不同种类粗饲料及添加缓冲剂对绵羊瘤胃发酵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究包括两个试验。试验一以4只安装有瘤胃瘘管的绵羊(平均体重26±1.4kg)为试验动物,采用4×4拉丁方试验设计,按精粗比6∶4配合日粮,比较苜蓿干草、玉米秸秆、全株玉米青贮、羊草干草4种粗饲料对绵羊瘤胃发酵的影响。试验二以3只同样条件的绵羊为试验动物,采用3×3拉丁方试验设计,以羊草为粗饲料,日粮精粗比6∶4,试验料Ⅰ和Ⅱ分别在对照基础上添加精料比例1.5%和3%的复合缓冲剂(NaHCO3∶MgO=2∶1),研究以羊草为粗饲料的日粮中添加不同剂量缓冲剂对绵羊瘤胃发酵的影响。试验测定的发酵指标主要包括:pH值、缓冲力(BC)、氨态氮(NH3-N)浓度、挥发性脂肪酸(VFA)浓度和瘤胃液稀释率(LDR)。结果如下:
    试验一:不同粗饲料在相同时间点所对应的瘤胃液pH值差异显著(p<0.05)。苜蓿对应的pH值在8h内变化幅度最大(0.81),秸秆对应的pH值变化幅度最小(0.5);平均值也是苜蓿组的最低,秸秆组的最高。苜蓿、青贮和羊草对应的瘤胃液缓冲力之间的差异不显著(p>0.05),秸秆对应的瘤胃液缓冲力高于其它三组,且差异显著(p<0.05)。苜蓿对应的NH3-N浓度最高值最大,采食秸秆的绵羊,其瘤胃NH3-N浓度最高值最低,但各组在同一时间点的浓度差异不显著(p>0.05)。0h至采食后2~8h内各组的变化趋势一致。绵羊采食后2h,苜蓿对应的乙酸浓度和TVFA浓度显著高于其它各组(p<0.05),其余各种VFA及TVFA浓度在各时间点的差异均不显著(p>.05)。各试验组的乙酸、丙酸比例在2~3之间变动,相同时间点之间差异不显著(p>0.05)。各种粗饲料对瘤胃液稀释率的影响很小,差异不显著(p>0.05)。
    试验二:添加缓冲剂的两种试验料对应的pH值在0h高于对照,但差异不显著(p>0.05)。各组的瘤胃pH值均在采食后2~4h内降至最低,两试验料的瘤胃pH值在各时间点均高出对照大约0.2,且与对照相比差异显著(p<0.05)。但两试验料之间差异不显著(p>.05)。采食后8h内,对照的平均pH值显著低于两试验料,两试验料之间差异不显著(p>0.05)。缓冲剂添加量增加,瘤胃缓冲力呈上升趋势,试验料Ⅱ显著高于对照,其余各组之间差异不显著(p>0.05)。在0h点,试验料Ⅰ对应的NH3-N浓度最低,与对照相比差异显著,与试验料Ⅱ相比不显著。其余时间点两试验料对应的NH3-N浓度低于对照,但差异不显著。两试验料对应的乙酸浓度比对照偏低,但除第4h外,其余各点均差异不显著(p>0.05)。试验料对应的丙酸和丁酸浓度也略低于对照,但差异均不显著。在第4h,试验料对应的TVFA浓度显著(p<0.05)低于对照,两试验料间差异不显著(p>.05)。两试验料对应的乙丙比略高于对照,但各组之间均差异不显著(p>0.05)。添加缓冲剂对绵羊的瘤胃液稀释率有提高的趋势,试验料Ⅱ对应的瘤胃液稀释率显著高于对照(p<0.05),其余各组之间差异不显著(p>.05)。
    根据本试验结果可得到的结论是:1)玉米秸秆对应的瘤胃液缓冲力大,pH值下降幅度小,无需添加缓冲剂;用苜蓿干草作为粗饲料饲喂绵羊,瘤胃液缓冲力小,pH值下降速度快,幅度大,需要添加缓冲剂;羊草干草和全株玉米青贮作为粗饲料饲喂绵羊,瘤胃液缓冲力小,pH值变化较大,可以考虑添加缓冲剂。2)羊草干草、玉米秸秆和玉
    
    
    米青贮对绵羊瘤胃的NH3-N浓度、VFA浓度和瘤胃液稀释率影响较小;苜蓿干草的NDF含量较少,CP含量较高,对瘤胃发酵的影响有一定的特殊性。3)缓冲剂可以增加瘤胃液缓冲力,维持正常pH值和增加瘤胃液稀释率,但对NH3-N浓度和VFA浓度影响较小。
This research work content two parts of experiments.4 ruminally cannulated sheep(weighed about 26kg ) were used as trial animal in a 4×4 Latin square design to study the effects of 4 sorts of roughages(alfalfa,maize stover,maize silage,leymus chinensis) on rumen fermentation in sheep. the measured parameters mainly content pH,buffer capacity,concentration of NH3-N,concentration of VFA and ruminal liquid dilution rate. Each period of every experiment included 15 days for adaption,and 4 days for sample collecting.
    The results of experiment 1 showed that 4 sorts of roughages affect ruminal pH significantly at the same time points(p<0.05).The biggest varying range of pH(0.81) during 8 hours after feeding as well as average pH appeared in sheep fed on alfalfa,and the smallest varying range(0.5) and average pH appeared in sheep fed on maize stover. sheep fed on maize stover got the biggest ruminal liquid buffer capacity(p<0.05)compared with others,and the differences between alfalfa,maize silage,leymus chinensis were not significant(p>0.05).The concentration of NH3-N were not significantly affected by sorts of roughages,though sheep fed on alfalfa reached the highest NH3-N concentration,and maize stover group was of the lowest level. The varying trend of VFA were roughly the same among sheep fed on different sorts of roughages, except that the concentration of acetic acid at 2 hours after feeding was significantly(p<0.05)higher in sheep fed on alfalfa. And the ratio of acet/prop were not significantly affected by sorts of roughages. These had little effect on ruminal liquid dilution rate, either.
    In experiment 2,addition of buffer significantly increased pH at almost every time point compared with the control diet(p<0.05),except at 0 hour point,the average amount of pH increase was 0.2,and the difference between two trial diet was not significant(p>0.05). And as the addition of buffer increased,buffer capacity of ruminal liquid increased as well,but it was not affected by the amount of buffer in a linear pattern. Two trial diets increased BC significantly,but the difference in between was not significant(p>0.05). The concentration of NH3-N were relatively higher in sheep fed on control diet,but the difference was insignificant,the two trial diets had similar NH3-N concentrations. Addition of buffer decreased the concentrations of VFA at almost every time point,but the difference were insignificant(p>0.05). except when it comes to the concentration of acetic acid and TVFA at 4 hour after feeding. Acet/prop varied in the range of 2 to 3,addition of buffer slightly increased the rate of acetic acid,but it was not significant. the effect of the trialⅠand trial Ⅱ
    
    
    were almost the same. Addition of buffer had the trend of increasing LDR,and the difference between trialⅡand control was significant,while others were not.
    Conclusions can be drew as follows: 1)when sheep was fed with high rate of concentrate,maize stover can ensure high level of ruminal BC,and relatively normal pH,so it is not necessary to add buffer in diet; When feed on alfalfa,ruminal BC is relative low,pH can be very low,so adding buffer is necessary; leymus chinensis and maize silage bring medium pH,maybe a little lower than normal level,so it is recommended to add certain dose of buffer.2)Maize stover,maize silage and leymus chinensis has little effect on NH3-N or VFA,alfalfa may affect ruminal fermentation at certain level,maybe because of its relative high level of CP .3)Addition of buffer can effectively affect ruminal fermentation on pH and BC and LDR,but its effect on NH3-N and VFA is not as significant,at least at this in vivo experimental level.
引文
邓凯东. 反刍动物瘤胃真菌的作用. 草食家畜.1998 (2):33-34
    冯仰廉,张子仪. 低质粗饲料对反刍家畜的营养价值及合理利用. 中国农业科技导报. 2003 5(3):8-12
    葛蔚,柴超. 缓冲剂的作用机制及应用效果. 中国饲料.2001 (16):8-9
    郭荣富,戴志明,陈克嶙,张曦. 动物营养代谢中的酸碱平衡. 中国饲料.2000年第23期 18-20
    韩继福,冯仰廉,张晓明,莫放,赵广永,杨雅芳. 日粮类型和羊草细度对肉牛瘤胃挥发性脂肪酸比例及能量转化效率的影响. 畜牧兽医学报. 1998 29(2):97-104
    韩继福,冯仰廉,张晓明,莫放,赵广永,杨雅芳. 阉牛不同日粮的纤维消化、瘤胃内VFA 对甲烷产生量的影响. 中国兽医学报. 1997 17(3):278-280
    韩兴泰,谢敖云,胡令浩. 饲喂各种日粮时牦牛瘤胃液体与瘤胃食糜的外流速度. 青海畜牧兽医杂志. 1996 26(3):1-4
    韩兴泰. 影响反刍动物瘤胃微生物蛋白合成的因素. 青海畜牧兽医杂志. 1993 23 (4):36-40
    韩正康,陈杰编著.反刍动物瘤胃的消化和代谢.科学出版社.1988
    康爱民,龙瑞军,师尚礼,魏小红,孙娟. 苜蓿的营养与饲用价值. 草原与草坪.2002  (3):31-33
    李梅,冯仰廉. 瘤胃持续模拟装置测定低质粗饲料发酵规律的研究. 中国畜牧杂志.           1999 35(3):11-13
    李梅,冯仰廉,李胜利,莫放. 不同粗饲料在瘤胃持续模拟装置中挥发性脂肪酸产生量及比例的研究. 饲料研究. 1999(2):11-12
    李飞,莫放. 维生素A对秸秆 NDF 瘤胃降解率的影响. 中国奶牛. 2000(4):18-20
    毛华明,李琦华,冯仰廉. 饲喂复合化学处理稻草和甲醛处理精料对生长奶牛的影响. 黄牛杂志. 2000 26(6):15-18
    孟军,王焕勤,曹杰. 营养型复合缓冲剂对奶牛泌乳性能的影响. 宁夏农林科技. 1999 (3):48-49
    孟庆翔,高仲元, Kerley M.S., Belyea R.L. 稀释率对于活体外瘤胃发酵和微生物生长效率的影响. 动物营养学报. 1999 11(1):10-16
    雒秋江. 粗饲料的加工和利用. 新疆畜牧业. 1998 (3):14-17
    彭艺,邢廷铣,谭支良,黄瑞林. 绵羊日粮CEC 值与其纤维物质消化特性研究. 生命科学研究. 2001 5(4):370-377
    彭健. 日粮纤维定义、成分、分析方法及加工影响 国外畜牧学猪与禽. 1999 (4):8-11
    孙国君,潘晓亮,祁凤华,王新峰,李海英. 粗饲料氨基酸在瘤胃内降解规律研究. 中国饲料. 2003 (15):11-12
    孙家仪,李双凤,陈唯真. 不同日粮能量浓度对对反刍动物能量降解率影响的研究.
    
    
    山东农业大学学报. 1996 27(3):287-292
    孙镇平,陈杰,韩正康. 室温与水牛瘤胃液稀释率相关性分析. 河北农业大学学报. 1997 20(4):83-84
    王加启,冯仰廉. 不同粗饲料日粮发酵规律及合成瘤胃微生物蛋白质效率研究. 黄牛杂志.1994 (20):82-84
    徐炜玲,孟庆翔. 奶牛饲养中日粮的有效纤维问题. 饲料博览. 2002 (6):35-37
    杨国宇. 瘤胃微生物纤维素酶类. 畜牧兽医杂志. 1992 (3):35-36
    杨红建,冯仰廉. 不同纤维素与淀粉比率等氮纯化日粮瘤胃发酵挥发性脂肪酸产生量. 中国畜牧杂志. 2003 39(5):9-11
    张吉鹍 . 粗饲料品质评定指数研究进展. 中国饲料. 2003 (16):9-11
    赵广永,李学凤,杨雅芳,莫放,张晓明. 玉米油对秸秆瘤胃降解率与肉牛日粮消化率的影响. 中国农业大学学报. 2000 5(3):102-105
    朱宇旌,张勇. 反刍动物粗饲料利用的营养调控. 草业科学. 2003 12(6):36-39
    伍一军,陈杰,韩正康. 三种缓冲剂共用对泌乳奶牛瘤胃消化代谢调控的研究. 西南农业大学学报. 1995 17(2):160-164
    Abrams S.M. Sources of error in predicting digestible dry matter from the acid-detergent fiber content of forages. Anim-Feed-Sci-Technol. 1988 21(2):205-208.
    Akin D.E., et al. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl.Envir.Microbial.1983 46:738-748
    Allen M.S. Physical constraints on voluntary intake of forages by ruminants. J. Anim Sci. 1996 74:3063-3075.?
    Allen M.S. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 1997 80: 1447-1462.
    Asoa N, Ushida K, Kojima Y. Proteolytic activity of rumen fungi belonging to the genera Neocallimastix and Piromyces. Lett Appl Microbiol, 1993 16:247-250
    Bauchop T. The anaerobic fungi in rumen fibre digestion. Agric.Envir.1981 6:339-348
    Beauchemin K.A. Effects of dietary neutral detergent fiber concentration and alfalfa hay quality on chewing, rumen function, and milk production of dairy cows. J. Dairy Sci. 1991 74(9):3140-3151.
    Beauchemin K.A. and Buchanan-Smith J.G. Effects of fiber source and method of feeding on chewing activities, digestive function, and productivity of dairy cows. J. Dairy Sci. 1990 73:749-762.?
    Beauchemin K.A., Rode L.M. and Eliason M.V. Chewing activities and milk production of dairy cows fed alfalfa as hay, silage, or dried cubes of hay or silage. J. Dairy Sci. 1997 80:324-333.?
    Beauchemin, K. A., and J. G. Buchanan-Smith. 1990.Effects of fiber source and method of feeding on chewing activities, digestive function, and productivity of dairy cows. J. Dairy Sci. 73:749
    
    Beaumont, R.,A.Grasland, and A. Detour. 1998. Methods of conservation of ryegrass and short-term feeding preferences. Fourrages 155:397-402.
    Campbell C.P., Marshall S.A., Mandell I.B. and Wilton J.W. Effects of source of dietary neutral detergent fiber on chewing behavior in beef cattle fed pelleted concentrates with or without supplemental roughage. J. Anim. Sci. 1992 70: 894-903.?
    Carter R.R. and Grovum W. L. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J. Anim Sci. 1990 68:2811-2832.?
    Castle, M. W., W. C. Retter, and J. N. Watson. 1979.Silage and milk production: comparisons between grass silage of three different chop lengths. Grass Forage Sci. W293.
    Chesson A., Forsberg C.W. Polysaccharide degradation by rumen microorganisms. The Rumen microbial ecosystem. Elsevier Applied Science, c1988:251-284.
    Christiansen M.L. and Webb K.E. Intestinal acid flow, dry matter, starch and protein digestibility and amino acid absorption in beef cattle fed a high-concentrate diet with defluorinated rock phosphate, limestone or magnesium oxide. J. Anim Sci. 1990 68:2105-2118.?
    Clark P.W. and Armentano L. E. Effectiveness of neutral detergent fiber in whole cottonseed and dried distillers grains compared with alfalfa haylage. J. Dairy Sci. 1993 76:2644-2650.?
    Cole N.A., Greene L.W., McCollum F.T., Montgomery T. and McBride K. Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers. J. Anim Sci. 2003 81:2660-2668.?
    Cone J.W., Van Gelder A.H., Soliman I.A., De Visser H. and Van Vuuren A.M. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. J. Dairy Sci. 1999 82:957-966.?
    Cooper D., Kyriazakis I. and Oldham J.D. The effects of physical form of feed, carbohydrate source, and inclusion of sodium bicarbonate on the diet selections of sheep. J. Anim Sci. 1996 74:1240-1251
    Crawford Ladell., In vitro interaction of food fiber with some regularly prescribed drugs. Nutr-Rep-Int. 1983 28(3):481-486.
    Friggens N.C., Oldham J.D., Dewhurst R.J. and Horgan G. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J. Dairy Sci. 1998 81:1331-1344.?
    Froetschel M.A. and Amos H.E. Effects of dietary fiber and feeding frequency on ruminal fermentation, digesta water-holding capacity, and fractional turnover of contents. J. Anim Sci. 1991 69:1312-1321.?
    Fry S.C. The structure and functions of xyloglucan. J-Exp-Bot. Oxford : Oxford
    
    
    University Press. 1989 40(10):1-11.
    Fuchigami M., Senshu T., Horiguchi M. A simple continuous culture system for rumen microbial digestion study and effects of defaunation and dilution rates. and polysaccharides fractionated by successive extraction. J. Dairy Sci1989 72(11):3070-3080.
    Goad D.W., Goad C.L. and Nagaraja T.G. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. J. Anim Sci. 1998 76:234-241.?
    Grant R.J. Interactions among forages and nonforage fiber sources. J. Dairy Sci. 1997 80:1438-1446.?
    Harmison B., Eastridge M.L., and Firkins J.L. Effect of percentage of dietary forage neutral detergent fiber and source of starch on performance of lactating Jersey cows. J.Dairy Sci. 1997 80:905-911.?
    Harris K.B., Thomas V.M., Peterson M.K., Kachman S.D., McInerney M.J. Influence of minerals on rate of digestion and percentage degradable in vitro neutral detergent fiber. Nutr-Rep-Int. 1989 40(2):219-226.
    Hart S. P. and Glimp H.A. Effect of diet composition and feed intake level on diet digestibility and ruminal metabolism in growing lambs. J. Anim Sci. 1991 69:1636-1644.?
    Heitmann R N., Bergman E N. Transport of amino acids in whole blood and plasma of sheep. Am J Physiol.1980 239:E242-E247
    Hino T, Russell J B. Relation contributions of Ruminal bacteria and protozoa to the degradation of protein in vitro. J Anima Sci, 1987 64:261-270
    Hsu J.T., Fahey G.C., Clark J.H., Berger L.L., and Merchen N.R. Effects of urea and sodium bicarbonate supplementation of a high-fiber diet on nutrient digestion and ruminal characteristics of defaunated sheep. J. Anim Sci. 1991 69:1300-1311.?
    James B.Russell. Another Theory for the Action of Ruminal Buffer Salts: Decreased Starch Fermentation and Propionate Production. J.Dairy.Sci. 1993 76:826-830
    Jaster, E. H., and M. R. Murphy. 1983. Effects of varying particle size of forage on digestion and chewing behavior of dairy heifers. J. Dairy Sci. 66:802.
    Kennedy PM.and Milligan. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. Br.J Nutr, 1978 39(1):105-117.
    Khorasani G.R., and Kennelly J.J. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. J. Dairy Sci. 2001 84:1707-1716.?
    Lammers B.P., Buckmaster D.R.and Heinrichs A. J. A simple method for the analysis of particle sizes of forage and total mixed rations. J.Dairy Sci. 1996 79: 922-928.
    Le Ruyet P., Tucker W.B., Hogue J.F., Aslam M., Lema M., Shin I.S., Miller T.P. and
    
    
    Adams G.D. Influence of dietary fiber and buffer value index on the ruminal milieu of lactating dairy cows. J.Dairy Sci. 1992 75:2394-2408.?
    Maekawa M., Beauchemin K.A. andChristensen D.A. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J.Dairy Sci. 2002 85:1165-1175.?
    Marshall S.A., Campbell C.P., Mandell I.B. and Wilton J.W. Effects of source and level of dietary neutral detergent fiber on feed intake, ruminal fermentation, ruminal digestion in situ, and total tract digestion in beef cattle fed pelleted concentrates with or without supplemental roughage. J. Anim Sci. 1992 70: 884-893.
    McCormick M.E., Redfearn D.D., Ward J.D. and Blouin D.C. Effect of protein source and soluble carbohydrate addition on rumen fermentation and lactation performance of Holstein cows. J. Dairy Sci. 2001 84:1686-1697.
    Mertens D.R. Challenges in measuring insoluble dietary fiber. J. Anim Sci. 2003 81:3233-3249.?
    Mertens D.R.and Dado R.G. System of equations for fulfilling net energy and absorbed protein requirements for milk component production J. Dairy Sci. 1993 76:3464-3478.
    Mertens, D. R. Physically effective NDF and its use in dairy rations explored. Feedstuffs. Pages 11–14, April 10, 2000.
    Michel V, Fonty G, Millet L,et al. In vitro study of the proteoly activity of rumen anaerobic fungi. FEMS Microbiol Lett. 1993110:5-10
    Miller T.P., Tucker W.B., Lema M., Shin I.S., Hogue J.F. and Adams G.D. Influence of dietary buffer value index on the ruminal milieu of lactating dairy cows fed sorghum silage and grain J. Dairy Sci. 1993 76:3571-3579.?
    Moore J.A., Poore M.H., and Swingle R.S. Influence of roughage source on kinetics of digestion and passage, and on calculated extents of ruminal digestion in beef steers fed 65% concentrate diets. J. Anim Sci. 1990 68:3412-3420.?
    Moore J.E., Brown W.F., Hall M.B. Evaluation of equations for estimating total digestible nutrient concentration in forage grasses. American Forage and Grassland Council. 1998 7:117-121.
    Moore J.E.,Brant M.H., Kunkle W.E., Hopkins D.I. Effects of supplementation on voluntary forage intake, diet digestibility, and animal performance. J.anim sci. 1999 77:122-135.
    Mould F.L., Orskove E.R. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 1983 10:1-4
    Murphy K., Binder A., Kothari S. Cotton fiber growth and development. 2. Changes in cell diameter and wall birefringence. J-cotton-sci. 2000 4(2):97-104.
    Murphy T.A., Fluharty F.L. and Loerch S.C. The influence of intake level and corn
    
    
    processing on digestibility and ruminal metabolism in steers fed all-concentrate diets. J. Anim Sci. 1994 72:1608-1615.?
    National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.
    Norgaard P., Kristensen V.F. Effect of roughage quality and physical structure of the diet on feed intake and milk yield of the dairy cow. Research in cattle production. 1987:79-91.
    Owens F.N, Bergen W.G. Nitrogen metabolism of ruminant animals: historical perspective,current understanding and future implications. J Anim Sci. 1983 57:498-518
    Poppi D.P., Hendricksen R.E., Minson D.J. The relative resistance to escape of leaf and stem particles from the rumen of cattle and sheep. J-Agric-Sci. 1985 105(1):9-14.
    Sanson D.W., Kercher C.J. Validation of equations used to estimate relative feed value of alfalfa hay. Prof.anim sci. 1996 12(3):162-166.
    Santini, F. I.. A. R. Hardie, N. A. Jorgensen, and M.E Finner. 1983. Proposed use of adjusted intake based on forage particle length for calculation of roughage indexes. J. Dairy Sci. 66:811.
    Sauvant D., Baumont R., and Faverdin P. Development of a mechanistic model of intake and chewing activities of sheep. J. Anim Sci. 1996 74:2785-2802.
    Selvendran R.R., Stevens B.J.H., Du-Pont M.S. Dietary fiber: chemistry, analysis, and properties. Adv-Food-Res. 1987 31:117-209.
    Selvendran Robert-R. The Plant cell wall as a source of dietary fiber: Chemistry and structure. Am-J-Clin-Nutr. 1984 39:320-337.
    Soita H.W., Christensen D.A., and McKinnon J.J. Influence of particle size on the effectiveness of the fiber in barley silage. J. Dairy Sci. 2000 83: 2295-2300.??
    Sudweeks, E. M., L. Ely, D. R. Mertens, and L. R.Sisk. 1981. Assessing minimum amounts and form of roughages in ruminant diets: roughage value index system. J. Anim. Sci. 53:1406.
    Sudweeks, E. M., McCulloughM. E.. Sisk, and S. E. Law. 1975. Effects of concentrate type and level and forage type on chewing time of steers. J. Anim. Sci. 41:219.
    Swain S.M.and Armentano L.E. Quantitative evaluation of fiber from nonforage sources used to replace alfalfa silage. J.Dairy Sci. 1994 77:2318-2331.?
    Tucker W.B., Hogue J.F., Aslam M., Lema M., Martin M., Owens F.N., Shin I.S., Le Ruyet P. and Adams G.D. A buffer value index to evaluate effects of buffers on ruminal milieu in cows fed high or low concentrate, silage, or hay diets. J. Dairy Sci. 1992 75:811-819.?
    Ushida K, Jouany. J P. Effect of protozoa on rumen protein degradation in sheep. Reprod Nutr Dev. 1985 25:535-540
    
    Van Bruchem, J., M. W. Bosh, S. C. W. Lammers-Wienhoven, and G.A. Bangma. 1991. Intake, rumination, reticulo-rumen fluid and particle kinetics, and faecal particle size in heifers and cattle fed on grass hay and wilted grass silage. Livest. Prod. Sci.27:297-308.
    Wallace R J, Joblin N J. Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol Lett, 1985 29:19-25
    Woodford. S. T., and M. R. Murphy. 1988. Effect of forage physical form on chewing activity, dry matter intake, and rumen function of dairy cows in early lactation. J. Dairy Sci. 71:674.
    Zinn R.A.and Plascencia A. Effects of forage level on the comparative feeding value of supplemental fat in growing-finishing diets for feedlot cattle. J. Anim Sci. 1996 74:1194-1201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700