可溶性CD40在肝脏疾病中的表达及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD40是属于肿瘤坏死因子受体(TNFR)超家族的Ⅰ型跨膜糖蛋白,表达在B细胞、单核/巨噬细胞、树突状细胞(DCs)等多种类型细胞上,它与其配体CD40L(CD154)结合后在免疫应答、免疫调节以及炎症反应等生理、病理过程中发挥重要作用。可溶性CD40(sCD40)与膜型CD40(mCD40)在体内呈现共存现象,具有与CD40L结合的生物学活性,参与免疫应答的调节,可能是mCD40-CD40L相互作用的天然拮抗剂。正常人血清低表达sCD40分子,业已发现肾脏病、肝脏病、阿尔茨海默病、血液病等多种疾病患者血清sCD40水平明显升高,且显示与临床病理或疾病进程相关。体外实验显示活化B细胞能够释放sCD40,但是sCD40是否还有其他细胞来源以及sCD40的产生机制和临床意义尚待进一步研究。
     本研究第一部分系统分析了各种肝脏疾病患者血清中sCD40的表达及其与临床生化指标和病程发展的相关性。实验结果显示,sCD40在各种肝病患者(急性肝炎、重型肝炎、肝硬化和原发性肝癌)血清较健康人异常升高(P<0.001),而且其水平与患者年龄呈弱负性相关。急性肝炎患者血清sCD40浓度与丙氨酸氨基转移酶(ALT)、天门冬酸氨基转移酶(AST)水平显著正相关(r=0.59,p<0.001:r=0.34,p<0.01),随着肝功能恢复正常、病情好转,其血清sCD40水平逐渐下降:急性肝炎男性较女性患者血清sCD40显著升高(P=0.026),提示性激素可能影响sCD40的产生。重型肝炎死亡患者sCD40浓度显著高于存活患者(P=0.022),而且并发肝性脑病患者显著升高(P=0.018),由此提示重型肝炎患者发病初期血清sCD40浓度越高,随病情进展患者并发肝性脑病和死亡的危险性越大,患者血清中持续存在高水平的sCD40,提示预后不良。
     业已有研究显示B细胞释放的sCD40是由TNF-α转换酶(TACE,ADAM17)或其他金属蛋白酶(MP)水解mCD40所致。课题第二部分进一步探讨了肝癌患者
CD40, a type I transmembrane glycoprotein, belongs to the tumor necrosis factor receptor (TNFR) superfamily, and is expressed on a wide range of cells such as B cells, monocytes/macrophages, dendritic cells (DCs) .The interaction of CD40 with its ligand CD40L(CD 154),expressed predominantly on activated T cells,mast cells and basophils,is critical in the regulation of immune response and expression of inflammatory mediators,such as cytokines,chemokines and adhesion molecules.The soluble form of CD40(sCD40),which co-exists with the membrane-anchored form(mCD40) in vivo,is able to bind membrane CD40L and viewed as a natural antagonist of mCD40-CD40L interaction. Low levels of circulating sCD40 have been detected in the blood of normal donors and elevated levels of sCD40 have been reported in patients with renal failure,liver diseases,Alzheimer disease and hematologic malignancies, and its clinical signifances have been demonstrated, such as its values in diagnosis and prognosis of disease. Although it has been showed that activated B cells release sCD40 in vitro, the ability of other cell types to release sCD40 and its mechanisms of generation in vivo has not been established.
    In the current study we investigated circulating levels and clinical signifcance of sCD40 in patients with liver disease,and demonstrated the mechanisms of sCD40 generation in hepatocellular carcinoma(HCC).Soluble CD40 was measured with an enzyme-linked immunosorbent assay(ELISA).Compared with the low levels of sCD40 in the sera of normal controls,the sera levels of sCD40 were significantly higher in patients with different types of liver disease,including acute hepatitis,hepatitis gravis,hepatocirrhosis and primary carcinoma of the liver,and has negative correlation
引文
1. Schonbeck U. and P Libby.. The CD40/CD40L receptor/ligand dyad. Cell Mol Life Sci, 2001; 58(1): 4-43
    2. van Kooten C., Gaillard C., Galizzi JP., et al. B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40.Eur. J. Immunol. 1994; 24(4): 787-792
    3. Bjorck P., Braesch-Andersen S., and Paulie S.. Antibodies to distinct epitopes on the CD40 molecule co-operate in stimulation and can be used for the detection of soluble CD40. Immunology. 1994; 83(3): 430-437
    4. Ramesh N., Ramesh V., Gusella JF., et al. Chromosomal localization of the gene for human B-cell antigen CD40. Somat. Cell Mol Genet. 1993; 19(3): 295-298
    5. Hostager BS., Hsing Y., Harms DE., et al. Different CD40-mediated signaling events require distinct CD40 structural features. J. Immunol. 1996; 157(3): 1047-1053
    6. Goldstein MD. and Watts TH. Identification of distinct domains in CD40 involved in B7-1 induction or growth inhibition. J. Immunol. 1996; 157(7): 2837-2843
    7. Smith CA., Farrah T. and Goodwin RG.. The TNF receptor superfamily of cellular and viral proteins: activation,costimulation,and death. Cell 1994; 76(6): 959-962
    8. Graf D., Korthauer U., Mages HW., et al. Cloning of TRAP, a ligand for CD40 on human T cells. Eur. J. Immunol. 1992; 22(12): 3191-3194
    9. Hollenbaugh D., Grosmaire LS., Kullas CD., et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 1992; 11(12): 4313-4321
    10. Gauchat JF., Aubry JP., Mazzei G., et al. Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett. 1993; 315(3): 259-266
    11. Grammer AC., Bergman MC., Miura Y., et al. The CD40 ligand expressed by human B cells costimulates B cells responses. J. Immunol. 1995; 154(10): 4996-5010
    12. Henn V., Slupsky JR., Grafe M., et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594
    13. Pinchuk LM., Klaus SJ., Magaletti DM., et al. Functional CD40 ligand expressed by human blood dendritic cells is up-regulated by CD40 ligation. J. Immunol. 1996; 157(10): 4363-4370
    14. Mach F., Schonbeck U., Sukhova GK., et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. 1997; 94(5): 1931-1936
    15. Roy M., Waldschmidt T., Aruffo A., et al. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4~+T cells. J. Immunol. 1993; 151(5): 2497-2510
    16. Liu Y. J., Barthelemy C., de Bouteiller O., et al. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7-1 and B7-2.Immunity 1995; 2(3): 239-248
    17. Garrone P., Neidhardt EM., Garcia E., et al. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J.Exp. Med. 1995; 182(5): 1265-1273
    18. Klaus SJ., Berberich Ⅰ., Shu G., et al. CD40 and its ligand in the regulation of humoral immunity.Semin. Immunol. 1994; 6(5): 279-286
    19. Clark EA., and Shu G.. Association between IL-6 and CD40 signaling IL-6 induces phosphorylation of CD40 receptors. J. Immunol. 1990; 145(5): 1400-1406
    20. Zan H., Cerutti A., Dramitinos P., et al. CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-beta: evidence for TGF-beta but not IL-10-dependent direct S mu-->S alpha and sequential S mu-->S gamma, S gamma-->S alpha DNA recombination. J. Immunol. 1998; 161(10): 5217-5225
    21. Burdin N., Peronne C., Banchereau J., et al. Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J. Exp. Med. 1993; 177(2): 295-304
    22. Boussiotis VA., Nadler LM., Strominger JL., et al. Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc. Natl. Acad.Sci. 1994; 91(15): 7007-7011
    23. Liu YJ.,Joshua DE.,Williams GT., et al. Mechanism of antigen-driven selection in germinal centres. Nature 1989; 342(6252): 929-931
    24. Rothstein TL., Wang JK., Panka DJ., et al. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 1995; 374(6518): 163-165
    25. An S., Yap D. and Knox KA.. Ligation of CD40 potentiates Fas-mediated activation of the cysteine protease CPP32, cleavage of its death substrate PARP, and apoptosis in Ramos-Burkitt lymphoma B cells. Cell Immunol. 1991; 181(2): 139-152
    26. Schattner EJ., Elkon KB., Yoo DH., et al. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J. Exp. Med. 1995; 182(5): 1557-1565
    27. Rothstein TL.,Wang JK.,Panka DJ., et al. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 1995; 374(6518): 163-165
    28. Lagresle C., Mondiere P., Bella C., et al. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1/Fas-mediated apoptosis. J. Exp. Med. 1996; 183(4): 1377-1388
    29. Kehry MR. CD40-mediated signaling in B cells Balancing cell survival, growth, and death. J. Immunol. 1996; 156(7): 2345-2348
    30. Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004; 173(9): 5343-5348
    31. Solomon KA., Pesti N., Wu, G., et al. Cutting edge: a dominant negative form of TNF-alpha converting enzyme inhibits pro TNF and TNFRⅡ secretion. J. Immunol. 1999; 163(8): 4105-4108
    32. Hansen HP., Dietrich S., Kisseleva T., et al. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J. Immunol. 2000; 165(12): 6703-6709
    33. Cheng J., Zhou T., Liu C., et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263(5154): 1759-1762
    34. Taylor L., and Schwarz H.. Identification of a soluble OX40 isoform: development of a specific and quantitative immunoassay. J Immunol Methods. 2001; 255(1-2): 67-72.
    35. Setareh M., Schwarz H. and Lotz M.. A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene. 1995; 164(2): 311-315
    36. Sharma MD., Leite de Moraes M., Zavala F., et al. Induction and inhibition of CD40-CD40 ligand interactions: a new strategy underlying host-virus relationships. J Immunol. 1998; 161(10): 5357-5365
    37. Contin C., Pitard V., Delmas Y., et al. Potential role of soluble CD40 in the humoral immune response impairment of uraemic patients. Immunology. 2003; 110(1): 131-140
    38. Holler N., Kataoka T., Bodmer JL., et al. Development of improved soluble inhibitors of FasL and CD40L based on oligomerized receptors. J Immunol Methods. 2000; 237(1-2): 159-173
    39. Fanslow WC.,Anderson DM.,Grabstein KH., et al. Soluble forms of CD40 inhibit biologic responses of human B cells. J Immunol. 1992; 149(2): 655-660
    40. Dono M., Zupo S., Massara R., et al. In vitro stimulation of human tonsillar subepithelial B cells: requirement for interaction with activated T cells. Eur J Immunol. 2001; 31(3): 752-756
    41. Kim HS., Zhang X. and Choi YS.. Activation and proliferation of follicular dendritic cell-like cells by activated T lymphocytes. J Immunol. 1994; 153(7): 2951-2961
    42. Shu U., Kiniwa M., Wu CY., et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995; 25(4): 1125-1128
    43. Gray D., Dullforce P. and Jainandunsing S.. Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med. 1994; 180(1): 141-155
    44. Biancone L., Andres G., Ahn H., et al. Inhibition of the CD40-CD40 ligand pathway prevents murine membranous glomerulonephritis. Kidney Int. 1995; 48(2): 458-468
    45. Biancone L., Cantaluppi V., Boccellino M., et al. Activation of CD40 favors the growth and vascularization of Kaposi's sarcoma. J Immunol. 1999; 163(11): 6201-6208
    46. Contin C., Pitard V., Itai T., et al. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J Biol Chem. 2003; 278(35): 32801-32809
    47. Tone M., Tone Y., Fairchild PJ., et al. Regulation of CD40 function by its isoforms generated through alternative splicing. Proc Natl Acad Sci. 2001; 98(4): 1751-1756
    48.庄羽美,黄建安,朱华亭,等.可溶性CD40酶联检测试剂盒的研制及其检测的临床意义.中国免疫学杂志.2004;20(8):563-566
    49. De Paoli R, Cozzi M., Tedeschi R., et al. High CD40 membrane expression in AIDS-related lymphoma B cell lines is associated with the CD45RA+, CD45RO+, CD95+ phenotype and high levels of its soluble form in culture supernatants. Cytometry. 1997; 30(1): 33-38.
    50. Schwabe RF., Engelmann H., Hess S. et al. Soluble CD40 in the serum of healthy donors, patients with chronic renal failure, haemodialysis and chronic ambulatory peritoneal dialysis (CAPD) patients. Clin Exp Immunol. 1999; 117(1): 153-158
    51. Contin C., Couzi L., Moreau JE, et al. Immune dysfuntion of uremic patients: potential role for the soluble form of CD40. Nephrologie. 2004; 25(4): 119-126
    52. Schmilovitz-Weiss H., Belinki A., Pappo O.,et al. Role of circulating soluble CD40 as an apoptotic marker in liver disease. Apoptosis. 2004; 9(2): 205-210
    53. Jablonska E., Kiersnowska-Rogowska B., Rogowski F., et al. TNF family molecules in the serum of patients with B-cell chronic lymphocytic leukemia (B-CLL). Leuk Lymphoma. 2005; 46(9): 1307-1312
    54. Hock BD., McKenzie JL., Patton NW., et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer. 2006; 106(10): 2148-2157
    55. Mocali A., Cedrola S., Della Malva N., et al. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004; 39(10): 1555-1561
    56. Zajkowska JM., Kondrusik M., Pancewicz S., et al. Soluble CD40 and soluble CD40L concentrations in the serum and the cerebrospinal fluid of patients with tick borne encephalitis and neuroborreliosis. Neurol Neurochir Pol. 2006; 40(1): 22-27
    57. Klutb B., Hess S., Engelmann H., et al. Endothelial expression of CD40 in renal cell carcinoma. Cancer Res. 1997; 57(5): 891-899
    58. Sugimoto K.,Shiraki K.,Ito T., et al. Expression of functional CD40 in human hepatocellular carcinoma.Hepatology. 1999; 30(4): 920-926
    59. Holub M.,Zakeri SM.,Lichtenberger C., et al. Heterogeneous expression and regulation of CD40 in human bepatocellular carcinoma.Eur J Gastroenterol Hepatol.2003; 15(2): 119-126
    60. Afford SC.,Randhawa S.,Eliopoulos AG., et al. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.J Exp Med. 1999; 189(2): 441-446
    61. Leifeld L.,Trautwein C.,Dumuolin FL., et al. Enhanced expression of CD80 (B7-1), CD86(B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure.Am J Pathol.1999; 154(6): 1711-1720
    62. Danese S, de la Motte C, Reyes BM, et al. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol.2004; 172(4): 2011-2015
    63. Brouwer RE., Hoefnagel J., van Der Burg B., et al. Expression of co-stimulatory and adhesion molecules and chemokine or apoptosis receptors on acute myeloid leukaemia: high CD40 and CD11a expression correlates with poor prognosis. Br J Haematol. 2001; 115(2): 298-308
    64. Tong AW. and Stone MJ.. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 2003; 10(1): 1-13
    65. Eliopoulos AG. And Young LS.. The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol.2004; 4(4): 360-367
    66. Tsuzuki M., Morishima Ⅰ., Yoshida T., et al. Inverse correlation between soluble CD40 ligand and soluble CD40 is absent in patients with unstable angina. Heart Vessels. 2005; 20(6): 245-250
    67. Consoli A. and Devangelio E.. Thiazolidinediones and inflammation. Lupus. 2005; 14(9): 794-797
    68. Zhuang Y., Huang J., Zhou Z., et al. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule. Tissue Antigens. 2005; 65(1): 81-87
    1. Schonbeck U. and P Libby.. The CD40/CD40L receptor/ligand dyad. Cell Mol Life Sci, 2001; 58(1): 4-43
    2. van Kooten C., Gaillard C., Galizzi JP., et al. B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40. Eur. J. Immunol. 1994; 24(4): 787-792
    3. Bjorck P., Braesch-Andersen S, and Paulie S. Antibodies to distinct epitopes on the CD40 molecule co-operate in stimulation and can be used for the detection of soluble CD40. Immunology. 1994; 83(3): 430-437
    4. Contin C., Pitard V., Delmas Y., et al. Potential role of soluble CD40 in the humoral immune response impairment of uraemic patients. Immunology. 2003; 110(1): 131-140
    5. Schwabe RF., Engelmann H., Hess S., et al. Soluble CD40 in the serum of healthy donors, patients with chronic renal failure, haemodialysis and chronic ambulatory peritoneal dialysis (CAPD) patients. Clin Exp Immunol. 1999; 117(1): 153-158
    6. Schmilovitz-Weiss H., Belinki A., Pappo O., et al. Role of circulating soluble CD40 as an apoptotic marker in liver disease. Apoptosis. 2004; 9(2): 205-210
    7. Hock BD., McKenzie JL., Patton NW., et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer. 2006; 106(10): 2148-2157
    8. Sugimoto K.,Shiraki K.,Ito T., et al. Expression of functional CD40 in human hepatocellular carcinoma. Hepatology. 1999; 30(4): 920-926
    9. Holub M., Zakeri SM., Lichtenberger C., et al. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2003; 15(2): 119-126
    10. Afford SC., Randhawa S., Eliopoulos AG., et al. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med.1999; 189(2): 441-446
    11. Leifeld L., Trautwein C., Dumuolin FL., et al. Enhanced expression of CD80 (BT-1), CD86(B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure. Am J Pathol. 1999; 154(6): 1711- 1720
    12.病毒性肝炎防治方案.中华传染病杂志,2001;19(1):56-62
    13.中国抗癌协会肝癌专业委员会.原发性肝癌的临床诊断与分期标准.中华肝脏病杂志.2001;9(6):324
    14. Zhou ZH., Wang JF., Wang YD., et al. An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybridoma. 1999; 18(6): 471-478
    15. Zhuang Y., Huang J., Zhou Z., et al. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule. Tissue Antigens.2005; 65(1): 81-87
    16. Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004; 173(9): 5343-5348
    17. Ghavami S., Hashemi M., Kadkhoda K., et al. Apoptosis in liver diseases—detection and therapeutic applications. Med Sci Monit. 2005; 11(11): RA337-345
    18. Yoon JH. and Gores GJ. Death receptor-mediated apoptosis and the liver. J Hepatol. 2002; 37(3): 400-410
    19. Afford SC., Randhawa S., Eliopoulos AG., et al. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med. 1999; 189(2): 441-446
    20. Zhou F., Ajuebor MN., Beck PL., et al. CD154-CD40 interactions drive hepatocyte apoptosis in murine fulminant hepatitis. Hepatology. 2005; 42(2): 372-380
    21.曾雪涛.肿瘤免疫.见:陈慰峰主编.医学免疫学.第3版.北京:人民卫生出社,2002.231-232
    22. Jablonska E., Kiersnowska-Rogowska B., Rogowski F., et al. TNF family molecules in the serum of patients with B-cell chronic lymphocytic leukemia (B-CLL). Leuk Lymphoma. 2005; 46(9): 1307-1312
    23. Canbay A., Feldstein A., Baskin-Bey E., et al. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther, 2004; 308(3):1191-1196
    24. Holler N., Kataoka T., Bodmer JL., et al. Development of improved soluble inhibitors of FasL and CD40L based on oligomerized receptors. J Immunol Methods. 2000; 237(1-2): 159-173
    25. Johar D., Roth JC., Bay GH., et al. Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz Akad Med Bialymst, 2004; 49: 31-39
    26.王静艳,穆桂玲,刘沛,等.乙型重型肝炎基因变异与免疫异常的关系.中华传染病杂志,2001;19(2):73-76
    1. Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004; 173(9): 5343-5348
    2. Contin C., Pitard V., Itai T., et al. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J Biol Chem. 2003; 278(35): 32801-32809
    3. Tone M., Tone Y., Fairchild PJ., et al. Regulation of CD40 function by its isoforms generated through alternative splicing. Proc Natl Acad Sci. 2001 ;98(4): 1751-1756
    4. Zhou ZH.,Wang JF.,Wang YD.,et al. An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybridoma. 1999; 18(6): 471-478
    5. Zhuang Y., Huang J.,Zhou Z., et al. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule. Tissue Antigens.2005;65(1):81-87
    6. Solomon KA., Pesti N., Wu, G., et al. Cutting edge: a dominant negative form of TNF-alpha converting enzyme inhibits pro TNF and TNFRII secretion. J. Immunol. 1999; 163(8): 4105-4108
    7. Hansen HP., Dietrich S., Kisseleva T., et al. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J. Immunol. 2000; 165(12):6703-6709
    8. Holler N., Kataoka T., Bodmer JL., et al. Development of improved soluble inhibitors of FasL and CD40L based on oligomerized receptors. J Immunol Methods. 2000;237(1-2):159-173
    1. Cruickshank SM.,Southgate J.,Selby PJ., et al. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro.J Hepatol. 1998,29:550-558.
    2. Sugimoto K.,Shiraki K.,Ito T., et al.Expression of functional CD40 in human hepatocellular carcinoma,Hepatology. 1999,30: 920-926.
    3. Holub M.,Zakeri SM.,Lichtenberger C., et al. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.Eur J Gastroenterol Hepatol.2003,15: 119-126.
    4. Afford SC.,Randhawa S.,Eliopoulos AG., et al.CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med. 1999, 189: 441-446.
    5. Gaweco AS., Wiesner RH.,Yong S., et al. CD40L (CD154) expression in human liver allografts during chronic ductopenic rejection. Liver Transpl Surg. 1999,5: 1-7.
    6. Burgio VL.,Ballardini G.,Artini M.,et al.Expression of co-stimulatory molecules by Kupffer cells in chronic hepatitis of hepatitis C etiology. Hepatology. 1998, 7: 1600-1606.
    7. Kunitani H., Shimizu Y., Murata H.,et al.Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases.J Hepatol.2002,36: 734-741
    8. Kimura K., Kakimi K., Wieland S.,et al. Activated intrahepatic antigen-presenting cells inhibit hepatitis B virus replication in the liver of transgenic mice. J Immunol. 2002, 169: 5188-5195.
    9. Leifeld L.,Trautwein C,,Dumuolin FL.,et al. Enhanced expression of CD80 (B7-1), CD86 (B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure.Am J Pathol. 1999, 154: 1711-1720.
    10. Zhou F.,Ajuebor MN.,Beck PL.,et al.CD154-CD40 Interactions drive hepatocyte apoptosis in murine fulminant hepatitis. Hepatology. 2005, 42: 372-380
    11. Adachi M.,Higushi H.,Miura S., et al. Blocking of CD40/CD40L and CD28/B7 interaction prevents the concanavalin A-induced liver injury in BALB/c mouse through the inhibition of interleukin 12 production. Hepatology. 1998,324A
    12. van Kooten C.,Gaillard C.,Galizzi JP., et al. B cell regulate expression of D40 ligand on activated T cells by lowering mRNA level and through the release of soluble CD40.Eur J Immunol. 1994,24: 787-792
    13. Schmilovitz-Weiss H.,Belinki A., Pappo O., et al. Role of circulating soluble CD40 as an apoptotic marker in liver disease.Apoptosis 2004,9: 205-210
    14. Contin C.,Pitard .V,Itai T., et al. Membrane-anchored CD40 Is Processed by the Tumor Necrosis Factor-α-converting Enzyme. J Biol Chem. 2003,278: 32801-32809
    15. Ding X.,Yang LY.,Huang GW., et al. ADAM17 mRNA expression and pathological features of hepatocellular carcinoma. World J Gastroenterol. 2004,10: 2735-2739
    16. Schmitz V.,Barajas M.,Wang L., et al. Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma.Hepatology. 2001,34: 72-81.
    17. Nomura M.,Yamashita K.,Murakami M., et al. Induction of donor-specific tolerance by adenovirus-mediated CD40Ig gene therapy in rat liver transplantation.Transplantation. 2002,73: 1403-1410
    18. Chang GJ., Liu T., Feng S., et al. Targeted gene therapy with CD40Ig to induce long-term acceptance of liver allografts. Surgery. 2002,132: 149-156,
    19. Ke B.,Shen XD.,Gao F., et al. Gene therapy for liver transplantation using adenoviral vectors: CD40-CD154 blockade by gene transfer of CD40Ig protects rat livers from cold ischemia and reperfusion injury.Mol Ther.2004,9: 38-45.
    20. Ke B.,Shen XD.,Gao F., et al. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses.Transplantation.2005,79: 1078-1083.
    21. Bartlett AS,McCall JL.,Ameratunga R., et al. Costimulatory blockade prevents early rejection, promotes lymphocyte apoptosis,and inhibits the upregulation of intragraft interleukin-6 in an orthotopic liver transplant model in the rat.Liver Transpl.2002,8: 458-468.
    22. Bartlett AS.,McCall JL.,Ameratunga R., et al. Intragraft gene and protein expression in rat liver allografts treated with costimulatory blockade alone or in combination with CyA.J Surg Res.2003,115: 1-8
    23. Gao D.,Lunsford KE.,Eiring AM., et al. Critical Role for CD8 T Cells in allograft acceptance induced by DST and CD40/CD154 costimulatory blockade.Am J Transplant.2004,4: 1061-1070.
    24. Tong AW.,Seamour B.,Chen J., et al. CD40 ligand-induced apoptosis is Fas-independent in human multiple myeloma cells.Leuk Lymphoma.2000,36: 543-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700