瘤胃微生物氨基酸代谢及甲硫氨酸降解菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲硫氨酸和赖氨酸是反刍动物玉米-豆粕型日粮的限制性氨基酸,改善其利用率对于提高反刍动物生产性能具有重要意义。但由于反刍动物瘤胃微生物对进入瘤胃的部分饲料蛋白质、氨基酸的发酵降解,导致大量的蛋白质和氨基酸在瘤胃截流。为了提高氨基酸到达小肠的量,前人研究出了很多物理、化学的有效方法,但这些方法都不是从微生物的代谢途径入手,仅是治标的办法,且处理成本较高。因此我们期望通过对瘤胃微生物代谢规律的研究和甲硫氨酸利用菌的分离,来调控瘤胃中参与氨基酸代谢的重要酶的活性和瘤胃微生物中甲硫氨酸利用菌的数量,从而达到降低甲硫氨酸在瘤胃中的降解率,以及增加动物对限制性氨基酸的利用率。
     1、采样和体外培养时间对瘤胃液氨基酸含量变化规律的影响,本试验旨在研究不同采样时间和不同培养时间对瘤胃微生物的氨基酸代谢的影响,试验一采用3只装有永久性瘤胃瘘管的萨能母羊为试验动物,不同采样时间和不同体外培养时间二因素下分别于饲前和饲后的不同时间点采集瘤胃液,经分别处理后分装到18个血清瓶中,分成两组,体外培养0、8、16h后抽取样本,测定样本中氨基酸的含量。试验结果表明:不同采样时间对于部分氨基酸的变化规律影响较显著(P<0.05);不同的体外培养时间对于谷氨酸(Glu)、缬氨酸(Val)、苯丙氨酸(Phe)、赖氨酸(Lys)以及氨基酸总量的变化规律都有相当显著的影响(P<0.05)。
     2、混合瘤胃微生物体外利用甲硫氨酸、赖氨酸的研究,本试验旨在研究瘤胃液中的瘤胃微生物对添加的甲硫氨酸、赖氨酸利用情况,并进一步探讨添加氨基酸对瘤胃液中尿素氮、部分酶活的影响。试验二将采集到的来自3头装有永久性瘘管的成年萨能山羊的瘤胃液混合后,平均分装成18个瓶,随机分成3个处理组,每组6个重复。采用6重复随机因子试验设计。第一组中每瓶添加甲硫氨酸2mM(0.25mol/L Met溶液8ml),第二组中每瓶添加赖氨酸2mM(0.25mol/L Lys溶液8ml),第三组中每瓶添加等体积蒸馏水作为空白对照组,体外培养16小时。试验结果表明:添加氨基酸后混合瘤胃液中的尿素氮(UN)含量显著高于对照组(P<0.05);谷氨酸脱氢酶(GLDH)活性随着体外培养时间的延长而迅速增加,并且添加甲硫氨酸组的GLDH的活性明显高于其他两组(P<0.01),而添加赖氨酸组的GLDH活性则极显著低于甲硫氨酸组和对照组(P<0.01);体外培养时间的长短对于γ-谷氨酰转移酶(γ-GT或GGT)的活性基本没影响,添加氨基酸后,赖氨酸有助于GGT活性的提高(P<0.05),而甲硫氨酸对其基本不影响;添加的氨基酸和体外培养时间对于谷丙转氨酶(GPT)活性没有显著的影响(P>0.05);添加氨基酸组的谷草转氨酶(GOT)的活性显著低于对照组(P<0.05),但体外培养时间对于各组中GOT的活性没有显著的影响。
     3、瘤胃甲硫氨酸利用菌的分离及鉴定,为了研究分析山羊瘤胃液中甲硫氨酸降解菌群的物种资源,以甲硫氨酸为唯一氮、碳源,对瘤胃微生物进行严格的厌氧分离、纯化,筛选出具有甲硫氨酸降解活性的三株细菌MB6-1、MB6-2、MB7-1,采用PCR方法扩增出16S rDNA基因,测定其基因的核苷酸全序列,并做部分的生理生化鉴定。菌株MB6-1、MB6-2以及MB7-1的16S rDNA序列已经被GenBank数据库收录,其序列号分别为DQ436917、EF581856、DQ453797;基于16S rDNA序列的同源性比较和系统发育学分析,发现MB6-1与普罗威登斯菌属的同源性高达96.7%,所以它可能是普罗威登斯菌属(Providencia)中的一个新种;而MB6-2与类芽孢杆菌属Paenibacillus cookii种的同源性达99.1%,故它可能是Paenibacillus cookii的一个亚种;菌株MB7-1与其他菌株的同源性都比较低,因此还不能断定其种属类别。
     采样时间和培养时间对于部分的氨基酸浓度和变化趋势的影响都比较大,但Met和Lys的浓度始终呈现下降趋势,瘤胃微生物更优先利用赖氨酸,同时微生物降解这两种氨基酸的速度要大于合成他们的速度;添加氨基酸和体外培养时间的延长对瘤胃液中UN的含量和GGT、GLDH的活性影响较大(P<0.05),但对GPT、GOT无显著影响(P>0.05),说明瘤胃微生物发酵过程中氧化酶的活性变化范围比较大,从而氧化脱氨基反应发生的几率波动性较大,而转氨酶的活性相对比较稳定,所以发生转氨基反应相对比较稳定。以甲硫氨酸为唯一氮、碳源,经过严格筛选得到的菌株MB6-1、MB6-2和MB7-1,有利于我们今后研究分析山羊瘤胃液中甲硫氨酸降解菌群的更多物种资源,并期望通过对瘤胃中甲硫氨酸降解菌群数量的调控,来增加甲硫氨酸的过瘤胃率。
Methionine and lysine are the limited amino acids in corn and soybean-meal diets of ruminant,and improving their utilization rate is very important to improve the performance of ruminant.But owing to the parts of feed protein and amino acids what had been in rumen were fermented and degraded by rumen microorganism,most of protein and amino acids were intercepted in rumen.A lot of predecessors had been investigated many modus operandies for improving amino acids to get into small intestine,but these methods didn't begin with metabolic pathway of microorganism,and they were only the palliative methods and the cost price were much higher.So it was expected to control the activities of the main enzymes what participated the amino acid metabolism in rumen and the quantities of the methionine degradable bacterium in rumen microorganism by studying of the metabolism regularity of amino acid by rumen microorganism and isolating of the methionine degradable bacterium,accordingly lowed the degradation rate of the methionine in rumen and increased the utilization rate of limit amino acid for animals.
     1、Effect of the sampling and culturing time in vitro on amino acid concentration of ruminal fluid.The aim of this study was to investigate the influence of the different sampling and culturing time on amino acid concentration of ruminal fluid by mixed rumen microorganisms in vitro.Three fistulated Salon goats used as the experimental animals in this experiment,and two different sampling times(before feeding and after feeding)were designed.This aim was to determine the effect of the different culturing time on metabolism of the amino acid in vitro.Rumen fluids from three perpetually fistulated Salon goats were collected on different time points(before feeding and after feeding),then divided into 18 bottles and allocated into two treatments,sampled after culturing 0、8、16h in vitro.The result indicated:there was significant influence between the different sampling time on the change regulation of some amino acid (P<0.05);but there were great effect on the glutaminic acid(Glu)、valine(Val)、phenylalanine(Phe)、lysine(Lys)and the total amino acid(P<0.05)between different culturing time in vitro.
     2、Studies on the Utilization of Methionine and Lysine by Mixed Rumen Microorganisms in vitro.The aim of this study was to investigate the utilization of supplementary methionine and lysine by mixed rumen microorganisms in vitro,and further effects of adding methionine and lysine on urea nitrogen(UN)and enzyme activities(γ-glutamyltransferaseγ-GT or GGT,glutamic pyruvic transaminase GPT, glutamic oxalacetic transaminase GOT and glutamic acid dehydrogenase GLDH)were studied.Mixed rumen fluids from three perpetually fistulated Salon goats were collected, then divided into 18 bottles and allocated into three treatments arranged in a randomized complete block design with 6 which were added methionine(2mM),or lysine(2mM) and then added double distilled water as control groups,at last all treatments incubated for 16 hours at 39℃in vitro.Results indicated that the content of the UN in mixed rumen fluid increased when added with methionine or lysine compared with that in control group(P<0.05).The activities of the GLDH increased rapidly with culture time getting longer.GLDH activity in methionine group was highly significant higher than that in other two groups(P<0.01),however,GLDH activity in lysine group was highly significant lower than that in other two groups(P<0.01).Culture time and added amino acid had no effect on GPT activity.GOT activities in both methionine and lysine groups were significantly lower than that in control.(P<0.05),and culture time had no significant influence on them.Lysine was degraded more quickly than the methionine by rumen microorganisms during culturing in vitro.The UN was increased after adding amino acids,however activities of GOT and GPT were inhibited,and activities of GLDH was increased after adding methionine.
     3、Isolation and identification of Methionine utilization bacterium from rumen fluid. In order to research and analyze species resource of the methionine utilization bacterium from goats rumen fluid,after strict anaerobe isolation and purity for rumen microorganism using methionine as the sole sources of nitrogen and carbon,the bacterium which can degrade the methionine were screened,and the 16S rDNA encoding gene(16S rDNA)from the three strains MB6-1、MB6-2、MB7-1 of methionine utilization bacterium were amplified by PCR,and their nucleotide sequences were determined,and identified the characters by partial physiology and biochemistry experiments.The 16S rDNA gene sequences of the strains MB6-1、MB6-2、MB7-1 had been accepted by GenBank,and the GenBank accession numbers were DQ436917、EF581856、DQ453797 respectively;On the basis of the homology and phylogenetic analysis of 16S rDNA,the homology of the strains MB6-1 and providencia rettgeri was up to 96.7%,so it was considered that strain MB6-1 may be a novel species of the providencia family;The homology of the strains MB6-2 and the Paenibacillus cookii was up to 99.1%,so it was considered that strain MB6-2 just may be a subspecies of the Paenibacillus cookii;The homology of the strains MB7-1 and other strains was low,so it can not be confirmed the genus categorization.
     The influences of sampling and culturing time on the partial amino acid concentration and the change tendency were very significant,but the concentrations of methionine and lysine presented to descend tendency all the time,rumen microorganism were priority to use lysine,and the speed of the rumen microorganism degraded the two amino acids was quicker than the speed of the rumen microorganism synthesized the two amino acids;The effect of adding amino acids and extending the culture time in vitro on the content of UN and the activities of GGT、GLDH were significant,but there were no significant influences on GPT、GOT,it means that oxydasic activities had an extensive changing scope during the course of rumen microorganism fermentation,so the genetic probability of the oxidative deamination reaction was fluctuated,but transaminase activities were stable corresponding to oxydasic activities,so the genetic probability of the transamination was low.We got the strains MB6-1、MB6-2、MB7-1 by strict screening and adding the methionine as sole sources of nitrogen and carbon;It was profit to research and analyze more species resource of the methionine utilization bacterium from rumen fluid of goat in the future,and it was expected to increase the utilization rate of the Methionine in rumen by regulating the quantities of the Methionine degradable bacterium in rumen microorganism.
引文
[1]赵慧英.反刍动物瘤胃的解剖生理与饲料利用.黄牛杂志,1995,22(1):59
    [2]Martin C,Williams A G,Michalet-Doreau B.Isolation and characteristics of the protozoal and bacterial fractions from bovine ruminal contents.Journal of Animal Science,1994,72:2962-2968
    [3]朱伟云.瘤胃微生物.见:冯仰廉编.反刍动物营养学.北京:科学出版社,2004,1-130
    [4]Dehority B A.Rumen Microbiology.Thrumpton,UK:Nottingham University Press,2003,74-121
    [5]Swenson M J,Reece W O.Duke's Physiology of Domestic Animals(11th edition)New York.Comstock Publishing Associates.1993
    [6]Mackie R I,White B A.Recent advances in rumen microbial ecology and metabolism:potential impact on nutrient out put.Journal of Dairy Science,1990,73(10):2971-2995
    [7]Russell J B,Rychlik J L.Factors that alter rumen microbial ecology.Science,2001,292(11):1119-1122
    [8]Harrison D G,McAllan A B.Factors affecting microbial growth yields in the reticulo-rumen.In:Ruckebusch and P.Thivend(eds.)Digestive physiology and metabolism in ruminants.AVI Publishing Co.Inc.Westport,Connecticut,1980,205-226
    [9]Orpin C G,Joblin K N.The rumen anaerobic fungi.In:Hobson P N,Stewart C S.The Rumen Microbial Ecosystem.London,UK:Blackie Academic&Professional,1997,140-196
    [10]王中华,冯仰廉,李福昌.瘤胃乙:丙酸比例对绵羊丙酸糖异生和葡萄糖代谢的影响.草食家畜,1999,1:36-39
    [11]赵玉华,杨瑞红,王加启.刍动物甲烷生成的调控.中国饲料,2005,(3):18-20
    [12]郭嫣秋,胡伟莲,刘建新.瘤胃甲烷菌及生成的调控微生物学报,2005,45(1):145-148
    [13]Owens F N,Secrist D S,Hill W J,et al.Acidosis in cattle:a review.Journal of Animal Science,1998,76:275-286
    [14]Tajima K,Arai S,Ogata K,et al.Rumen bacterial community transition during adaptation to high-grain diet.Anaerobe,2000,6:273-284
    [15]Nagarajia T G,Chengappa M M.Liver abscesses in feedlot:a review.Journal of Animal Science,1998,76:287-298
    [16]Cheng K J,McAllister T A,Popp J D,et al.A review of bloat in feedlot cattle.Journal of Animal Science,1998,76:299-308
    [17]王全军,陈勇.瘤胃微生物可作为新式酶源.中国饲料,2000,13:28-29
    [18]郑国展.利用瘤胃微生物酶类增进畜牧业的生产能力.动物营养学报,1999,11(增):61-64
    [19]陈庆今,刘焕彬,胡勇有.瘤胃微生物在有机废物处理中的应用研究.微生物学杂志,2001,21(2):41-44
    [20]张元庆,孟庆翔.反刍动物瘤胃细菌素研究进展.中国饲料,2004,(18):6-7
    [21]Zikakis P J,Salsbury R L.Metabolism of sulfur amino by rumen.Journal of Dairy Science,1969,52(12):2014-2019
    [22]Wakita M,Hoshino S.A branched-chain amino acid aminotransferase from the rumen ciliate genusentodinium.Journal of Protozool,1975,22(2):281-285
    [23]Russell J B,Strobel H J,Chen G.Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production.Applied and Environmental Microbiology,1988,54:872-877
    [24]Chen G,Russell J B.Fermentation of peptides and amino acids by a monensinsensitive ruminal peptostreptococcus.Applied and Environmental Microbiology,1988,54:2742-2749
    [25]Chen G,Russell J B.More monensin sensitive ammonia-producing bacteria from the rumen.Applied and Environmental Microbiology,1989,55:1052-1057
    [26]Curtis S,Russell N,Chalupa W.Degradation of amino acids by pure cultures of rumen bacteria.Journal of Animal Science,1976,43(4):821-827
    [27]Chalupa W.Degradation of amino acids by the mixed rumen microbial population.Journal of Animal Science,1976,43(4):828-834
    [28]Or-rashid M M,Onodera R,Wadud S.Biosynthesis of methionine from homocysteine, cystathionine and homoserine plus cysteine by rumen microorganisms in vitro.Amino Acids,2003,24:135-139
    [29]Or-rashid M M,Onodera R,Wadud S.Studies on the utilization of methionine sulfoxid and methionine sulfone by rumen microorganism in vitro.Amino Acids,2001,24:135-139
    [30]John P,Zikalds,Salsbury R L.Metabolism of sulfo-amino acids by Rumen Microorganism.Journal of Dairy Science,1969,52(12):2014-2019
    [31]William C.Degradation of amino acids by the mixed rumen microbial population.Journal of Animal Science,1976,43(4):828-834
    [32]张克旭,陈宁,张蓓,等.代谢控制发酵.北京:中国轻工业出版社,1998,112-126
    [33]Denholm A M,Ling J R.In vitro metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal protozoa and bacteria.Applied and Environmental Microbiology.1989,55(1):212-218
    [34]Denman R F,Hoare D S,Work E.Diaminopimelic acid decarboxylase in pyridoxin-deficient Escherichia coli.Biochemistry and Biophysics,1955,16:442-443
    [35]Onodera R,Kandatsu M.Synthesis of lysine from alpha epsilon-diaminopimelic acid by mixed ciliated rumen protozoa.Nature New Biology,1973,244:31-32
    [36]Masson H A,Denholm A M,Ling J R.In vivo metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass.Journal of Applied Bacteriology,1986,60:341-349
    [37]Kelland J G,Palcic M M,Pickard M A,et al.Stereochemistry of Lysine Formation by meso-Diaminopimelate Decarboxylase.Biochemistry,1985,24:3263-3267
    [38]Wiseman J S,Nichols J S.Purification and properties of diaminopimelic acid epimerase from Escherichia coli.Journal of Biological chemistry,1984,259:8907-8914
    [39]Onodera R.rumen microbes and digestive physiology in ruminan.Japan Science Soc press,Tokey S Karger Base,1997,83-84
    [40]Kennedy P M,Milligan L R The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminant:a review.Canadian Journal of Animal Science,1980.60:205-221
    [41]钟诚.氨基酸和蛋白质对牛瘤胃细菌生长的影响.广西科学.1996,3(1):66-70
    [42]王建华,王洪荣,张海鹰等.瘤胃保护性氨基酸对内蒙古白绒山羊氮消化代谢的影响.畜牧兽医学报,2006,37(1):38-43
    [43]王镜岩,朱圣庚,徐长法.生物化学(下册).北京:高等教育出版社,2002
    [44]陈丛亮,毛华明,王爽.糊化淀粉尿素饲喂反刍动物的应用研究.饲料工业,2005,26(21):54-56
    [45]陈静,刘显军,边连全等.谷氨酰胺对早期断奶仔猪血清GPT、AK?活性的影响.中国饲料,2006(5):14-15
    [46]Reilly K,Attwood G T.Detection of Clostridium proteocclasricum and closely related strains in the tureen by competitive PCR.Applied and Environmental Microbiology,1998,64:907-913
    [47]Koike S,Kobayshi Y.Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes,Ruminococcus albus and Ruminococcus flavefaciens.Federation of European Microbiological Societies Microbiol,2001,204:361-366
    [48]Tajima K,Aminov R I,Nagarnine T,et al.Rumen bacterial diverial diversity as determined by sequence analysia of 16S rDNA libraries.Federation of European Microbiological Societies Microbiol,1999,29:159-169
    [49]Krumholz L R,Bryant M P,Brulla W J,et al.Proposal of Quinella ovalis gen.nov.,sp.nov.,based on phylogenetic anslysis.International Journal of Systematic Bacteriology,1993,43:293-296
    [50]Stahl D A,Flesher B,Mansfield H R,et al.Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology.Applied and Environmental Microbiology,1988,54(5):1079-1084
    [51]栾玉静,杨在宾,姜淑贞等.不同水平赖氨酸对肉牛瘤胃营养物质代谢规律的影响.中国草食动物,2004,24(4):3-5
    [52]李吕木,乐国伟,施用晖.蛋氨酸的瘤胃代谢与调控.安徽农业学.2005, 33(11):2122-2124
    [53]吴晋强.动物营养学.合肥:安徽科学技术出版社,1984
    [54]Hoover W H,Storkes S R.Balancing carbohydrate and protein for optimum rumen microbial yield.Journal of Dairy Science,1991,74:3630-3644
    [55]Martin C,Bernard L,Michalet-doreau B.Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents.Journal of Animal Science,1996,74(5):1157-1163
    [56]Martin C,Bernard L,Michalet-doreau B.Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents.Journal of Animal Science,1996,74:1157-1163
    [57]吉增福,景耀先,赵宏坤等.接种瘤胃纤维分解细菌对羊生长发育的影响.中国兽医科技,1997,27(3):31-32
    [58]Buttery P J,Foulds A N.Amino acid requirements of ruminants.In:Haresign W.and Cole D J,Recent development in ruminant nutrition 2.Butterworths,London,1988,19-33
    [59]Bryant M P,Robinson I M.Some nutritional characteristics of predominant cultural ruminal bacteria.Journal of Bacteriology,1962,84:605-614
    [60]Tadeusz G P,Pisulewski Z,Maciej K,et al.Effect of rumen-protected amino acids (L-Lysine and DL-Methionion)on processing quality of milk.Polish Journal of Nutrition Science,1999,8/49(3):91-100
    [61]谢实勇,贾志海,谢小萍等.包被蛋氨酸对内蒙古白绒山羊氮代谢及产绒性能的影响.中国农业大学学报,2003,8(3):73-76
    [62]Salsbury R L,Marvil D K,Woodmansee C W,et al.Utilization of Methionine Hydroxy Analog by rumen microorganisms in vitro.Journal of Dairy Science,1970,54(3):390-396
    [63]Moloney A P,Read M P,Keane M G.Effects of ardaein supplementation on rumen fermentation and protein degradability in steers.Animal Feed Science and Technology,1996,57:97-110
    [64]Faixova Z,Faix S.Infuence of metalions on ruminal enzyme activities.Acta Vetbrno,2002,71:451-455
    [65]Limin K J,Lyle M R.Amino acid metabolism in ruminants.Animal Feed Science Technology,1996,59:167-172
    [66]王洪荣,邵凯,徐桂梅等.蛋氨酸锌螯合物在绵羊体内的生物利用率及其对瘤胃代谢的影响,动物营养学报,1998,10(12):22-26
    [67]Curtis S,Russell N,Chalupa W.Degradation of amino acid by the mixed rumen microbial population.Journal of Animal Science,1976,43(4):828-834
    [68]Lee S S,Ha J K,Cheng K J.Relative contribution of bacteria,protozoa,and fungi to in vitro degradation of orchard grass cell wall and their interactions.Applied and Environmental Microbiology,2000,66(9):3807-3813
    [69]Hungate R E.The Rumen and its microbes.New York and London:Academic Press,1966,309-310.
    [70]William G W,Susanm M B,Dale A P,et al,16S Ribosomal DNA Amplification for phylogenetic study.Journal of Bacteriology.1991,1:697-703
    [71]萨母布鲁克J,费里奇M F,曼尼阿蒂斯.分子克隆实验指南(金冬雁等译).第二版,北京:科学出版社,1992
    [72]Emborg J,Laursen B G,Dalgaard P.Significant histamine formation in tuna (Thumaus albacares)at 2 degrees C- effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria.International Journal of Food Microbiology,2005,101(3):263-279
    [73]Mollet C,Drancourt M,Raoult D,et al.Sequence analysis as a novel basis for bacterial identification.Molecular Microbiology,1997,26(5):1005-1011
    [74]Dauga C.Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae:a model molecule for molecular systematic studies.International Journal of Systematic and Evolutionary Microbiology,2002,52(2):531-547
    [75]Miller S G,Campbell B C,Becnel J,et al.Bacterial entomopathogens from the Drosophila paulistorum semispecies complex.Invertebrata Pathol.1995,65(2):125-131
    [76]Huber I,Spanggaard B,Appel K F,et al.Phylogenetic analysis and in situ identification of the intestinalmicrobial community of rainbow trout(Onchorynchus mykiss,Walbaum).Applied Microbiology,2004,96(1):117-132
    [77]Hyman R W,Fukushima M,Diamond L,et al.Microbes on the human vaginal epithelium Proc Natl Acad Science.USA.2005,102(22):7952-7957
    [78]Penner J L.Genus Providencia.In:Bergey's Manual of systematic Bacteriology.Williams & Wilkins,Baltimore,1984,1:494-496
    [79]布坎南R E,吉本斯N E,伯杰细菌鉴定手册.第八版.北京:科学出版社,1984
    [80]李亚君,刘强,赵广永等.肉牛饲喂前后瘤胃液对饲料体外发酵产气量及pH值和 氨态氮的影响.中国畜牧杂志,2006,42(7):51-53
    [81]Scheifinger C N,Chalupa W.Degradation of amino acids by pure cultures of rumen bacterial.Journal of Animal Science.1976,43:821-827
    [82]Dehority B A,Johnson R R,Bentley O G,et al.Studies on the metabolism of valine,proline,leucine and isoleucine by rumen microorganisms in vitro.Archives of Biochemistry and Biophysics.1958,78:15-23
    [83]Esdal W J,Satter L D.Manipulation of ruminal fermentation,Ⅳ.Effect of altering ruminal pH on volatile fatty acid production.Journal of Dairy Science,1971,55(7):964-969
    [84]Briesacher S L,May T.Use of DNA probes to monitor nutritional Effects on ruminal prokaryotes and fibrobacter succinogenes S85.Journal of Animal Science,1992,70:289-295
    [85]唐一国,龙瑞军,补小艳等.反刍家畜饲料营养价值体外法评定研究进展.中国奶牛,2002,5:31-33
    [86]熊本海,卢德勋,许冬梅.利用体外法研究粗饲料的产气曲线及5种养分的发酵系数.畜牧兽医学报,2001,32(9):113-121
    [87]Onodera R,Amin R M,Ahmed M.Rumen microbes and digestive physiology in ruminants.Japan Science Social press,1997,83-94
    [88]孟庆翔.饲料添加剂在奶牛饲养中的应用中国农业大学动物科技学院.饲料广角,2005.18:23-26
    [89]冯宗慈 高民 王洪荣等.绵羊同粮中瘤胃可降解氮与尿素氮转化为微生物氮的效率及其影响因素的研究.内蒙古畜牧科学,2001,22(5):4-8
    [90]Srere P A.Complexes" of sequential metabolic enzyme.Annual Review of Biochemistry,1987,56:89-124
    [91]陈文新.细菌系统发育.微生物学报,1998,38(3):240-243
    [92]Devereux R,He S H,Doyle C L,et al.Diversity and origin of Desulfovibrio species:phylogenetic definit ion of a family.Journal of Bacteriology,1990,172(7):3609-3619
    [93]Fry N.K,Warwick S,Saunders N A,et al.The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae.Journal of General Microbiology,1991,137(5):1215-1222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700