB,and Stat3 in human diffuse gliomas.Laboratory Investigation,2004,84(8):941-51.
    41.陈谦学,张化明,杨海等.白细胞介素6、信号传导和转录活化因子3和血管内皮生长因子在人脑胶质瘤中的表达及相关性研究.中华实验外科杂志,2006,23(12):1457-9.
    42.张煜,崔尧元,吴伟忠等.STAT3信号通路影响人胶质瘤细胞株存活和凋亡的研究.中华神经外科杂志,2007,23(2):99-102.
    43.Mizoguchi M,Betensky RA,Batchelor TT,et al.Activation of STAT3,MAPK and AKT in malignant astrocytic gliomas:correlation with EGFR status,tumor grade,and survival.J Neuropathol Exp Neurol,2006,65(12):1181-8.
    44.Cross M,Dexter TM.Growth factors in development,transformation,and tumorigenesis.Cell,1991,64(2):271-80.
    45.Grandis JR,Drenning SD,Chakraborty A,et al.Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth In vitro.J Clin Invest,1998,102(7):1385-92.
    46.Li L,Shaw PE.Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines.J Biol Chem,2002,277(20):397-405.
    47.Barton BE,Karras JG,Murphy TF,et al.Signal transducer and activator of transcription 3(STAT3) activation in prostate cancer:Direct STAT3 inhibition induces apoptosis in prostate cancer lines.Mol Cancer Ther,2004,3(1):11-20.
    48.Seki Y,Suzuki N,Imaizumi M,et al.STAT3 and MAPK in human lung cancer tissues and suppression of oncogenic growth by JAB and dominant negative STAT3.Int J Oncol,2004,24(4):931-4.
    49.Kraker AJ,Hartl BG,Amar AM,et al.Biochemical and cellular effects of c-Src kinase-selective pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors.Biochem Pharmacol,2000,60(7):885-98.
    50.Turkson J,Bowman T,Adnane J,et al.Requirement for Ras/Rac1-mediated p38and c-Jun N-terminal kinase signaling in Stat3 transcriptional activity induced by the Src oncoprotein.Mol Cell Biol,1999,19(11):7519-28.
    51.Turkson J,Ryan D,Kim JS,et al.Phosphotyrosyl peptides block Stat3-mediated DNA binding activity,gene regulation,and cell transformation.J Biol Chem,2001,276(48):45443-55.
    52.包建玲,王淑芬,张须龙等.应用“decoy”技术靶向性阻断Stat3对乳腺癌细胞系MDA-MB-231增殖抑制的研究.中国免疫学杂志,2006,21(11):32-5.
    53.Shi X,Franko B,Frantz C,et al.JSI-124(cucurbitacin Ⅰ) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signalling,downregulates nucleophosmin-anaplastic lymphoma kinase(ALK),and induces apoptosis in ALK-positive anaplastic large cell lymphoma cells.Br J Haematol,2006,135(1):26-32.
    54.Konnikova L,Kotecki M,Kruger M,et al.Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells.BMC Cancer,2003,3(9):23.
    55.Rao RD,Mladek AC,Lamont JD,et al.Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells.Neoplasia,2005,7(10):921-9.
    56.Xi S,Gooding WE,Grandis JR.In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene, 2005, 24(6):970-9.
    
    57. Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest, 2000,106(9):1071-5.
    
    58. Morishita R, Tomita N, Kaneda Y, et al. Molecular therapy to inhibit NFkappaB activation by transcription factor decoy oligonucleotides. Curr Opin Pharmacol,2004,4(2): 139-46.
    
    59. Morishita R, Higaki J, Tomita N, et al. Application of transcription factor"decoy" strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res, 1998, 82(10):1023-8.
    
    60. Cho-Chung YS, Park YG, Nesterova M, et al. CRE-decoy oligonucleotide-inhibition of gene expression and tumor growth. Mol Cell Biochem, 2000, 212(1-2):29-34.
    
    61. Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat, 2002, l(5):405-16.
    
    62. Ehsan A, Mann MJ, Acqua GD, et al. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. Journal of Thoracic and Cardiovascular Surgery, 2001,121(4):714-22.
    
    63. Kume M, Komori K, Matsumoto T, et al. Administration of a decoy against the activator protein-1 binding site suppresses neointimal thickening in rabbit balloon-injured arteries. Circulation, 2002,105(10):1226-32.
    
    64. Wang LH, Yang XY, Zhang X, et al. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity. Cancer Res, 2003,63(9):2046-51.
    
    65. Yamasaki K, Asai T, Shimizu M, et al. Inhibition of NFkappaB activation using cis-element 'decoy' of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther, 2003,10 (4):356-64.
    
    66. Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element"decoy" against nuclear factor-kappaB binding site prevents myocardial infarction.Nat Med,1997,3(8):894-9.
    67.Alper O,Bergmann-Leitner ES,Abrams S,et al.Apoptosis,growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells:protein kinase A downregulation and cytoplasmic export of CRE-binding proteins.Mol Cell Biochem,2001,218(12):55-63.
    68.Wang LH,Yang XY,Kirken RA,et al.Targeted disruption of stat6 DNA binding activity by an oligonucleotide decoy blocks IL-4-driven TH_2 cell response.Blood,2000,95(4):1249-57.
    69.Zhang X,Zhang J,Wei H,et al.STAT3-decoy oligodeoxynucleotide inhibits the growth of human lung cancer via down-regulating its target genes.Oncol Rep,2007,17(6):1377-82.
    70.Boccaccio C,Ando M,Tamagnone L,Bardelli A,et al.Induction of epithelial tubules by growth factor HGF depends on the STAT pathway.Nature,1998,391(6664):285-8.
    71.邹清华,曾浔,孟凡亮,张建中.转染试剂及幽门螺杆菌对AGS细胞形态的影响.世界华人消化杂志,2006,14(4):382-6.
    72.王勤,邱凌,宋康康等.对氰基苯酚对蘑菇酪氨酸酶的抑制作用.厦门大学学报(自然科学版),2004,43(4):568-71.
    73.Fennell DA,Cotter FE.Stochastic modeling of apoptosis tolerance distributions measured by multivariate flow analysis of human leukemia cells.Cytometry.2000,39(4):266-74.
    74.Zhang R,Gong J,Wang H,Wang L,et al.Deoxycholate induces apoptosis in cultured normal human esophageal mucosal epithelial cells.Di Yi Jun Yi Da Xue Xue Bao,2005,25(10):1240-3.
    75.Birgit Geoerger,Cheng-Bi Tang,Alessandra Cesano,Sophie Visonneau,Sunil Marwaha,Kevin D.Judy,Leslie N.Sutton,Daniela Santoli,and Peter C.Phillips.Antitumor activity of a human cytotoxic T-cell line(TALL-104) in brain tumor xenografts.Neuro-Oncology,2000,2(2):103-13.
    76.Sun Y,Lin R,Dai J,Jin D,Wang SQ.Suppression of tumor growth using antisense oligonucleotide against survivin in an orthotopic transplant model of human hepatocellular carcinoma in nude mice.Oligonucleotides,2006,16(4):365-74.
    77.王磊,陈卫昌,陈桂林等.人结肠癌裸鼠原位移植瘤模型的建立.苏州大学学报(医学版),2005,2(3):253-55.
    78.Gard AL,Williams WC 2nd,Burrell MR.Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype(O4~+GalC~-) and response to cytokines using signal transducer LIFR beta.Dev Biol,1995,167(2):596-608.
    79.Rajan P,McKay RD.Multiple routes to astrocytic differentiation in the CNS.J Neurosci,1998,18(10):3620-9.
    80.Yanagisawa M,Nakashima K,Taga T.STAT3-mediated astrocyte differentiation from mouse fetal neuroepithelial cells by mouse oncostatin M.Neurosci Lett,1999,269(3):169-72.
    81.陈飞兰,张华蓉,卞修武等.诺帝对大鼠C6脑胶质瘤的诱导分化治疗作用及对信号转导分子STAT3和p-STAT3蛋白表达的影响.中华神经外科杂志,2005,21(6):359-62.
    82.Cuevas P,Diaz-Gonzalez D,Sanchez I,et al.Dobesilate inhibits the activation of signal transducer and activator of transcription 3,and the expression of cyclinD1 and bcl-XL in glioma cells.Neurol Res,2006,28(2):127-30.
    83.Bhattacharya S,Ray RM,Johnson LR.STAT3-mediated transcription of Bcl-2,Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells.Biochem J,2005,392(Pt 2):335-44.
    84.Calo V,Migliavacca M,Bazan V,et al.STAT proteins:from normal control of cellular events to tumorigenesis.J Cell Physiol,2003,197(2):157-68.
    85.Gagarin D,Yang Z,Butler J,et al.Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions:potential role of STATs,cyclinD1,BAD,and Bcl-XL.J Mol Cell Cardiol,2005,39(3):453-65.
    86.Reed JC.Double identity for proteins of the Bcl-2 family.Nature,1997,387(6635):773-6.
    87.Zou H,Henzel WJ,Liu X,et al.Apaf-1,a human protein homologous to C.elegans CED-4,participates in cytochrome c-dependent activation of caspase-3. Cell,1997,90(30):405-13.
    88.Yoshiyasu Aoki,Gerald M.Feldman,Giovanna Tosato.Inhibition of STAT3signaling induces apoptosis and decreases surviving expression in primary effusion lymphoma.BLOOD,2003,101(20):1535-42.
    89.Altieri DC.Survivin,versatile modulation of cell division and apoptosis in cancer.Oncogene 2003,22(8):581-9.
    90.Li F,Ambrosini G,Chu EY,et al.Control of apoptosis and mitotic spindle checkpoint by survivin.Nature 1998,396:580-4.
    91.Altieri DC.Validating survivin as a cancer therapeutic target.Nat Rev Cancer,2003,3:46-54.
    92.Ambrosini G,Adida C,Altieri DC.A novel anti-apoptosis gene,survivin,expressed in cancer and lymphoma.Nat Med,1997,3:917-21.
    93.Kobayashi K,Hatano M,Otaki M,et al.Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation.Proc Natl Acad Sci USA,1999,96:1457-62.
    94.Song J,So T,Cheng M,et al.Sustained survivin expression from OX40costimulatory signals drives T cell clonal expansion.Immunity,2005,22:621-31.
    95.Okada H,Bakal C,Shahinian A,et al.Survivin loss in thymocytes triggers p53-mediated growtharrest and p53-independent cell death.J Exp Med,2004,199:399-410.
    1 Levy DE and Darnell: Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651-662,2002.
    
    2 Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M and Bucher: DNA binding specificity of different STAT proteins: Comparison of in vitro specificity with natural target sites. J Biol Chem 276: 6675-6688,2001.
    
    3 Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA and Haque SJ:Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21: 8403-8413,2002.
    
    4 Barton BE, Murphy TF, Shu P, Huang HF, Meyenhofen M and Barton A: Novel single-stranded oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther 3: 1183-1191,2004.
    
    5 Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A and Jove R:Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20: 2499-2513,2001.
    6 Alvarez JV, Grenlinch H, Sellers WR, Meyerson M and Frank DA: Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res 66: 3162-3168, 2006.
    
    7 Qiu Z, Huang C, Sun J, Qiu W, Zhang J, Li H, Jiang T, Huang K and Cao J: RNA interference-mediated signal transducers and activators of transcription 3 gene silencing inhibits invasion and metastasis of human pancreatic cancer cells. Cancer Sci 98: 1099-1106, 2007.
    
    8 Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD,Gadiparthi S, Burke NA, Watkins SF and Rubin Grandis J: Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth.PNAS 100: 4138-4143,2003.
    
    9 Ahn JD, Morishita R, Kaneda Y, Lee SJ, Kwon KY, Choi SY, Lee KU, Park JY,Moon IJ, Park JG, Yoshizumi M, Ouchi Y and Lee IK: Inhibitory Effects of Novel AP-1 Decoy Oligodeoxynucleotides on Vascular Smooth Muscle Cell Proliferation In vitro and Neointimal Formation In vivo. Circulation Research 90: 1325-1332,2002.
    
    10 Crinelli R, Bianchi M, Gentilini L and Magnani.M: Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 30:2435-2443,2002.
    
    11 Morishita R, Tomita N, Kaneda Y and Ogihara T: Molecular therapy to inhibit NF-KB activation by transcription factor decoy oligonucleotides. Current Opinion in Pharmacology 4: 139-146,2004.
    12 Tomita T, Kunugiza Y, Tomita N, Takano H, Morishita R, Kaneda Y and Yoshikawa H: E2F decoy oligodeoxynucleotide ameliorates cartilage invasion by infiltrating synovium derived from rheumatoid arthritis. Int J Mol Med 18: 257-65,2006.
    
    13 Gu JH, Li G, Sun T, Su YH, Zhang XL, Shen J, Tian ZG and Zhang J: Blockage of STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 89: 9-17,2008.
    
    14 Sun X, Zhang J, Wang L and Tian Z: Growth inhibition of human hepatocellular carcinoma cells by blocking STAT3 activation with decoy-ODN. Cancer Lett 262:201-213,2008.
    
    15 Zhang X, Zhang J, Wang L, Wei H and Tian Z: Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 7:149, 2007.
    
    16 Xi S, Gooding WE and Rubin Grandis J: In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy.Oncogene 24: 970-979,2005.
    
    17 Morishita R, Tomita N, Kaneda Y and Ogihara T: Molecular therapy to inhibit NFkappaB activation by transcription factor decoy oligonucleotides. Curr Opin Pharmacol 4:139-146,2004.
    
    18 Schaefer LK, Ren Z, Fuller GN and Schaefer TS: Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21: 2058-2065,2002.
    
    19 Konnikova L, Kotecki M, Kruger MM and Cochran BH: Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3: 150,2003.
    
    20 Shimizu H, Nakagami H, Tsukamoto I, Morita S, Kunugiza Y, Tomita T,Yoshikawa H, Kaneda Y, Ogihara T and Morishita R: NFkappaB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts. Gene Ther 13: 933-941,2006.
    
    21 Yamasaki K, Asai T, Shimizu M, Aoki M, Hashiya N, Sakonjo H, Makino H,Kaneda Y, Ogihara T and Morishita R: Inhibition of NFkappaB activation using cis-element 'decoy' of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther 10: 356-364, 2003.
    [1]D.Senger,J.G.Cairncross,and P.A.Forsyth,Long-term survivors of glioblastoma:statistical aberration or important unrecognized molecular subtype? Cancer J 9(2003)214-21.
    [2]A.Giese,M.D.Rief,M.A.Loo,and M.E.Berens,Determinants of human astrocytoma migration.Cancer Res 54(1994) 3897-904.
    [3]A.Giese,R.Bjerkvig,M.E.Berens,and M.Westphal,Cost of migration:invasion of malignant gliomas and implications for treatment.J Clin Oncol 21(2003) 1624-36.
    [4]A.J.Ridley,M.A.Schwartz,K.Burridge,R.A.Firtel,M.H.Ginsberg,G.Borisy,J.T.Parsons,and A.R.Horwitz,Cell migration:integrating signals from front to back.Science 302(2003) 1704-9.
    [5]C.Schwartner,C.Michel,K.Stettmaier,H.Wagner,and W.Bors,Marchantins and related polyphenols from liverwort:physico-chemical studies of their radical-scavenging properties.Free Radic Biol Med 20(1996) 237-44.
    [6]Y.Asakawa,M.Toyota,M.Tori,and T.Hashimoto,Chemical structures of macrocyclic bis(bibenzyls) isolated from liverworts(Hepaticae).Spectroscopy 14(2000) 149-175.
    [7]C.Niu,J.B.Qu,and H.X.Lou,Antifungal bis[bibenzyls]from the Chinese liverwort Marchantia polymorpha L.Chem Biodivers 3(2006) 34-40.
    [8]Y.Q.Shi,Y.X.Liao,X.J.Qu,H.Q.Yuan,S.Li,J.B.Qu,and H.X.Lou,Marchantin C,a macrocyclic bisbibenzyl,induces apoptosis of human glioma A172 cells.Cancer Lett 262(2008) 173-82.
    [9]Y.Q.Shi,C.J.Zhu,H.Q.Yuan,B.Q.Li,J.Gao,X.J.Qu,B.Sun,Y.N.Cheng,S.Li,X.Li,and H.X.Lou,Marchantin C,a novel microtubule inhibitor from liverwort with anti-tumor activity both in vivo and in vitro.Cancer Lett(2008).
    [10]H.L.Lin,S.H.Chiou,C.W.Wu,W.B.Lin,L.H.Chen,Y.P.Yang,M.L.Tsai,Y.H. Uen, J.P. Liou, and C.W. Chi, Combretastatin A4-induced differential cytotoxicity and reduced metastatic ability by inhibition of AKT function in human gastric cancer cells.J Pharmacol Exp Ther 323 (2007) 365-73.
    
    [11] S. Hussain, M. Slevin, M.A. Mesaik, M.I. Choudhary, A.H. Elosta, S. Matou, N.Ahmed, D. West, and J. Gaffney, Cheiradone: a vascular endothelial cell growth factor receptor antagonist. BMC Cell Biol 9 (2008) 7.
    
    [12] Y.Q. Gong, Y. Fan, D.Z. Wu, H. Yang, Z.B. Hu, and Z.T. Wang, In vivo and in vitro evaluation of erianin, a novel anti-angiogenic agent. Eur J Cancer 40 (2004) 1554-65.
    
    [13] J. Xing, C. Xie, J. Qu, H. Guo, B. Lv, and H. Lou, Rapid screening for bisbibenzyls in bryophyte crude extracts using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21 (2007) 2467-76.
    
    [14] K. Nabeshima, T. Inoue, Y. Shimao, and T. Sameshima, Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52 (2002) 255-64.
    
    [15] J.S. Rao, Molecular mechanisms of glioma invasiveness: the role of proteases.Nat Rev Cancer 3 (2003) 489-501.
    
    [16] T.X. Xie, F.J. Huang, K.D. Aldape, S.H. Kang, M. Liu, J.E. Gershenwald, K. Xie,R. Sawaya, and S. Huang, Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66 (2006) 3188-96.
    
    [17] Y. Zhao, A. Xiao, C.G Dipierro, R. Abdel-Fattah, S. Amos, GT. Redpath, J.E.Carpenter, R.O. Pieper, and I.M. Hussaini, H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 56 (2008) 917-24.
    
    [18] T. Kubiatowski, T. Jang, M.B. Lachyankar, R. Salmonsen, R.R. Nabi, P.J.Quesenberry, N.S. Litofsky, A.H. Ross, and L.D. Recht, Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95 (2001) 480-8.
    
    [19] J. Grunstein, W.G. Roberts, O. Mathieu-Costello, D. Hanahan, and R.S. Johnson,Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 59 (1999) 1592-8.
    
    [20] S.M. Galbraith, D.J. Chaplin, F. Lee, M.R. Stratford, R.J. Locke, B. Vojnovic,and GM. Tozer, Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo.Anticancer Res 21 (2001) 93-102.
    
    [21] L.A. Liotta, P.S. Steeg, and W.G Stetler-Stevenson, Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64 (1991) 327-36.
    
    [22] I.J. Fidler, and L.M. Ellis, The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79 (1994) 185-8.
    
    [23] M. Klagsbrun, and P.A. D'Amore, Regulators of angiogenesis. Annu Rev Physiol 53(1991)217-39.
    
    [24] C.K. Yunker, W. Golembieski, N. Lemke, C.R. Schultz, S. Cazacu, C. Brodie,and S.A. Rempel, SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. Int J Cancer 122 (2008) 2735-43.
    
    [25] M.L. Slongo, B. Molena, A.M. Brunati, M. Frasson, M. Gardiman, M. Carli, G Perilongo, A. Rosolen, and M. Onisto, Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol 9 (2007) 384-92.
    
    [26] G. Cantarella, N. Risuglia, R. Dell'eva, L. Lempereur, A. Albini, G. Pennisi, GM.Scoto, D.N. Noonan, and R. Bernardini, TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells. Br J Cancer 94 (2006) 1428-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700