特异性多结构域DNA转导重组嵌合体在毕赤酵母中表达及其体内外转导作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用分子生物学和免疫学等技术和手段,探索了利用多结构域嵌合蛋白提高裸质粒DNA转导效率的问题。首先,在PCR方法分别克隆了GAL4/147、NLS-GAL4/147、Tat-GAL4/147和Tat-NLS-GAL4/147序列,并将其克隆于酵母表达载体pPIC9K,成功构建了酵母表达质粒pPI-G、pPI-NG、pPI-TG和pPI-TNG,并在酵母菌株GS115内对目的蛋白进行了表达,通过对表达时间、温度、转速、甲醇浓度等条件的优化,最终获得了目的蛋白G、NG、TG和TNG。
     基于GAL4特异性识别/结合序列UAS、EGFP基因和Apoptin基因,成功构建了能够被融合蛋白特异性识别/结合的真核表达质粒DNA,并在体外对融合蛋白与UAS质粒的结合效率和条件进行了探索。通过MTT染色、AO/EB染色、流式细胞术、AnnexinV染色、DAPI染色、Caspase活性检测等方法探讨了融合蛋白介导的重组质粒对人肝癌细胞HepG-2的转导和抑制作用。实验结果表明,融合蛋白能够有效介导重组质粒对人肝癌细胞HepG-2的转导,并能够实现对人肝癌细胞HepG-2生长的抑制。
     本研究复制了C57BL/6小鼠荷小鼠肝癌(H22)肿瘤模型,通过瘤内注射融合蛋白-重组质粒复合物的方式,检测抑瘤率、生存期等指标,探讨了融合蛋白介导的重组质粒在动物体内的转导作用和对体内实体肿瘤的抑制作用。实验结果表明,融合蛋白在动物体内也可有效介导重组质粒的转导,并能够实现对C57BL/6小鼠荷小鼠H22肿瘤模型实体肿瘤的抑制。
     上述研究为研制安全、高效、低毒的裸质粒DNA转导辅助系统,拓展裸质粒DNA的应用空间奠定了基础。
The Expression of the Specific Chimeric Multidomain DNA Transfer Protein in Pichia pastoris and its Transduction in vivo and in vitro
     Gene therapy is based on the specific introduction of therapeutic genes into individual cells to treat diseases, and successful gene therapy depends on the development of efficient delivery systems. Current DNA delivery approaches can be divided into viral and non-viral platforms. Viral DNA vectors are widely used because of their high level of uptake and foreign gene expression. There are disadvantages with viral systems, however, including infectivity, a restriction in the size of incorporated DNA, and immunogenicity. Non-viral systems have generally included cationic polymers, peptides and liposomes. Non-viral receptor-mediated gene delivery strategies afford more flexibility in design and construction, in which multi-domain recombinant chimeric proteins as well as peptide-protein conjugates have been widely investigated.
     The GAL4 protein is a transcriptional activator that binds to the galactose UAS sequence in the yeast genome and activates the transcription of genes encoding enzymes of the galactose metabolic pathway. The N-terminal portion (residues 1-147) of GAL4, which has high affinity for a specific 17 bp oligonucleotide sequence (17 mer), mediates DNA recognition and binding and NMR analysis has demonstrated that the core DNA binding domain of GAL4 contains a Cys-X2-Cys-X6-Cys-X6-Cys-X2-Cys-X6-Cys motif in which the six cysteines coordinate two zinc ions, forming a bimetal-thiolate cluster. Preliminary studies have demonstrated that GAL4 may enhance DNA transfection, which supported the potential application of GAL4 in non-viral DNA transfer vectors.
     A series of small protein domains, termed cell-penetrating peptides (CPPs) or protein transduction domains (PTDs), have been described and are thought to penetrate the plasma membrane directly from the cell surface. The Tat protein, a transcriptional activator from HIV type 1 (HIV-1), was first reported to cross the plasma membrane after exogenous delivery. It is remarkable that the Tat basic domain also mediates efficient cellular internalization and cellular transduction activities when attached to large protein cargos. These properties have made Tat an attractive component of synthetic gene delivery vehicle for plasmid DNA, proteins, nanoparticles, and viral vectors.
     In this study, we generated a novel genetically engineered chimeric protein, TG, in which one domain (GAL4) acts as a carrier for plasmid DNA uptake, while another (Tat) enables the compounds (TG/plasmid or TNG/plasmid) to be endocytosed. Specifically, we purified and assessed the ability of the purified TG or TNG recombinant proteins to bind a reporter plasmid pUAS-EGFP containing the GAL417 bp oligonucleotide recognition sequence and EGFP gene and to mediate transduction of HepG-2 cells. Our studies determined that the TG or TNG chimeric protein is an efficient carrier of plasmid DNA, and this strategy may offer a new approach for enhancement of clinical gene therapy.
     To evaluate the TG-or TNG mediated cell transfection, the HepG-2 human hepatoma cell line was analyzed by fluorescence. HepG-2 cells were seeded the day before the assay and incubated with the complexes of TG/pUAS-EGFP, TNG/pUAS-EGFP, G/pUAS-EGFP or NG/pUAS-EGFP, respectively, for 48 h at 37℃. The HepG-2 cells incubated with TG/pUAS-EGFP or TNG/pUAS-EGFP complex exhibited strong green fluorescence. In contrast, no fluorescence was visualized in the cells incubated with G/pUAS-EGFP or NG/pUAS-EGFP complex under the same conditions. These results demonstrated that the Tat peptide fusion in the TG or TNG protein mediated efficient gene transfer and resulted in significant expression of the exogenous gene.
     The cell transduction and anti-tumor effects of TG and TNG in HepG-2 cells were identified by MTT. The results showed that, except for TG/pUAS-Apoptin or TNG/pUAS-Apoptin, other treatments (G/pUAS-Apoptin, NG/pUAS-Apoptin, pUAS-Apoptin alone, G protein alone, NG protein alone, TG protein alone, TNG protein alone) did not kill HepG-2 cells in varying degrees. While, there was no significant difference between the anti-tumor effects of TG/pUAS-Apoptin and the anti-tumor effects of TNG/pUAS-Apoptin. In the certain treatment doses, the anti-tumor effects of TG/pUAS-Apoptin or TNG/pUAS-Apoptin were heightened with the extending of treatment time, and resulted in some time-effect relationship. It is presumed that the suppression rates of TG/pUAS-Apoptin or TNG/pUAS-Apoptin were concerned with treatment doses.
     By using AO/EB assay, DAPI assay, Annexin V assay and Caspses activity assay, we analyzed the mechanism of the anti-tumor effects mediated by TG/pUAS-Apoptin or TNG/pUAS-Apoptin. The results showed that the TG/pUAS-Apoptin or TNG/pUAS-Apoptin complex can induce apoptosis of HepG-2 cells. While, there was no significant difference between the apoptosis induce function of TG/pUAS-Apoptin and the poptosis induce function of TNG/pUAS-Apoptin.
     We also constrcted the C57BL/6 mice model bearing H22 by transplanting H22 cells into the right hind limb of the mice. And then, the in vivo anti-tumor effects of TG/pUAS-Apoptin or TNG/pUAS-Apoptin were observed through the mice model. The results showed that TG/pUAS-Apoptin and TNG/pUAS-Apoptin treatment groups demonstrate varying degree anti-tumor effects. The suppression rates of TG/pUAS-Apoptin and TNG/pUAS-Apoptin were 27% and 28.6%, respectively, which significant higher than the other groups (Saline, pUAS, pUAS-Apoptin, TG, TNG, TG/pUAS and TNG/pUAS). While, there was no significant difference between the suppression rate of TG/pUAS-Apoptin and the suppression rate of TNG/pUAS-Apoptin. We, then, observed the mean survival of the mice model. The results showed that the mean survival rates of both TG/pUAS-Apoptin and TNG/pUAS-Apoptin treatment groups were 66.7%, and much higher that Saline, pUAS, pUAS-Apoptin, TG, TNG, TG/pUAS or TNG/pUAS treatment groups. To approach the effects of TG/pUAS-Apoptin and TNG/pUAS-Apoptin on immune system, the contents of IL-2, IFN-y, IL-4 and IL-10 were identified. The results showed that TG/pUAS-Apoptin, TNG/pUAS-Apoptin and the other recombinant proteins (G and NG) did not affect the concentration of IL-2, IFN-y, IL-4 and IL-10.
     In summary, the recombinant protein TG and TNG basing on GAL4/147 and Tat peptid in this study, which has both UAS specific recognition and membrane penetration abilities, can transduct plasmid containing UAS sequences, and suppress HepG-2 cells and inhibit solid tumor in animal model by mediating Apoptin containing plasmid, effectively. The study provide a novel subsystem for the expanding use of nacked plasmid DNA.
引文
[1]AGHI M, HOCHBERG F, BREAKFIELD XO, et al. Prodrug activation enzymes in cancer gene therapy[J]. Gene Med,2000,2:148-164.
    [2]AKKARAJU GR, HUARD J, HOFFMAN EP, et al.Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDXmouse skeletal muscle[J]. Gene Med,1999,1:280-289.
    [3]BESCH D, ZRENNER E. Prevention and therapy in hereditary retinaldegenerations. Adv[J].Ophthalmol,2003,106:31-35.
    [4]BURTON EA,GLORIOSO JC. Herpes simplex virus vector-based gene therapy for malignant glioma[J].Gene Ther. Mol Biol,2000,5:1-17.
    [5]BACHY M, BOUDET F, BUREAU M, et al. Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse [J]. Vaccine,2001,19:1688-1693.
    [6]BIELINSKA AU, YEN A, WU HL, et al.Application of membrane-based dendrimer/DNAcomplexes for solid phase transfection in vitro and in vivo[J]. Biomaterials, 2000,21:877-887.
    [7]BOULAIZ H, PRADOS J, MELGUIZO C, et al.Inhibition of growth and induction of apoptosis in human breast cancer bytransfection of gene [J]. Cancer,2003,89:192-198.
    [8]EL-ANEED A.An overview of current delivery systems in cancer gene therapy[J]. Controlled Release,2004,94:1-14.
    [9]HAN SO, MAHATO RI, SUNG YK, et al. Development of biomaterials for gene therapy[J]. Mol Ther,2000,2:302-317.
    [10]CHECK E. Gene therapy:a tragic setback[J]. Nature,2002,420:116-118.
    [11]FANNING G, AMADO R, SYMONDS G. Gene therapy for HIV/AIDS:the potential for a new therapeutic regimen[J]. Gene Med,2003,5:645-653.
    [12]CAVAZZANA-CALVO M, HACEIN-BEY S, SAINT-BASILE G, et al. Gene therapy of human severe combined immune deficiency (SCID)-X1 disease[J]. Science.2000, 288:669-672.
    [13]BUTTGEREIT P, SCHMIDT-WOLF I. Gene therapy of lymphoma[J]. Hematother Stem Cell Res,2002,11:457-467.
    [14]CANATELLA PJ, PRAUSNITZ MR.Prediction and optimization of gene transfection and drug delivery by electroporation[J]. Gene Ther,2001,8:1464-1469.
    [15]CROYLE MA, CHIRMULE N, ZHANG Y, et al. PEGylation of El-deleted adenovirus vectors allows significant gene expression on readministration to liver[J]. Hum Gene Ther,2002,13:1887-1900.
    [16]CHEONG SC, CLEMENT N, VELU T, et al. A novel method for the titration of recombinant virus stocks by ELISPOT assay[J]. Virol Meth,2003,109:119-124.
    [17]FERBER D. Gene therapy:safer and virus-free? [J].Science,2001,294:1638-1642.
    [18]DETTWEILER U, SIMON P. Points to consider for ethics committees in human gene therapy trials [J]. Bioethics,2001,15:491-500.
    [19]FLOTTE TR, ZEITLIN PL, REYNOLDS TC, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adenoassociated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients:a two-part clinical study [J]. Hum. Gene Ther,2003,14:1079-1088.
    [20]GAO GP, ALVIRA MR, WANG L,et al. Novel adeno-associated viruses form rhesus monkeys as vectors for human gene therapy [J]. Proc. Natl. Acad. Sci. USA,2002,99: 11854-11859.
    [21]MARSHALL E. Gene therapy death prompts review of adenovirus vector [J]. Science,1999,286:2244-2245.
    [22]MARSHALL E. Gene therapy. Second child in French trial is found to have leukemia [J]. Science,2003,299:320.
    [23]HERWEIJER H, WOLFF JA. Progress and prospects:naked DNA gene transfer and therapy [J]. Gene Ther,2003,10:453-458.
    [24]TEMPLETON NS. Cationic liposomes as in vivo delivery vehicles [J]. Curr. Med. Chem,2003.10:1279-1287.
    [25]NICULESCU-DUVAZ D, HEYES J, SPRINGER CJ,et al. Structure-activity relationship in cationic lipid mediated gene transfection [J]. Curr. Med. Chem,2003,10: 1233-1261.
    [26]FARHOOD H, SERBINA N, HUANG L, et al. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer [J]. Biochim. Biophys.Acta,1995,1235:289-295.
    [27]HAFEZ IM, MAURER N, CULLIS PR, et al. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids [J]. Gene Ther,2001,8:1188-1196.
    [28]ITANO H, MORA BN, ZHANG W, et al. Lipid-mediated ex vivo gene transfer of viral interleukin-10 in rat lung allotransplantation [J]. Thorac. Cardiovasc. Surg,2001,122: 29-38.
    [29]BRUYNE LA, LI K, CHAN SY, et al. Lipid-mediated gene transfer of viral IL-10 prolongs vascularised cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses [J]. Gene Ther,1998,5:1079-1087.
    [30]LIU Y, LIGGITT D, ZHONG W, et al. Cationic liposome-mediated intravenous gene delivery.J.Biol [J]. Chem,1995,270:864-870.
    [31]ISHIWATA H, SUZUKI N, ANDO S, et al. Characteristics and biodistribution of cationic liposomes and their DNA complexes [J]. Control Release,2000,69:139-148.
    [32]KEOGH MC, CHEN D, LUPU F, et al. High efficiency reported gene transfection of vascular tissue in vitro and in vivo using a cationic lipid-DNA complex [J]. Gene Ther, 1997,4:162-171.
    [33]REMY JS, KICHLER A, MORDVINOV V, et al. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands:A stage toward artificial viruses [J]. Proc. Natl.Acad. Sci. USA,1995,92:1744-1748.
    [34]FILION MC, PHILLIPS NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells [J]. Biochim. Biophys. Acta,1997,1329:345-356.
    [35]ANWER K, KAO G, PROCTOR B, et al.Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration [J]. Gene Ther.2000,7:1833-1839.
    [36]KIM JK, CHOI SH, KIM CO, et al. Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries:effects on serum stability and transfection efficiency [J]. Pharm. Pharmacol,2003,55:453-460.
    [37]CHENG PW. Receptor ligand facilitated gene transfer:enhancement of liposome-mediated gene transfer and expression by transferrin. Hum [J]. Gene Ther,1996,7: 285-282.
    [38]HOFLAND HE, MASSON C, IGINLA S, et al. Folate-targeted gene transfer in vivo [J]. Mol. Ther,2002,5:739-744.
    [39]HARA T, ARAMAKI Y, TAKADA S, et al. Receptormediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes [J]. Gene Ther,1995,2: 784-788.
    [40]TAN PH, MANUNTA M, ARDJOMAND N, et al. Antibody targeted gene transfer to endothelium [J]. Gene Med,2003,5:311-323.
    [41]GAO X, HUANG L. Potentiation of cationic liposome-mediated gene delivery by polycations [J]. Biochem,1996,35:1027-1036.
    [42]VITIELLO L, CHONN A, WASSERMAN JD, et al.Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells [J]. Gene Ther,1996,3:396-404.
    [43]HART SL, ARANCIBIA-CARCAMO CV, WOLFERT MA, et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum [J]. Gene Ther,1998, 9:575-585.
    [44]LI JM, COLLINS L, ZHANG X, et al. Efficient gene delivery to vascular smooth muscle cells using a nontoxic, synthetic peptide vector system targeted to membrane integrins: a first step toward the gene therapy of chronic rejection [J]. Transplantation,2000,70: 1616-1624.
    [45]ZHANG X, COLLINS L, FABRE JW. A powerful cooperative interaction between a fusogenic peptide and lipofectamine for the enhancement of receptortargeted, non-viral gene delivery via integrin receptors [J]. Gene Med,2001,3:560-568.
    [46]DODDS E, PIPER TA, MURPHY SJ, et al. Cationic lipids and polymers are able to enhance adenoviral infection of cultured mouse myotubes [J]. Neurochem,1999,72: 2105-2112.
    [47]KANEDA Y. Improvements in gene therapy technologies. [J]. Mol.Urol,2001,5: 85-89.
    [48]HAENSLER J, SZOKA FC. Synthesis and characterisation of a trigalactosylated bisacridine compound to target DNA to hepatocytes. Bioconjug[J]. Chem,1993,4:85-93.
    [49]SOTO J, BESSODES M, PITARD B, et al. Non-electrostatic complexes with DNA: towards novel synthetic gene delivery systems. Bioorg. [J]. Med. Chem. Lett,2000,10: 911-914.
    [50]FOMINAYA J,WELS W. Target cell specific DNA transfer mediated by a chimeric multidomain protein. [J]. Biol. Chem,1996,271:10560-10568.
    [51]MARQUET R, WYART A, HOUSSIER C. Influence of DNA length on spermine-induced condensation. Importance of the bending and stiffening of DNA [J] Biochim. Biophys. Acta,1987,909:165-172.
    [52]FRITZ JD, HERWEIJER H, ZHANG G, et al. Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum [J]. Gene Ther,1996,7:1395-1404.
    [53]SORGI FL, BHATTACHARYA S, HUANG L, et al. Protamine sulfate enhances lipid-mediated gene transfer [J]. Gene Ther,1997,4:961-968.
    [54]WAGNER E, COTTEN M, FOISNER R. Transferrinpolycation-DNA complexes: The effect of polycations on the structure of the complex and DNA delivery to cells [J]. Proc. Natl. Acad. Sci. USA,1991,88:4255-4259.
    [55]WOLFERT MA, SEYMOUR LW. Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA [J]. Gene Ther,1996,3:269-273.
    [56]CHIOW HC, TANGCO MV, LEVINE SM, et al. Enhanced resistance to nuclease degradation of nucleic acids complexes to asialoglycoprotein-polylysine carriers [J]. Nuc. Acid. Res,1994,22:5439-5446.
    [57]OLINS DE, OLINS AL, HIPPEL PH. Model nucleoprotein complexes:Studies on the interaction of cationic homopolypeptides with DNA [J]. Mol. Biol,1986,24:157-176.
    [58]LEMOINE NR, COOPER DN. Gene Therapy. Bios Scientific Publishers [J]. Oxford, UK,1996,7:161-162.
    [59]GILL TJ, PAPERMASTER DS, KUNZ HW, et al. Studies on synthetic polypeptide antigens [J]. Biol. Chem.1968,213:289-300.
    [60]WILSON JM, GROSSMAN M, WU CH, et al. Hepatocyte-directed gene transfer in vivo to transient improvement of Hypercholesterolemia in low density lipoprotein receptor-deficient rabbits [J]. Biol. Chem,1992,267:963-967.
    [61]KIRCHEIS R, WIGHTMAN L, WAGNER E. Design and gene delivery activity of modified polyethylenimines [J]. Adv. Drug Deliv Rev,2001,53:341-358.
    [62]GOULA D, REMY JS, ERBACHER P, et al. Size, diffusibilty and transfection performance of linear PEI/DNA complexed in the mouse central nervous system [J]. Gene Ther,1998,5:712-717.
    [63]BOUSSIF O, LEZOUALCH F, ZANTA MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine [J]. Proc. Natl. Acad. Sci. USA,1995,92:7797-7801.
    [64]KICHLER A, LEBORGNE C, COEYTAUX E, et al. Polyethyleniminemediated
    gene delivery:a mechanistic study [J]. Gene Med,2001,3:135-144.
    [65]BOLETTA A, BENIGNI A, LUTZ J, et al. Nonviral gene delivery to the rat kidney with polyethylenimine [J]. Hum.Gene Ther,1997,8:1243-1251.
    [66]LEMKINE GF, GOULA D, BECKER N, et al. Optimisation of polyethylenimine-based gene delivery to mouse brain [J]:Drug Target,1999,7:305-312.
    [67]COLL JL, CHOLLET P, BRAMBILLA E, et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine [J]. Hum. Gene Ther,1999,10:1659-1666.
    [68]AOKI K, FURUHATA S, HATANAKA K, et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity [J]. Gene Ther, 2001,8:508-514.
    [69]FERRARI S, PETTENAZZO A, GARBATI N, et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy[J]. Biochim. Biophys. Acta,1999, 1447:2] 9-225.
    [70]OGRIS M, BRUNNER S, SCHULLER S, et al. PEGylated DNA/transferrin-PEI complexes:reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery [J]. Gene Ther,1999,6:595-605.
    [71]NGUYEN HK, LEMIEUX P, VINOGRADOV SV, et al. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents [J]. Gene Ther,2000,7: 126-138.
    [72]KIRCHEIS R, KICHLER A, WALLNER G, et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery [J]. Gene Ther,1997,4:409-418.
    [73]ERBACHER P, REMY JS, BEHR JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway [J]. Gene Ther,1999,6:138-145.
    [74]KIRCHEIS R, KICHLER A, WALLNER G, et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery [J]. Gene Ther,1997,4:409-418.
    [75]BLESSING T, KURSA M, HOLZHAUSER R, et al. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery [J]. Bioconjug. Chem,2001,12:529-537.
    [76]TANG MX, REDEMANN CT, SZOKA FC. In vitro gene delivery by degraded polyamidoamine dendrimers [J]. Bioconjug. Chem,1996,7:703-714.
    [77]HUDDE T, RAYNER SA, COMER RM, et al. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium [J]. Gene Ther, 1999,6:939-943.
    [78]QIN L, PAHUD DR, DING Y, et al. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers [J]. Hum. Gene Ther,1998,9:553-560.
    [79]OUPICKY D, KONAK C, DASH PR, et al. Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block [J]. Bioconjug. Chem,1999,10:764-772.
    [80]PLANK C, MECHTLER K, SZOKA FC, et al. Activation of the complement system by synthetic DNA complexes:a potential barrier for intravenous gene delivery [J]. Hum. Gene Ther,1996,7:1437-1446.
    [81]OUPICKY D, CARLISLE RC, SEYMOUR LW. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo [J]. Gene Ther,2001,8:713-724.
    [82]GODBEY WT, WU KK, MIKOS AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery [J]. Proc. Natl. Acad. Sci. USA,1999, 96:5177-5181.
    [83]FORD KG, SOUBERBIELLE BE, DARLING D, et al. Protein transduction:an alternative to genetic intervention? [J].Gene Ther,2001,8:1-4.
    [84]ELLIOTT G, O'HARE P. Intercellular trafficking and protein delivery by a herpesvirus structural protein [J]. Cell,1997,88:223-233.
    [85]TIETZ PS, YAMAZAKI K, LARUSSO NF. Time-dependent effects of chloroquine on pH of hepatocyte lysosomes [J]. Biochem. Pharmacol,1990,40:1419-1421.
    [86]CARR CM, KIM PS. A spring loaded mechanism for the comformational change of influenza hemagglutinin [J]. Cell,1993,73:823-832.
    [87]SIMOES S, SLEPUSHKIN V, GASPAR R, et al. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides [J]. Gene Ther,1998,5:955-964.
    [88]LIM DW, YEOM YI, PARK TG. Poly(DMAEMA-NVP)-b-PEGgalactose as gene delivery vector for hepatocytes [J]. Bioconjug. Chem,2000,11:688-695.
    [89]HOGSET A, PRASMICKAITE L, TJELLE TE, et al. Photochemical transfection:a new technology for light-induced, site-directed gene delivery [J]. Hum. Gene Ther,2000,11: 869-880.
    [90]MCKENZIE DL, KWOK KY, RICE KG. A potent new class of reductively activated peptide gene delivery agents [J]. Biol. Chem,2000,275:9970-9977.
    [91]WETZER B, BYK G, FREDERIC M, et al. Reducible cationic lipids for gene transfer [J]. Biochem. J,2001,356:747-756.
    [92]BRUNNER S, FURTBAUER E, SAUER T, et al. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation [J]. Mol. Ther,2002,5:80-86.
    [93]SHEWRING LD, COLLINS L, LIGHTMAN SL, et al. Anonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins [J]. Transplantation, 1997,64:763-769.
    [94]COLLINS L, ASUNI AA, ANDERTON BH, et al. Efficient gene delivery to primary neuron cultures using a synthetic peptide vector system.[J]. Neurosci. Methods,2003, 125:113-120.
    [95]VACIK J, DEAN BS, ZIMMER WE, et al. Cell-specific nuclear import of plasmid DNA [J]. Gene Ther,1999,6:1006-1014.
    [96]GOLDFARB DS, GARIEPY J, SCHOOLNIK G, et al. Synthetic peptides as nuclear localisation signals [J]. Nature,1986,322:641-644.
    [97]MIAO CH, THOMPSON AR, LOEB K, et al. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo [J]. Mol. Ther, 2001,3:947-957.
    [98]MIAO CH, OHASHI K, PATIJN GA, et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro [J]. Mol. Ther,2000,1:522-532.
    [99]LARIN Z, MEJIA JE. Advances in human artificial chromosome technology [J].Trends Genet,2002,18:313-319.
    [100]KAMINSKI JM, HUBER M, SUMMERS JB, et al. Design of a nonviral vector for site-selective, efficient integration into the human genome [J].FASEB J,2002,16:1242-1247.
    [101]SCHULER M, ROCHLITZ C, HOROWITZ JA, et al. A phase I study of adenovirusmediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer [J]. Hum Gene Ther,1998,9:2075-2082.
    [102]SWISHER SG, ROTH JA, NEMUNAITIS J, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer [J]. Natl Cancer Inst,1999,91:763-71.
    [103]NEMUNAITIS J, SWISHER SG, TIMMONS T, et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer [J]. J Clin Oncol,2000,18:609-622.
    [104]ATENCIO IA, GRACE M, BORDENS R, et al. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial [J]. Cancer Gene Ther,2006,13:169-181.
    [105]TOLCHER AW, HAO D, DE BONO J, et al. Phase I, pharmacokinetic, and pharmacodynamicstudy of intravenously administered Ad5CMV-p53, an adenoviral vector containing the wild-type p53 gene,in patients with advanced cancer [J]. J Clin Oncol,2006, 24:2052-2058.
    [106]SHIMADA H, SHIMIZU T, OCHIAI T, et al. Preclinical study of adenoviral p53 gene therapy for esophageal cancer [J]. Surg Today,2001,31:597-604.
    [107]SHIMADA H, MATSUBARA H, OCHIAI T, et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma [J]. Cancer Sci,2006,97:554-561.
    [108]SWISHER SG, ROTH JA, KOMAKI R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy [J]. Clin Cancer Res,2003,9:93-101.
    [109]SCHULER M, HERRMANN R, DE GREVE JL, et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer:results of amulticenter phase II study [J]. J Clin Oncol,2001,19:1750-1758.
    [110]ANTONIA SJ, MIRZA N, FRICKE I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer [J]. Clin Cancer Res, 2006,12 (3):878-87.
    [111]MATSUMOTO K, NAKAMURA T. Mechanisms and significance of bifunctional NK4 in cancer treatment [J].Biochem Biophys Res Commun,2005,333:316-27.
    [112]WEN J, MATSUMOTO K, TANIURA N, et al. Inhibition of colon cancer growth and metastasis by NK4 gene repetitive delivery in mice [J]. Biochem Biophys Res Commun, 2007,358:117-23.
    [113]OGURA Y, MIZUMOTO K, NAGAI E, et al. Peritumoral injection of adenovirus vector expressing NK4 combined with gemcitabine treatment suppresses growth and metastasis of human pancreatic cancer cells implanted orthotopically in nude mice and prolongs survival [J]. Cancer Gene Ther,2006,13:520-529.
    [114]SHIMADA H, SHIRATORI T, MATSUSHITA K, et al. A Phase I/II study of NK4 gene therapy for digestive squamous cell carcinoma[C]. Proceedings of 65th Annual Meeting of the Japanese Cancer Association,2006,26-27.
    [115]LEE YJ, GALOFORO SS, BATTLE P, et al. Replicating adenoviral vector-mediated transfer of a heat-inducible double suicide gene for gene therapy [J]. Cancer Gene Ther,2001,8:397-404.
    [116]FREYTAG SO, KHIL M, STRICKER H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer [J]. Cancer Res,2002,62:4968-4976.
    [117]BOUCHER PD, IM MM, FREYTAG SO, et al. A novel mechanism of synergistic cytotoxicity with 5-fluorocytosine and ganciclovir in double suicide gene therapy [J]. Cancer Res,2006,66:3230-3237.
    [118]SANDIG V, BRAND K, HERWIG S, et al. Adenovirally transferred p16INK4/CDKN2 and p53genes cooperate to induce apoptotic tumor cell death [J]. Nat Med, 1997,3:313-319.
    [119]SHIMADA H, LIU TL, OCHIAI T, et al. Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33 (ING1) in T. Tn human esophageal carcinoma cells [J]. Oncogene,2002,21:1208-1216.
    [120]SHIMIZU T, SHIMADA H, OCHIAI T, et al. Enhanced growth suppression in esophageal carcinoma cells using adenovirus-mediated fusion gene transfer (uracil phosphoribosyl-transferase and herpes simplex virus thymidine kinase) [J]. Cancer Gene Ther, 2001,8:512-21.
    [121]MORLEY S, MACDONALD G, KIRN D, et al. The d11520 virus is found preferentially in tumor tissue after direct intratumoral injection in oral carcinoma [J]. Clin Cancer Res,2004,10:4357-4362.
    [122]TAGAWA M, KAWAMURA K, SHIMOZATO O, et al. Virology-and immunology-based gene therapy for cancer [J]. Cancer Immunol Immunother,2006,55: 1420-1425.
    [123]YU L, HAMADA K, NAMBA M, et al. Midkine promoter-driven suicide gene expressionand-mediated adenovirus replication produced cytotoxic effects to immortalised and tumour cells [J]. Eur J Cancer,2004,40:1787-94.
    [124]IWADATE Y, INOUE M, SAEGUSA T, et al. Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats [J]. Clin Cancer Res,2005,11:3821-7.
    [125]YONEYAMA Y, UEDA Y, AKUTSU Y, et al. Development of immunostimulatory virotherapy using non-transmissible Sendai virus-activated dendritic cells [J]. Biochem Biophys Res Commun,2007,355:129-135.
    [126]TATEBE S, MATSUURA T, ENDO K, et al. Adenovirus-mediated transfer of wild-type p53 gene results in apoptosis or growth arrest in human cultured gastric carcinoma cells [J]. Int J Oncol,1999,15:229-235
    [127]OHASHI M, KANAI F, UENO H, et al. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo [J]. Gut,1999,44: 366-371
    [128]WANG B, SHI LC, ZHANG WB, et al. Expression and signifi cance of P16 gene in gastric cancer and its precancerous lesions [J]. Shijie Huaren Xiaohua Zazhi,2001,9: 39-42
    [129]JEONG YW, KIM KS, OH JY, et al. Exogenous wild-type p16INK4A gene induces delayed cell proliferation and promotes chemosensitivity through decreased pRB and increased E2F-1 expressions [J]. Int J Mol Med,2003,12:61-65
    [130]ISHII H, ZANESI N, VECCHIONE A, et al. Regression of upper gastric cancer in mice by FHIT gene delivery [J]. FASEB J,2003,17:1768-1770
    [131]ROCCO A, SCHANDL L, CHEN J, et al. Loss of FHIT protein expression correlates with disease progression and poor differentiation in gastric cancer [J]. J Cancer Res Clin Oncol,2003,129:84-88
    [132]SPENCER DM. Developments in suicide genes for preclinical and clinical applications [J]. Curr Opin Mol Ther,2000,2:433-440
    [133]FREEMAN SM, ABBOUD CN, WHARTENBY KA, et al. The "bystander effect" tumor regression when a fraction of the tumor mass is genetically modifi ed [J]. Cancer Res, 1993,53:5274-5283
    [134]LIU HF, LIU WW, FANG DC, et al. Expression andsignificance of proapoptotic gene Bax in gastric carcinoma [J]. World J Gastroenterol,1999,5:15-17
    [135]FU YG, QU YJ, WU KC, et al. Apoptosisinducing effect of recombinant Caspase-3 expressed by constructed eukaryotic vector on gastric cancer cell line SGC7901 [J]. World J Gastroenterol,2003,9:1935-1939
    [136]YAMABE K, SHIMIZU S, ITO T, et al. Cancer gene therapy using a pro-apoptotic gene, caspase-3 [J]. Gene Ther,1999,6:1952-1959
    [137]WEI SJ, CHAO Y, HUNG YM, et al. S-and G2-phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells transduced with herpes simplex virus thymidine kinase [J]. Exp Cell Res,1998,241:66-75
    [138]KWON GY, JEONG J, WOO JK, et al. Co-expression of bfl-1 enhances host response in the herpes simplex virus-thymidine kinase/ganciclovir gene therapy system [J]. Biochem Biophys Res Commun,2003,303:756-763
    [139]UEDA K, IWAHASHI M, NAKAMORI M, et al. Carcinoembryonic antigen-specifi c suicide gene therapy of cytosine deaminase/5-fl uorocytosine enhanced by the cre/loxP system in the orthotopic gastric carcinoma model [J].Cancer Res,2001,61: 6158-6162
    [140]ZHENG SY, LI DC, ZHANG ZD, et al. Adenovirusmediated FasL gene transfer into human gastric carcinoma [J]. World J Gastroenterol,2005,11:3446-3450
    [141]ATIENZA C JR, ELLIOTT MJ, DONG YB, et al. Adenovirus-mediated E2F-1 gene transfer induces an apoptotic response in human gastric carcinoma cells that is enhanced by cyclin dependent kinase inhibitors [J].Int J Mol Med,2000,6:55-63
    [142]TIAN X, WU J, MENG L. Preparation of monoclonal antibodies to human vascular endothelial growth factor(VEGF121) and identifi cation of its expression on gastric carcinoma cell line MGC803 [J]. Zhonghua Zhongliu Zazhi,1999,21:93-95
    [143]GIATROMANOLAKI A, KOUKOURAKIS MI, STATHOPOULOS GP, et al. Angiogenic interactions of vascular endothelial growth factor, of thymidine phosphorylase, and of p53 protein expression in locally advanced gastric cancer [J]. Oncol Res,2000,12: 33-41
    [144]STOELTZING O, MCCARTY MF, WEY JS, et al. Role of hypoxia-inducible factor 1 alpha in gastric cancer cell growth, angiogenesis, and vessel maturation [J]. J Natl Cancer Inst,2004,96:946-956
    [145]TANDLE A, BLAZER DG RD, LIBUTTI SK, et al. Antiangiogenic gene therapy of cancer:recent developments [J]. J Transl Med,2004,2:22
    [146]MENG F, DING J, LIU N, et al. Inhibition of gastric cancer angiogenesis by vectorbased RNA interference for Raf-1 [J]. Cancer Biol Ther,2005,4:113-117
    [147]XUE Y, BI F, ZHANG X, et al. Inhibition of endothelial cell proliferation by targeting Rac1 GTPase with small interference RNA in tumor cells [J]. Biochem Biophys Res Commun,2004,320:1309-1315
    [148]HEIDEMAN DA, VAN BEUSECHEM VW, BLOEMENA E, et al. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4 [J]. J Gene Med,2004,6:317-327
    [149]UEDA K, IWAHASHI M, MATSUURA I,et al. Adenoviral-mediated gene transduction of the hepatocyte growth factor (HGF) antagonist, NK4, suppresses peritoneal metastases of gastric cancer in nude mice [J]. Eur J Cancer,2004,40:2135-2142
    [150]SAKO A, KITAYAMA J, KOYAMA H, et al. Transduction of soluble Flt-1 gene to peritoneal mesothelial cells can effectively suppress peritoneal metastasis of gastric cancer [J]. Cancer Res,2004,64:3624-3628
    [151]MILLER N, WHELAN J. Progress in transcriptionally targeted and regulatable vectors for genetic therapy [J]. Hum Gene Ther,1997,8:803-815
    [152]MIZUGUCHI H, HAYAKAWA T. Targeted adenovirus vectors [J]. Hum Gene Ther,2004,15:1034-1044
    [153]FECHNER H, HAACK A, WANG H, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlatewith adenovector targeting in vivo indicating anatomical vector barriers [J]. Gene Ther,1999,6:1520-1535
    [154]OKEGAWA T, LI Y, PONG RC, et al. The dual impact of coxsackie and adenovirus receptorexpression on human prostate cancer gene therapy [J]. Cancer Res,2000, 60:5031-5036
    [155]LI D, DUAN L, FREIMUTH P, et al. Variability of adenovirus receptor density infl uences gene transfer effi ciency and therapeutic response in head and neck cancer [J]. Clin Cancer Res,1999,5:4175-4181
    [156]MARON DJ, TADA H, MOSCIONI AD,et al. Intra-arterial delivery of a recombinant adenovivus does not increase gene transfer to tumor cells in a rat model of metastatic colorectal carcinoma [J]. Mol ther,2001,4(1):29-35.
    [157]BOUVET M, ELLIS LM, NISHIZAKI M, et al. Adenovirus-mediated wild type p53 gene trandfer down regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer [J].Cancer Res,1998,58(11):2288-2292.
    [158]MASTER RM, WILBERT TN, JONES KE, et al. Two drug combinations that increase apoptosis and modulate bak and bcl-x(1) expression in human colon tumor cell lines transduced with herpes simplex virus thymidine kinase [J]. Cancer Gene Ther,2000,7(4): 563-573.
    [159]BLOCK A, FREUND CT, CHEN SH, et al. Gene therapy of metastatic colon carcinoma:regression of mutiple hepatic metastases by adenoviral expression of bacterial cytosine deaminase [J]. Cancer Gene Ther,2000,7(3):438-445.
    [160]FUJIWRAA T. J Natl Cancer Inst.1994,86:1458-1462
    [161]WANG XW, YUAN JH, ZHANG RG, et al. Antihepatoma effect of alphafeto protein antisense phosphorothioate oligodeoxyribonuc21eotides in vitroand in mice [J]. World J Gastroenterol,2001,7 (3):345-351.
    [162]李华,王欣璐,杨扬,等.RNAi靶向人端粒酶逆转录酶对人肝癌细胞的生长抑制作用[J].南方医科大学学报,2008,28(8):1323-1326.
    [163]罗渝昆,张东山,马爱敏,等.超声微气泡介导cy5ODN转染大鼠肾的研究[J]. 中华超声影像学杂志,2007,16(6):527-529.
    [164]黄嘉凌,刘燕艳,方壮伟,等.HSV-TK/CD基因联合IL-12基因体内治疗肝癌[J].肿瘤,2004,24(5):467-469.
    [165]GEROLAMIN R, GARDOSO, BRALET MP, et al. Enchanced in vivo adenovirus'mediated gene transfer to rat hepatocareinoma by selective administration into the hepatic attery [J]. Gene Ther,1998,5(7):896-904
    [166]JEMAL A, MURRAY T, WARD T, et al. Cancer statistics [J].2005, CA Cancer J Clin,2005,55(1):10-30.
    [167]HRUBAN RH, VAN MANSFELD AD, OFFERHAUS GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization [J]. Am J Pathol,1993,143(2):545-554.
    [168]SOHN TA & YEO CJ. The molecular genetics of pancreatic ductal carcinoma:a review [J]. Surg Oncol,2000,9(3):95-101.
    [169]HATANAKA K, SUZUKI K, MIURA Y, et al. Interferon-alpha and antisense K-ras RNA combination gene therapy against pancreatic cancer [J]. J Gene Med,2004,6(10): 1139-1148.
    [170]PEREZ RP, SMITH JW, ALBERTS SR, et al. A phase II trial of ISIS 2503, an antisense inhibitor of H-ras, in patients with advanced pancreatic carcinoma [J]. Proc Am Soc Clin Oncol,2001, Abstr:628.
    [171]FUNAMIZU N, ARAMAKI M, MATSUMOTO T, et al. Groove pancreatic carcinoma [J]. Hepatogastroenterology,2009,56(96):1742-1744.
    [172]MAZZOLINI G, QIAN C, XIE X, et al. Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12 [J]. Cancer Gene Ther,1999,6(6):514-522.
    [173]BARAJAS M, MAZZOLINI G, GENOVE G, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12[J]. Hepatology, 2001,33(1):52-61.
    [174]CARUSO M, PHAM-NGUYEN K, KWONG YL, et al. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma [J]. Proc Natl Acad Sci USA, 1996,93(21):11302-11306.
    [175]SANGRO B, MAZZOLINI G, RUIZ J, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors [J]. J Clin Oncol, 2004,22(8):1389-1397.
    [176]SAIMURA M, NAGAI E, MIZUMOTO K, et al. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice [J]. Cancer Gene Ther,2002,9(10):799-806.
    [177]KATZ MH, SPIVACK DE, TAKIMOTO S, et al. Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter [J]. Ann Surg Oncol,2003,10(7):762-772.
    [178]JACOB D, DAVIS JJ, ZHANG L, et al. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter [J]. Cancer Gene Ther,2005,12(2):109-115.
    [179]CAMPANI D, ESPOSITO I, BOGGI U, et al. Bcl-2 expression in pancreas development and pancreatic cancer progression [J]. J Pathol,2001,194:444-450.
    [180]MIYAMOTO Y, HOSATAANI R, WADA M, et al. Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers [J]. Oncology,1999,56: 73-82.
    [181]OCKER M, NEUREITER D, LEUDERS M et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 inpancreatic cancer[J]. Gut,2005,54:1298-1308.
    [182]CHOI CW, CHOI IK, SEO JH, et al. Effects of 5-fluorouracil and leucovorin in the treatment of pancreatic-biliary tract adenocarcinomas [J]. Am J Clin Oncol,2000,23(4): 425-428.
    [183]RADERER M, HEJNA MH, VALENCAK JB, et al. Two consecutive phase II studies of 5-fluorouracil/leucovorin/mitomycin C and of gemcitabine in patients with advanced biliary cancer [J]. Oncology,1999,56(3):177-80.
    [184]CHEN JS, LIN YC, JAN YY, et al. Mitomycin C with weekly 24-h infusion of high-dose 5-fluorouracil and leucovorin inpatients with biliary tract and periampullar carcinomas [J].Anticancer Drugs,2001,12(4):339-343.
    [185]ITO Y, TAKEDA T, SASAKI Y, et al. Bcl-2 expression in cholangiocellular carcinoma is inversely correlated with biologically aggressive phenotypes [J].Oncology,2000, 59(1):63-7.
    [186]NONOMURA A, OHTA G, NAKANUMA Y, et al. Simultaneous detection of epidermalgrowth factor receptor (EGF-R), epidermal growth factor (EGF), and ras p21 in cholangiocarcinoma by animmunocytochemical method [J]. Liver,1988; 8(3):157-66.
    [187]ITO Y, TAKEDA T, SASAKI Y, et al. Expression and clinical significance of the erbB family in intrahepatic cholangiocellular carcinoma [J]. Pathol Res Pract,2001,197(2): 95-100.
    [188]FOLKMAN J. Tumor angiogenesis and tissue factors [J]. Nat Med,1996,2: 167-8.
    [189]NAKASHIMA T, KONDOH S, KITOH H, et al. Vascular endothelial growth factor-C expression in human gallbladder cancer and its relationship to lymph node metastasis [J]. Int J Mol Med,2003,11(1):33-9.
    [190]HID A Y MORITA T, FUJITA M, et al. Vascular endothelial growth factorexpression is an independent negative predictor in extrahepatic biliary tract carcinomas [J]. Anticancer Res,1999,19(3B):2257-2260.
    [191]FURUBO S, HARADA K, SHIMONISHI T, et al. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma [J]. Histopathology,1999,35(3): 230-240.
    [192]BATHEJA N, SURIAWINATA A, SAXENA R, et al. Expression of p53 and PCNA in cholangiocarcinoma and primary sclerosing cholangitis [J]. Mod Pathol,2000,13(12): 1265-1268.
    [193]ARORA DS, RAMSDALE J, LODGE JP, WYATT JI, et al. P53 but not bcl-2 is expressed by most cholangiocarcinomas:a study of 28 cases [J].Histopathology,1999,34(6): 497-501.
    [194]MATSUBARA T, FUNABIKI T, JINNO O, et al. P53 gene mutations and overexpression of p53 product in cancerous and noncancerous biliary epithelium in patients with pancreaticobiliary maljunction [J]. J Hepatobiliary Pancreat Surg,1999,6(3):286-293.
    [195]BOBERG KM, SCHRUMPF E, BERGQUIST A, et al. Cholangiocarcinoma in primary sclerosing cholangitis:K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development [J]. J Hepatol,2000,32(3):374-480.
    [196]WISTUBA II, ALBORES-SAAVEDRA J. Genetic abnormalities involved in the pathogenesis of gallbladder carcinoma [J]. J Hepatobiliary Pancreat Surg,1999; 6:237-244.
    [197]GREEN M, LOEWENSTEIN PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat transactivator protein [J]. Cell,1988,55 .1179-1188
    [198]FRANKEL AD, PABO CO. Cellular uptake of the Tat protein from human immunodeficiency virus [J]. Cell,1988,55:1189-1193
    [199]FAWELL S, SEERY J, DAIKH Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc [J]. Natl Acad Sci USA,1994,91:664-668
    [200]VIVES E, BRODIN P, LEBIEU B, et al. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus [J]. J Biol Chem,1997,272:16010-16017
    [201]SCHWARZE SR, DOWDY SF. In vivo protein transduction :intracellular delivery of biologically active proteins, compounds and DNA [J]. Trends Pharmacol Sci,2000,21 :45-48
    [202]PARK J, RYU J, KIM KA, et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells [J]. J Gen Virol,2002,83:1173-1181
    [203]HO A, SCHWARZE SR, MERMELSTEIN SJ, et al. Synthetic protein transduction domains:enhanced transduction potential in vitro and in vivo[J]. Cancer Res, 2001,61:474-477
    [204]JIN LH, BAHN JH, EUM WS,et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-richpeptides into mammalian cells [J]. Free Radic Biol Med,2001,31:1509-1519
    [205]KALDERON D, RICHARDSON WD, MARKHAM AF, et al. Nature,1984,311: 33.
    [206]KALDERON D, RICHARDSON WD, MARKHAM AF, et al. Sequencerequirements for nuclea rlocation of simianvirus 40 large-Tantigen [J]. Nature,1984, 311:33-38
    [207]WILDER E.Ectopic expressfon in Drosoph [J].Methods Viol Biol,2000,137: 9-14.
    [208]ADAM SA, LOBL TJ, MITCHELL MA, et al. Identification of specificbindingproteins for a nuclear location sequence [J]. Nature,1989,227:276-279
    [209]BOULIKAS T. Expressfon in Drosoph [J]. Cell Chem,1994,55:32
    [210]BENIMETSHKAYA L, GUZZO-PERNELL N, SU ST, et al. Protamine fragmentpeptides fused to anSV40 nuclear localization signal deliver oligonuleotides that produce antisense effects in prostate and bladder carcinoma cells [J]. Bioconjugate Chem, 2002,13:177-187
    [211]CHOOK YM, BLOBEL G. Karyopherins and nuclear import [J]. Curr Opin Struct Biol,2001,11:703-715
    [212]MOROIANU J, BIOBEL G, RADU A, et al. The binding site of karyopherin beta overlaps with a nuclear localization sequence [J]. Proc Natl Acad Sci USA,1996,93: 6572-6576
    [213]CHAN CK,JANS DA. Usin gnucleartar getingsi gnalstoenhance non-viral genetransfer [J]. Immunol Cell Biol,2002,80(2):119-130
    [214]TACHIBANA R, HARASHIMA H. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors [J]. Adv Drug Del Rev, 2001,52(3):219-226.
    [215]WIDLAK W, BENEDYK K, VYDRA N, et al. Expression Of a constitutively a rive mutant of heat shock factor 1 under the control I testis-specific hst70 gene promoter in transgenic mice induces degeneration of minifereus epithelium [J]. Aeta Bioehim Pol,2003, 50(2):535-541.
    [216]FISTHER JA, GI-FIGER E,MANIATIS T, el al.GAL4 activates transcripticn in transgenic mice [J]. Nature,1988,332(6167):853-856.
    [217]LNUNNURA M, NAKAI J, LNOUE S, et al.Targeted gene expression using the GAL4 system in the silkworm Bornmori [J]. Genetic,2003,165 (3):1329-1340.
    [218]PHELPS CB,BRAND AH.Ectopic gene expression in Drosophila using GA14 system [J].Methods,1998,14(4):367-379
    [219]HITZEMAN RA,HAGIE FE, et al. Expression of a human gene for interferon in yeast [J]. Nature,1981,293:717-722
    [220]GELLISSEN G. ET-A1 Trends [J] Biotechnol,1992,10(12):413-417
    [221]CLARE JJ. High-level expression of tetanus toxic fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene [J].Bio Technology,1991,9:455.
    [222]CREGG JM. Function characterization of two Alcohol Oxidase Genes from the Yeast,pichia pastoris [J]. Mol Cell Biol,1997,13(9):1316-1326.
    [223]MARGIT ECKER, VLADIMIR MRSA, ILJA HAGEN, et al. O-Mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein [J]. EMBO Reports,2003,4(6):628-632.
    [224]BYUNG-KWON CHOI, PIOTR BOBROWICZ, ROBERT C, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris Proc [J]. Natl. Acad. Sci. USA,2003,100:5022-5027.
    [225]MARTINEZ-RUIZ A, MARTINEZ DELPOZO A, LACADENA J, et al. Secretion of recombinant pro-and mature fungal-sarcin ribotoxin by the methylotropic yeast Pichia pastoris:the Lys-Arg motif is required for maturation [J]. Protein Expr. Purif, 1998,12,315-322.
    [226]PF GALLET, H VAUJOUR, JM PETIT, et al. Heterologous expression of an engineered truncated form of human Lewis fucosyltransferase (Fuc-TIII) by the methylotrophic yeast Pichia pastoris [J]. Glycobiology,1998,8:919-925.
    [227]SHUNSUKE KAWAMURA, TAMO FUKAMIZO,TOMOHIRO ARAKI, et al. Expression of a synthetic gene coding for ostrich egg-white lysozyme in Pichia Pastoris and its enzymatic activity [J]. J Biochem,2003,133(1):123-131.
    [228]MARTINEZ-RUIZ A. Protein Ex pr Purif,1998,12:315-322
    [229]MARGIT ECKER, VLADIMIR MRSA, ILJA HAGEN, et al. O-Mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein [J] EMBO Reports,2003,4(6):628-632.
    [230]BYUNG-KWON CHOI, PIOTR BOBROWICZ, ROBERT C, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris Proc [J]. Natl. Acad. Sci. USA,2003,100:5022-5027.
    [231]JOSEHANQUIER, YANNICK SORLET, DOMINIQUE DESPLANCQ, et al. A single Mutation in the activation site of bovine trypsinogen enhances its accumulation in the fermentation broth of the yeast Pichia pastoris [J]. Applied and Environmental Microbiology ,2003,69(2):1108-1113.
    [232]WOJCIECH SWIATEK, EWA SUGAJSKA, LESZEK LANKIEWICZ, et al Biochemical characterization of recombinant subunits of protein phosphatase overexpressed in Pichia pastoris [J]. Eur. J. Biochem,2000,267:5209-5216.
    [233]陆荫英,李克,成军,等.乙型肝炎病毒前S1基因酵母表达载体的构建及表达[J].解放军医学杂,2002,27(4):341-342.
    [234]Kerr J FR, Wyllie, Currie AR. Apoptosis:abasicbiological phenomenon with ranging implications in sissue kinetics [J]. BrJCancer,1972,26:239.
    [235]陈昭烈.动物细胞培养过程中的细胞凋亡[J].生物工程进展,1998,18(6):17-20.
    [236]苏长青.细胞凋亡的形态代谢特点及生物学意义[J].临床与实验病理学杂志,1996,12(4):346.
    [237]刘俊达.细胞凋亡与老年病[J].国外医学情报,1996,17(15):1.
    [238]李冬至.细胞凋亡与胎盘[J].免疫学杂志,1999,15(2):135.
    [239]KENEMANS P, VERSTRAETEN RA, VERHEIJEN RH. Oncogenic pathways in hereditary and sporadic breast cancer [J]. Maturitas,2008,61(1-2):141-150.
    [240]TOSHIYUKI M,STANISLAW K, MARYLS R, et al. Tumor suppressor P53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo [J]. Oncogene,1994,9 :1799-1805.
    [241]王文恭,童旦君.小鼠成纤维细胞凋亡过程中P53与bcl-2表达的时序性[J].中国生物化学与分子生物学报,1998,14(3):318-321.
    [242]朱锡华.Fas系统研究进展[J].中华微生物学和免疫学杂志,1996,16:77-82.
    [243]MASAYUKI M, ZHU H, RROTELLO R, et al. Introduction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. Elegans cell death geneced-3 [J]. Cell,1993,75:653-655.
    [244]ASHKENAZI A, DIXIT V M. Death receptors:signaling and modulation [J]. Science,1998,281:1305-1308.
    [245]THORNBERRYN A, LAZEBNIK Y. Caspases:Enemies Within [J]. Science,1998 ,281:1312-1316.
    [246]ADAMS JM, CORY S. The Bel-2 protein family:arbiters of cell survival [J]. Science,1998,281:1332-1336.
    [247]YANG J, LIU X, BHALLA K, et al. Prevention of apoptosis by Bel-2:release of cytochrom Cfrom mitochondria blocked [J]. Science,1997,275:1129-1132.
    [248]CHENGE HY, KIRSCHD G, CLEM RJ, et al. Conversion of Bel-2 to Bax like death effector by Caspases [J]. Science,1997,278:1966-1968.
    [249]ASHKENAZI A, DIXIT V M. Death receptors:signaling and modulation [J]. Science,1998,281:1305-1308.
    [250]ZHANG XD, FRANCO A, MYERS K, et al. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma [J]. Cancer Res,1999,59:2747-2753.
    [251]高颍,许彩民,杨洋,等.氧化诱导K562细胞凋亡机制的初步探讨[J].中国生物化学与分子生物学,1998,14(3):295-299.
    [252]SGONC R, W ICK G. Methods for the detection of apoptosis [J]. Arch A lerg Immunol,1994,105:327-332.
    [253]COMPTON MM, CIDLOWSKY JA. Rapid in vivo effects of glucocort icoidson the integrity of rat lymphocyte genomic deoxyribonucleic acid [J]. Endocrinology,1986,118: 38-45.
    [254]谭卫林,董俊瑞,王元和.细胞凋亡的设计与肿瘤的基因治[J].中华遗传学志,1996,13:297.
    [255]字应伟.肿瘤基因治疗研究进展[J].思茅师范高等专科学校校报,2005,21(3):628.
    [256]陈诗书.人类恶性肿瘤基因治疗研究的进展[J].中国肿瘤,1994,3(4):20.
    [257]宋海珠,罗荣城,姜波.肿瘤基因治疗的研究进展和展望[J].解放军医学杂志,2002,27(7):652.
    [258]杨家驹,段振铃.肿瘤的基因治疗进展[J].医学综述,2005,11(10):883-885.
    [259]TANAKA T, YAMASAKI H,MESNILM, et al. Induction of a bystander effect in Hela cells by using a bigenic vector carryingviral thymidine kinase [J]. Mol Carcinog,2001, 30(3):176-180.
    [260]CHEVEZ-BARRIOS P, CHINTAGUMPAL AM,MIELE RW, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir [J]. J Clin Oncol,2005,23(31):7927-7935.
    [261]WILDA M,FUCHS U,WOSSMANN W, et al. Killing of leukemic cells with a BCRPABL fusion gene by RNA interference (RNAi) [J]. Oncogene,2002,21 (37) :5716-5724.
    [262]SHEN C,RATTAT D,BUCK A, et al. Targeting bcl-2 by triplex-forming oligonucleotide22 a promising carrier for gene-radiotherapy [J]. Cancer Biother Radiopharm ,2003,18 (1):17-26.
    [263]MARCUCCI G, BYRD JC, DAI G, et al. Phase 1 and pharmacodynamic studies of G3139,a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia [J]. Blood,2003,101 (2):425-432.
    [264]WILLIS AC, CHEN X. The promise and obstacle of p53 as a cancer therapeutic agent [J]. CurrMolMed,2002,2(4):329-345.
    [265]SAKURADA A, HAMADA H, FUKUSHIGE S, et al. Adenovirus-mediated delivery of the PTEN gene inhibits cell growth by induction of apop tosis in endometrial cancer [J]. Int J Oncol,1999,15(6):1069-1074.
    [266]MADREPERLA SA, WHITTUM-HUDSON JA, PRENDERGAST RA, et al. Intraocular tumor suppression of retinoblastomagene-reconstituted retinoblastoma cells [J]. Cancer Res,1991,51(23):6381-6384.
    [267]冯玉梅.内皮抑素在新生血管形成相关疾病中的作用机制研究进展[J].生物技术通讯,2005,16(3):323-325.
    [268]宋磊,刘红军,崔进梅.抗肿瘤新药血管内皮抑素的研究进展[J].齐鲁药事,2005,24(3):162-163.
    [269]YOSHIDA J, MIZUNO M, NAKAHARA N, et al. Antitumor effect of an adeno-associated virus vector containing the human interferon-beta gene on experimental intracranial human glioma [J]. Jpn J Cancer Res,2002,93(2):223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700