限制性氨基酸对浏阳生长黑山羊肝脏IGF-Ⅰ基因表达及生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选用 3 只浏阳生长黑山羊(10.00±0.15kg),安装瘤胃瘘管,十二指肠近端瘘管和
    回肠末端瘘管,饲喂玉米、豆粕和玉米秸秆为基础的日粮。采用 Cr2O3 为食糜标记物,
    瘤胃投放,测定山羊十二指肠和回肠食糜中氨基酸流通量,计算各种氨基酸在山羊小肠
    消化率,依据肌肉氨基酸模式计算限制性氨基酸的灌注量。试验表明,生长山羊在实用
    日粮条件下需灌注的第一、第二和第三限制性氨基酸的量分别是:Met,0.77g/d;Lys,
    0.91g/d;Leu,0.58g/d。
     在此基础上,12 头浏阳生长黑山羊(10.00±0.23kg)按随机区组设计接受氨基酸混
    合液(对照组)以及分别减去 3 种氨基酸(Met、Lys 和 Leu)的灌注液(处理组),对
    照组灌注混合氨基酸使进入山羊十二指肠的各种氨基酸(日粮氨基酸+灌注氨基酸)达
    到山羊肌肉中氨基酸模式,试验组按“递减法”灌注从对照组中减少相同比例(21%)
    某一种氨基酸的成分。试验结果表明:减 Met 组 IGF-I 的血清浓度极显著低于对照组
    (P<0.01),减 Lys 组与减 Leu组血清 IGF-I 浓度均显著低于对照组(P<0.05),三处理组
    间血清 IGF-I 浓度差异不显著(P>.05)。减 Met 组与减 Lys 组血清 Insulin、GH 和 IgA
    均显著低于对照组(P<0.05),三处理组间及减 Leu组和对照组间血清 Insulin、GH 和 IgA
    浓度差异不显著(P>0.05)。减 Met 组和减 Lys 组血清 IgM 低于对照组(P<0.05)和减 Leu
    组(P<0.05),减 Met 组和减 Lys 组间及减 Leu 组和对照组间血清 IGM 差异不显著
    (P>0.05)。3 处理组间血清 IgG 浓度差异不显著(P>0.05)。减 Met 组 PUN 显著高于对照
    组(P<0.05),三处理组间、减 Lys 组和对照组间及减 Leu组和对照组间 PUN 差异不显著
    (P>0.05)。 3 处理组间血清 TP 差异不显著(P>0.05)。减 Met 组 IGF-I mRNA 表达水平极
    显著低于对照组 (p<0.01),显著低于减 Leu组(p<0.05),减 Lys 组 IGF-I mRNA 表达水
    平显著低于对照组(p<0.05),减 Met 组和 Lys 组间、减 Lys 组和减 Leu组间及减 Leu组
    和对照组间 IGF-I mRNA表达水平无显著差异(P>0.05)。减 Met 组骨骼肌 DNA浓度低于
    对照组(P<0.01)和减 Leu组(P<0.05),减 Lys 组骨骼肌 DNA浓度低于对照组(P<0.05),减
    Lys 组骨骼肌 DNA 浓度和减 Leu组、对照组差异不显著(P>0.05),减 Leu和对照组间
    骨骼肌 DNA浓度差异不显著(P>0.05)。减 Met 组与减 Lys 组空肠粘膜 DNA浓度低于
    对照组(P<0.05),3 处理组间空肠粘膜 DNA 浓度差异不显著(P>.05)、减 Leu 组和对
    照组空肠粘膜 DNA浓度差异不显著(P>0.05)。减 Met 组与减 Lys 组骨骼肌 RNA 浓度低
    于对照组(P<0.05),3 处理组间骨骼肌 RNA 浓度差异不显著(P>0.05),减 Leu组和对照
    组骨骼肌 RNA 浓度差异不显著(P>0.05)。减 Met 组空肠粘膜 RNA 浓度低于对照组
    (P<0.01),减 Lys 组空肠粘膜 RNA 浓度低于对照组(P<0.05),3 处理组间空肠粘膜 RNA
    
    
    浓度差异不显著(P>.05),减 Leu组和对照组空肠粘膜 RNA浓度差异不显著(P>0.05)。
     本研究表明,限制性氨基酸从分子水平如 IGF-I 的基因表达、从组织器官水平如肠
    粘膜和骨骼肌细胞的分裂增生、从蛋白水平 PUN、从免疫水平如 IgA、从激素水平 GH、
    Insulin 上影响动物机体的生长。
The study was conducted to test the effects of limiting amino acids on hepatocyte
    IGF-I mRNA expression and biochemical indexes of growing goat fed with a based corn
    stover diet.Three Liu-yang Black goats (10.00± 0.15 kg), fitted with ruminal, duodenal and
    ileal cannula and fed a practical diet were used to determine infusive amounts of limiting
    amino acids in the duodenum which could be satisfied with the ideal amino acid pattern of
    musle. Results showed thatthe infusive amounts of the first, second and third limiting amino
    acids in the duodenum were 0.77g/d (Met),0.91g/d (Lys) and 0.58g/d (Leu) respectively.
     Twelve Liu-yang Black goat (initial weight10.00± 0.23kg), cannulated in duodenum,
    were randomized to separate into 4 groups, three goats per group. All animals were put into
    the metabolic cages respectively and free to fresh water. The four groups are as follows: A
    (removing 21%Met from the mixture of Met, Lys and Leu), B (removing 21% Lys from the
    mixture of Met, Lys and Leu),C, (removing 21%Leu from the mixture of Met, Lys and
    Leu)and D, (control group, the mixture of Met, Lys and Leu). The results showed that: IGF-I
    mRNA expression of removal Met group was significantly lower than that of control group
    (p<0.01) and that of removal Leu group (p<0.05) and removal Lys group was also
    significantly lower than that of control group (p<0.05).The DNA content of skeletal muscles
    of removal Met group was significantly lower than that of control group (p<0.01) and that of
    removal Leu group (p<0.05) and the DNA content of skeletal muscles of removal Lys was
    significantly lower than than that of control group (p<0.05); DNA content of jejunum mucous
    membrane of removal Met group and Lys group was significantly lower than that of control
    group (p<0.05). RNA content of skeletal muscles of removal Met group and Lys group was
    
    
    significantly lower than that of control group (p<0.05); RNA content of jejunum mucous
    membrane of removal Met group was significantly lower than that of control group (p<0.01)
    and RNA content of jejunum mucous membrane of removal Lys group was significantly
    lower than that of control group (p<0.05). Serum IGA content of removal Met group and Lys
    group was significantly lower than that of control group (0.05); serum IGM content of
    removal Met group was significantly lower than that of control group (0.01) and that of
    removal Leu group(p<0.05). Serum IGF-I content of removal Met group was significantly
    lower than that of control group (p<0.01);Serum IGF-I content of removal Lys group and Leu
    group was significantly lower than that of control group (p<0.05). Serum Insulin content of
    removal Met group and Lys group was significantly lower than that of control
    group(p<0.05).Serum GH content of removal Met group and Lys group was significantly
    lower than that of control group(p<0.05). PUN of removal Met group was significantly lower
    than that of control group (p<0.05). There were no differences about serum TP among four
    groups (P>0.05). It could be suggested that limiting amino acids affect the growth of goat
    from different levels,such as molecule level(such as gene expression of hepatocyte IGF-I),
    tissue level(such as proliferation of jejunum mucous membrane cell and skeletal muscles cell),
    immunology level(such as the secretion of IgA, IgM), hormone level (such as GH and Insulin)
    and protein level (such as PUN). Every level and aspect of promoting growth o f amino
    limiting acids is influeced and promoted each other. The role of promoting growth of limiting
    amino acids is fulfilled by such way.
引文
[1]  汪骥,王世真,周云礼. 1987. 正常成人总体蛋白更新率及血浆甘氨酸动力学参数的测定[J].
     动 物营养学报, 9(3):193. 
    [2]  程中刚,许梓荣,蒋宗勇等. 2000. 高剂量铜对仔猪生长的影响及机理的探讨[M]. 面向 21 世
     纪动物科学与动物医学国际研究讨论文集. 41. 
    [3]  罗绪刚,李素芬,刘彬等. 2000. 饲料铜源和水平对断奶仔猪崔体生长激素 mRNA 水平的影响
     [J].面向 21 世纪动物科学与动物医学国际研讨论文集. 71.  
    [4]  张果平,黄永宏,李峰等. 胰岛素样生长因子家族对动物生殖功能的影响[J]. 上海畜牧兽医
     通讯. 198~203. 
    [5]  华 益 民 , 林 浩 然 .2001. 营 养 状 况 对 鲤 鱼 肝 脏 IGF-1mRNA 表 达 的 影 响 [J]. 动 物 学
     报,47(1):94-100. 
    [6]  唐祖明,赵凤举.蛋白质缺乏对小鼠胸腺细胞花生凝集素受体的影响[J].营养学报. 
     1993,15(3):271-274. 
    [7]  郭长江,徐琪寿. 1996. 蛋白质营养不良大鼠血浆蛋白水平与细胞免疫功能的动态变化[J].
     营养学报, 18(1):30~33. 
    [8]  程中刚. 1998. 饲料营养素对动物免疫机能的影响[J].畜禽业,(4):12~14. 
    [9]  季峰,朱秋红. 2000. L—缬氨酸缺乏对大鼠胃癌生长及免疫状态的影响[J]. 肠外肠内营养,
     7(1):45~47.  
    [10]  李艳玲, 呙于明. 3-6 周龄肉仔鸡苏氨酸、色氨酸需要量的研究. 中国畜牧杂志.2000(5):3-5. 
    [11]  王洪荣. 卢德勋.饲喂豆饼、亚麻饼和血粉氮源日粮的生长绵羊限制性氨基酸研究[J]. 动物营
     养学报 1999,11(4):106-121. 
    [12]  丁宏标,陈杰.1994. CS87 促进猪生长的研究[J].南京农业大学学报,17(4).87~91. 
    [13]  侯永清,于明. 1999.早期断奶仔猪日粮中适宜蛋白质及赖氨酸水平的研究[J].动物营养学
     报,11(2):38~44  
    [14]  伍喜林,高振川. 1994. 日粮不同苏氨酸水平对仔猪生产性能和血液生化指标的影响[J].中
     国畜牧杂志,30(5).10~12. 
    [15]  占秀全, 李志骏. 2000. 尿红细胞直径测量对血尿诊断的临床价值并与其它方法的比较实用
     医学进修杂志,28(1).32~34. 
    [16]  许梓荣, 陈洪亮, 肖日进.不同饲粮蛋白水平下 Ractopamine 对肥育猪生长性能和胴体组成
     的影响.浙江农业学报,1998,10(4):210-214 
    [17] Russell, J.B., J.D.O’Connor, D. G. Fox, P. J. Van Soest, and C. J. Sniffen. 1992. A net carbohydrate
     and protein system for evaluating cattle diets: I. Ruminal fermentation[J]. J.Anim. Sci. 70:3551.
    [18] Hogan, J. P., R. H. Weston. 1970. Quantitative aspects of microbial protein synthesis in the rumen.
     In:Phyisiology of digestion and metabolism in the ruminant[M]. A. T. Philipson, ed. Oriel Press.
     Newcastle-Upon-Tyne.
    [19] Hume, I. D., and D.B. Purser. 1975. Aust[J]. J.Agric. Res, 26:199~208.
    [20] Cecava, M. J. and J. E. Parker. 1993. Intestinal supply of amino acids in steers fed ruminally
     degradable and undegradable crude protein source along and in combination[J].J.Anim. Sci,
     71:1596-1605.
    
    
    参考文献 41
    [21] Erasmus L.J., P.M.Botha, and C.W.Cruywagen 1994. Effect of protein source on ruminal
     fermentation and passage of amino acids to the small intesine of lactating cows[J]. J.Dairy. Sci.
     77:3655.
    [22] Medsen, J?rgen, 1985. The basis gor the proposed Nordic Protein Evaluation system for ruminats.
     TheAAT-PBV system[J]. Acta Aqric Scand Suppl. 25:5-20.
    [23] Barb, and F. M. Kautz. 1997. Nitrogen metabolism and hormonal responses of steers fed wheat
     silage and infused with amino acids or casein[J]. J. Anim. Sci. 75:30387-3045.
    [24] Coleman, G.S. and sandfold. 1979. The engulfment and digestion of mixed rumen bacteria and
     individual bacterial spesies by single and mixed species of rumen ciliate protozoa grown in vivo[J].
     J. Agric. Sce., (Camb.) 92:729.
    [25] Phillips, W.A., K.E.Webb, J. and J. P. Fontenot, In vitro absorption of amino acids by the small
     intestine of sheep[J]. J. Anim. Sci. 42:201.
    [26] NRC.1985.Ruminat Nitrogen Usage[M].Us Academy of science, Washington. D. C.
    [27] Storm,E., ?rskov, E. R. and Smart, R. I., 1983a. The nutritive value of rumen microorganism in
     ruminats. 2. the apparent digestibility and utilization of microbial nitrogen for growing lambs[J]. Br.
     J. Nutri. 50: 471-478.
    [28] Armstrong, D.G., and K. Hutton. Fate of nitrogenous compounds entering the small intestine. In:
     “Digestion and metabolism in the reminant”ed[J].I.W. McDonald and A. C. I. Warner.
    [29] Hvelplund, T. and Madsen, J. 1985. Amino acid passage to small intestine in dairy cows compared
     with estimates of microbial protein and undergraded dietary protein from analyzes on the feed[J].
     ActaAgris. Scand. Supply. 25:21-36.
    [30] Bureau Slough, England. Baker, F and Harris, S. T. 1947[J]. 2. Nutr Abst: Revs. 17:3-12.
    [31] Satter, L. D. and Roffler, R. E. 1975. Nitrogen requirement and utilization in dairy cattle[J]. J. Dairy
     Sci. 58:1219-1237.
    [32] Roy, J. H. B., Balch, C. C. Miller, E. L., ?rskov, E.R. and Smith, R.H. (1977) EAAP Publ. No. 22
     (A.Tamminga ed.) P.126-129.
    [33] I.N.R.A.1978. Alimentation des ruminants Ed.INRA Publications,Versailles,France.
     Interdepartmental Working Part (IDWP) 1992. AFRC Technical committees on Responses to
     nutrients[M]. Nutrient Requirements of Ruminant Animals: Protein Nutriti. Abstr,Ser., B.
    [34]  Kanfman, W.1997. Calculation of dthe protein requirements for dairy cows according to
     measurements of nitrogen metabolism. In protein metabolism and nutrition[J]. PP.130~132(ed. S.
     Tamminga). Center for Agricultural publishing and Documention. Wageningen. 
    [35]  Adibi, S. A. 1971. Intestinal transport of dipeptides in man:relative inportance of hydrolyssis and
     intact absorption[J]. J. Clin. Invest. 50:2266. 
    [36]  Smith, R. H. 1984. In proceeding of the with international symposium on amino acids[J]. PP.
    
    
    42 氨基酸对浏阳生长山羊肝脏 IGF-I 基因表达及生化指标的影响
     319~329. Ed. By T. Zebrowska et al. Warsaw:polish scientific publisher. [36]. Bender, D.A. 
     1985. amino acids metabolism(2ed Ed.) john wiley and sons, New York. 
    [37] Silk, D. B. A., G. K. Grimble and R. G. Rees. 1985. Protein digestion and amino acidand peptide
     absorption. Proc. Nutr. Soc. 44:63.
    [38] Webb, Jr. K. E. 1990. Intestinal absorption of protein hydrolysid products[J]. A review. J. Anim.
     Sci. 68:3011~3022.
    [39] Matthews. J. C. 1991. Absorption of carnosine and methionyl-glycin by sheep ruminal and omasal
     epithelia[D]. M. S. thesis. Viginia polytechnic. Inst. And state Umiv. Blacsburg.
    [40]  Ganapathy, V. Leiback, F. K. 1985.Intestine transport energized by a protein gradient[J]. Am. J.
     Phisiol. 249:G153~160.  
    [41] Hara, H. R., Funabiki, M. Iwata, K. Yamazaki. 1984. Portal absorption of small peptides in rats
     understrained condition[J]. J. Nutr., 114:1122~1129.
    [42] Addison J. M. et al. 1975. Evidence for active transport of tripeptides by hamster jejunum in vitro
     clin[J]. Sci., Mo;. Med., 49:305~312.
    [43]  Fraser, D. L., ?rskov, E. R., Whitelaw, F. G. and M. F. Franklin. 1991. Limiting amino acids in
     dairy cows given casein as the role source protein[J]. Livest, Prod. Sci., 28:235~525. 
    [44] Schwab, C. G. Bozak, C. K, and Whitehouse et al, 1992. Amino acids limitation and flow to the
     duodenum at four stages of lactation.1. Extent of Lysine limitation[J]. J. Dairy Sci. 75:3503~
     3518.
    [45] Chalpua, W., J. E. Chandler. 1975. Methionine and lysine nutrition of growing cattle[J]. J. Anim.
     Sci. 41:394(Abstr.).
    [46] Oltjen, R. R., W. Chalupa and L. L. slyter. 1970. Abomsal infusion of amino acids into urea and
     soy fed steers[J]. J. Anim. Sci. 31:250.
    [47] Fenderson, C. L. and W. G. Bergen. 1975. an assessment of essential amino acids requirements of
     growing steers[J]. J. Anim. Sci. 41:1759.
    [48] Titgemeyer, E.C., N.R. Merchen and L.L. Bergen. 1990. Sulfur-contain amino acid requirement of
     rapidly growing steers[J]. J. Anim. Sci. 68:2075.
    [49]  Ragland-Gray. K. K., 1997. Nitrogen metabolism and hormonal responses of steers fed wheat
     silage and infused with amino acids or casein[J]. Anim. Sci. 3038~3045. 
    [50] Nimrich, K., Hatfield, E. E. Kaminski, J. and Owens, 1970. Qualitative assessment of supplemental
     amino acids needs for growing lambs fed urea as the sole nitrogen source[J]. J. Nutr. 100:1301~
     1306.
    [51] Richardson, C. R. and Hatifield. 1978. The limiting amino acids in growing cattle. Sources[J]. Can.
     J. Anim. Sci. 77:241~251.
    [52]  Wilkinson, R. D., J. A. Cole and D. Lewis. 1984. Amino acid nutrition of the lactating sow:
     limiting by ndispensable amino acids[J]. Anim. Prod. 38:263~270. 
    [53] Storm, E. and ?rskov, E. R., 1984. The nutrtive value of rumen microorganisms in ruminats. 4. The
     limiting amino acids of microbial protein in ggowing sheep determined by anew approach[J]. Br. J.
     Nutr. 52:613~620.
    [54] Young. A. W., J. A. Boling and N. W. Bwadley 1973. Performance and plasma amino acids of
     steers fed soybean meal. Urea or no supplemental nitrogen in finishing rations[J]. J. Anim. Sci.
    
    
    参考文献 43
     40:775.
    [55]  Fenderson, C. L. and W. G. Bergen. 1975. an assessment of essential amino acids requirements of
     growing steers[J]. J. Anim. Sci. 41:1759. 
    [56] Titgemeyer, E.C., N.R. Merchen and L.L. Bergen. 1990. Sulfur-contain amino acid requirement of
     rapidly growing steers[J]. J. Anim. Sci. 68:2075.
    [57]  Gibb, D. L., Whitelaw, F. G. and M. F. Franklin. 1991. Limiting amino acids in dairy cows given
     casein as the sole source protein[J]. Livest. Prod. Sci., 28:235~525. 
    [58] Clark, J.H. 1975. Lactating responses to postruminal administration of protein and amino acds[J].
     J. Dairy Sci. 58:1178.
    [59] Egan, A. R., J. C. Macre, and C. S. Lamb. 1983. Threonine metabolisn in shee. 1. Threonine
     catabolism and gluconegensis in mature blackface wethers given por quality hill herbage[J]. Br. J.
     Nutr. 49:373.
    [60] Mitchell, H. N., Block, R. J. 1946. Some relationships between the amino acid contents of proteins
     and their nutritive values for the rat[J]. J. Biol. Chem. 163:599~620.
    [61] Oser, B. L. 1951. Method and D. J. Kyle. 1986. Flow of nitrogen from the rumen and abomasum in
     cattle and sheep given protein-free nutrients by intragastric infusion[J]. Br. J. Nutr. 56:241~248.
    [62]  Sprinson, D. B. and D. Rittenberg. 1949. Utilization of dietary ammonia for protein synthesis[J].J.
     Biol. Chem. 180: 707~714.  
    [63] Waterlow, J. C. Gardick, P. J. and Millward, D. J. 1978a. protein turnover in mammalian tissues and
     in the whole body[M]. North Holland Pub. 1 Co., Amsterdam.
    [64] Waterlow, J.C., Michacl, H. N. G., and Peter, J. G. 1987b. Protein turnover in man measured with
     15N:comparison of end products and dose regimes[J]. Amer. J. Physiol, 235(2):E165~E174.
    [65] Cronje, P. B., J. V. Nolan and R. A. Leng. 1992. Amino acid metabolism and whole-body protein
     turnover in lambs fed roughage-based diets: 1. Lysine and Leucine metabolism[J]. S. Afr. J. Anim.
     Sci. 22:193~206.
    [66] Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. and Pennie, K. 1980. Whole body and tissue
     protein synthesis in cattle[J]. Br. J. Nutr. 43:491~502.
    [67]  Lobley, G. E., Connell, A., and Buchan, V et al, 1990. Use oof a large-dose stable isotope procedure
     to measure muscle protein synthesis in sheep[J]. Proc. Nutr. Soc. 49:134A. 
    [68]  Lobley, G. E., P. M. Harris, and P.A. Skene et al, 1992. Resposes in tissue protein large-dose and
     continues-infusion techniques[J]. Br. J. Nutr.68:373~388. 
    [69] Harris, D. M., Dunshea, F. R., Bauman, D. E., et al.1993. Effect of in vivo somatotropin treatment
     of growing pigs on adipose tissue lipogenesis[J]. J. Amin. Sci. 71(12): 3293~3300.
    [70] Grove, G., and AA Jackson,, 1995. Measurement of protein turnover in normal man using the
     end-product method with oral[15N] g;ucome: comparison of single-dose and intermittent dose
     reimens[J]. Br. J. Nutr. 74:491~507.
    [71]  Wessels, R. H., E. C. Cole and D. Lewis. 1984. Amino acid nutrition of the lactating sow: Limiting
     by indispendensable amino acids[J]. Anim. Prod. 38:263~270.  
    [72]  Tomas, F. M., Ballard, F. J. and Pope, L. M. 1979. Age-dependent  change in the rate 
     by 3-methlhistidian and creatine excretion[J]. Clin. Sci.& Molecular. Medic. 
    
    
    44 氨基酸对浏阳生长山羊肝脏 IGF-I 基因表达及生化指标的影响
     56:341-346. 
    [73] Long, C. L., L. N.Haverberg, and V. R Young et al, 1975. Metabolism of 3-Methlhistidine in man.
     Metabolism. 24:929~935.
    [74] Storm, E. 1982. Isolation and nutritive value of rrumen microorganisms and their limiting amino
     acids for growing sheep[D]. Ph. D. Thesis, University of Aberdeen, 486pp.
    [75]  D’Mello, J. P. F. 1994. Amino acid imbalances, antagonisms and toxicities In J. P. F.
     D’Mello(Editor), Amino Acid in Farm Animal Nutrition. 
    [76] Baum, C. L., Teng, B. B., Davidson, N. O. Apoliporotein B messenger RNA editing in the rat liver.
     Modulation by fasting and refeeding a high carbohydrate diet[J]. J. Biol. Chem. 265(31):19263~
     19270.
    [77] Klauser,R.D.and Harford, J. B.1989. Cis-trans models for post-transcriptional gene regulation[J].
     Science. 246(4932):870~872.
    [78] Koeller, D.M., J. L Casey, M. W.Hentze, et al. 1989. Acytosolic protein binds to structural elements
     within the ion regulatory region of the transferring receptor mRNA[J]. Proc Natl. Acad. Sci. USA.
     86(10):3574~3578.
    [79] Barb, and F. M. Kautz. 1997. Nitrogen metabolism and hormonal responses of steers fed wheat
     silage and infused with amino acids or casein[J]. J. Anim. Sci. 75:30387~3045.
    [80] Harris, D. M., Dunshea, F. R., Bauman, D. E., et al.1993. Effect of in vivo somatotropin treatment
     of growing pigs on adipose tissue lipogenesis[J]. J. Amin. Sci. 71(12): 3293~3300.
    [81] Mejia-Guadarrama C. A.et al (2002) . Protein (lysine) restriction in primiparous lactating sows:
     Effects on metabolic state, somatotropic axis, and reproductive performance after weaning[J].J.
     Anim Sci. 2002 80: 3286~3300.
    [82] Barb, C. R. 1999. The brain-pituitary-adipocyte axis: role of leptin in modulating neuroendocrine
     function[J]. J. Anim. Sci. 77(4):1249~1257.
    [83] Harrell, R. J., Thomas, M. J. Boyd, R. D. et al. 1999. Ontogenic maturation ofthe somatotro
     pin/insulin -like growth factor axis[J]. J. Amin. Sci. 77(11):2934~2941.
    [84]  Daughaday W. H., Rotwein, P. 1989. Insulin-like growth factor1 and 2. Peptide, messenger
     ribonucl-eicacid and gene structures, serum and tissue concentrations[J]. Endocr. Rev. 10:68~91. 
    [85] Shinoda N, Tashiro T, Yamamori H. et al. Nutrition, 1997; 13(3):540~546.
    [86] Sara V R, Hall JK. Insulin-like growth factors and their binding proteins[J]. Physiol Rev, 1990:
     70:591.
    [87]  Sano H I, Naraha S S. Insulin responsiveness to glucose and tissue responsiveness to insulin during
     lactation in dairy cows[J]. Domestic Animal Endocrinol. 1993,10(3):191. 
    [88] McBride B W, Barton JI, Gihson JP. Use of recombinant boving Somatotropin for up to two
     consenutive lactations on dairy production traits[J]. J Dairy Sci.1990; 73:3448.
    [89]  Yang S.D., Yu J.S. and Hua C.W, On the mechanism of activation of protein kinase FA (an
     activating factor of ATP.Mg-dependent protein phosphatase) in brain myelin[J].J Protein Chem.
     1990 Feb;9(1):75~82.. 
    [90] Clemmons DR , Klibanski A, Underwood LE, et al. Reduction of plasma immunoreactive
     somatome-din C during fasting in humans[J]. .J Clin Endocrinol Metab, 1981, 53: 1247~1250.
    [91]  Wray-Cahen CD, Kerry DE,Evock-Clove CM, et al. Nutrients, hormones and genes in meat
    
    
    参考文献 45
     production. Ann Rev Nutr,1998,18:63~92.  
    [92] O’Sullivan U,Gluckman PD, Breier BH , et al. Insulin-like growth factor-1 (IGF-1) in mice reduces
     weight loss during starvation Clinical review 68:The endocrine regulation of fetal growth in late
     gestation:the role of insulin-like growth factors[J]. Endocrinology, 1989, 125:2793~2794.
    [93]  Thissen, J. P., Ketelslegrs, J. M., Underwood, L. E.1994. Nutritional regulation of the insulin-like
     growth factor[J]. Endocr. Rev. 15(1): 60~101. 
    [94] Lee, C. Y., Chung, C. s., Simmen, F. A. 1993. Ontogeny of the porcin insulin-like growth factor
     system. Mol. Cell. Endocrinol[J]. 93(1):27~28.
    [95] Kanamoto, R. 1994. Expression of C-mys and insulin-like growth factor-1 mRNA in the liver of
     growing rats vary reciprocally in response to change in dietary protein[J]. J. Nutr. 124:2329~
     2334.
    [96] Leili, S., Buonomo, F. C., Scanes, C. G. 1997. The effects of dietary restriction on insulin-like
     growth factor(IGF-1) and 2, and IGF-biding proteins in chickens[J]. Proc. Soc. Exp. Biol. Med.
     216(1):104:~111.
    [97] Maxwell, A., Butterwick, R., Yateman, M., et al. 1998. Nutrtional modulation of canine insulin-like
     growth factors and their biding proteins[J]. J. Endocrinol. 158(1):77~85.
    [98]  Duan, C., Plisetsdaya, E. M. 1993. Nutritional regulation of insulin-like growth factor-1 mRNA
     expression in salmon tissues[J]. J. Endocrinol. 139:243~252.  
    [99]  Peng, M., G. Pelletier., M.F. Palin, et al. 1996.Ontogeny of IGFs and IGFBPs m RNA levels and
     tissue concentrations in liver, kidney and skeletal muscle of pif[J]. Growth Dve. Age 60:171~
     187.  
    [100] MacRae, J. C., L. A. Bruce and D. S. Brown. 1995. Effect of utilization of absoebed amino acids in
     growing lambs given forage and forage: barley diets[J]. J. Anim. Sci. 61:277~284. [101]. Peter, 
     R. et al.J. Nutr.l973,103:13U-1318. 
    [101] Tsiagbe, V.K. et al.Enhanced immune responses in broiler chicks fed methionine-supplemental
     diets[J]. Poul.Sci.l987a,66:1147~1154. 
    [102] Swain, B.K. and Johri, T.S.Effect of supplemental methonine, choline and their combinations on
     the performance and immune response of brolers[J]. British Poultry Science. 2000,41(1):83~
     88.
    [103] Ogle CK,et al.Effect of glutamine on phagocytosis and bacterial killing by normal 
     and pediatric burn patient neutrophils[J]. JPEN.1994,18:128. 
    [104] Barbula, A.eta1.J. Nutr.l986,10:227~238.  
    [105] Alayne, G.J. Nutr.1991,121:1270~1278. 
    [106] Beisel WR. Single nutrients and immunity.Am J Clin Nutr. 1982 Feb;35(2 Suppl):417~68. Review.
    [107] Owens, J. A. 1991. Endocrine and substrate control of fetal growth placental and maternal
     influences and insulin growth factors[J]. Reproduction fetility and development. 3:501~517.  
    [108] Katsumata M, Kawakami S, Kaji Y, Takada R, Dauncey MJ. Differential regulation of porcine
     hepatic IGF-I mRNA expression and plasma IGF-I concentration by a low lysine diet[J]. J Nutr.
     2002 Apr;132(4):688~692.
    
    
    46 氨基酸对浏阳生长山羊肝脏 IGF-I 基因表达及生化指标的影响
    [109] Takennaka A, Oki N, Takahashi SI, Noguchi T.Dietary restriction of single essential amino acids
     reduces plasma insulin-like growth factor-I but does not affect plasma IGF-binding ptotein-1 in
     rats[J]. J. Nutr. 2000 Dec:130(12):2914~4.  
    [110] H. Yang et al (2000). Effects of dietary lysine intake during lactation on blood metabolites,
     hormones, and reproductive performance in primiparous sows[J].. J. Anim. Sci. 2000. 78:1001~
     1009.
    [111] Mejia-Guadarrama. 2002. Protein (lysine) restriction in primiparous lactating sows: Effects on
     metabolic state, somatotropic axis, and reproductive performance after weaning[J]. J. Anim. Sci.
     2002. 80:3286–3300.
    [112] DePew C. L.. 1994. Plasma concentrations of prolactin, glucose, insulin, urea nitrogen, and total
     amino acids in stallions after ingestion of feed or gastric administration of feed components[J].
     Anim Sci. 1994 72: 2345~2353.
    [113] Ragland-Gray K. K. et al .2000. Effect of dietary chromium-L-methionine on glucose metabolism
     of beef steers[J]. J. Anim Sci. 2000 78: 3177~3183. 
    [114] Van de Ligt C. P. A. et al. Assessment of chromium tripicolinate supplementation and dietary
     protein level on growth, carcass, and blood criteria in growing pigs[J]. J. Anim Sci. 80: 2412~
     2419.
    [115] Lee, K. U., Boyd, R. D., Austic, R. E., et al. 1993. Porcine somatotropin improves the efficiency of
     digestible protein use for protein deposition by growing pigs[J]. Asian-Aus. J. Anim. Sci.
     12(7):1096~1103.
    [116] Gazal S, Kouakou B, Amoah EA, Barb CR, Barrett JB, Gelaye S. Effects of
     N-methyl-D,L-aspartate on LH, GH, and testosterone secretion in goat bucks maintained under
     long or short photoperiods[J]. J Anim Sci. 2002 Jun;80(6):1623~1628.
    [117] Estienne M.J, Schillo KK, Green MA, Boling JA. Free fatty acids suppress growth hormone, but
     not luteinizing hormone, secretion in sheep[J]. Endocrinology. 1989 Jul;125(1):85~91.  
    [118] Estienne MJ, Schillo KK, Green MA, Hileman SM. Growth hormone release after N-methyl-D,
     L-aspartate in sheep: dose response and effect of an opioid antagonist[J]. J Anim Sci. 1990
     Oct;68(10):  
    [119] Barb C.R, Derochers G.M, Johnson B, Utley RV, Chang WJ, Rampacek GB, Kraeling RR.
     N-methyl-d,l-aspartate stimulates growth hormone and prolactin but inhibits luteinizing hormone
     secretion in the pig Domest Anim Endocrinol. 1992 Jul;9(3):225~32.
    [120] Estienne M.J, J.M.Harter-Dennis, and C.R.Barb et al, N-methyl-D,L-aspartate-induced growth
     hormone secretion in barrows: possible mechanisms of action[J]. J Anim Sci. 1996 Mar;74(3):
    [121] 597~602
    [122] Kornegay ET, Lindemann MD, Ravindran V. Effects of dietary lysine levels on performance and
     immune response of weanling pigs housed at two floor space allowances[J].J Anim Sci. 1993
     Mar;71(3):552~6.
    [123] Sahlu T. et al. 1992. Effect of intraperitoneal administration of lysine and methionine on mohair
     yield and quality in Angora goats[J]. J. Anim Sci. 1992 70: 3188~3193.
    [124] Amoikon E.K., J.M.Fernandez, and L.L.Southern et al, Effect of chromium tripicolinate on growth,
     glucose tolerance, insulin sensitivity, plasma metabolites, and growth hormone in pigs[J].J Anim
     Sci. 1995 Apr;73(4):1123~30.    
    
    
    参考文献 47
    [125] Staniar W. B. et al. 2001.Growth of thoroughbreds fed a low-protein supplement fortified with
     lysine and threonine[J]. J. Anim Sci. 79: 2143~2151.
    [126] Matthews J. O. et al. 2001. Estimation of the total sulfur amino acid requirement and the effect of
     betaine in diets deficient in total sulfur amino acids for the weanling pig[J]. J. Anim Sci. 79:
     1557~1565.
    [127] Coma. J. et al. 1995. Use of plasma urea nitrogen as a rapid response criterion to determine the
     lysine requirement of pigs[J]. J. Anim Sci. 73: 472~481. 
    [128] John A. Surface and in-depth characterization of TiC/C and Ti(C,N) layers by means of AES and
     Factor Analysis Anal Bioanal Chem[J]. 1995 Oct;353(3~4):468~472.
    [129] Coleman M E,Russell L, Etherton T D,1994 Porcine somatotropin(pST)increase IGF-ImRNA
     abundance in liver and subcutaneous adipose tissue but not in skeletalmuscle of growing pigs[J]. J
     Amin Sci.72(4):918~924
    [130] Thissen, J. P., Ketelslegrs, J. M., Underwood, L. E.1994. Nutritional regulation of the insulin-like
     growth factor. Endocr[J]. Rev. 15(1): 60~101.
    [131] Peter G, Angst H, Koch U. Biochemical aspects of amino acid metabolism in Psoriasis vulgaris
     (author's transl) Z Naturforsch [C]. 1973 Jul-Aug;28(7):446~449.
    [132] Kanamoto Y, Shibata R, Ozono Y, Harada T. Effect of tonsillectomy on peripheral blood T cell
     surface markers and cytokine production in patients with IgA nephropathy accompanied by chronic
     tonsillitis.Nippon Jinzo Gakkai Shi[J]. 1994 Nov;36(11):1296~302.
    [133] Pao CI, Farmer PK, Begovic S, Villafuerte BC, Wu GJ, Robertson DG, Phillips LS. Regulation of
     insulin-like growth factor-I (IGF-I) and IGF-binding protein 1 gene transcription by hormones and
     provision of amino acids in rat hepatocytes[J]. Mol Endocrinol. 1993 Dec;7(12):1561~8. 
    [134] Oka Y., T. Sohda, and K.Iwata et al, Co-localisation of insulin-like growth factor II and the
     proliferation marker MIB1 in hepatocellular carcinoma cells[J]. J Clin Pathol[J]. 1997
     Feb;50(2):135~137
    [135] Nolten LA, Steenbergh PH, Sussenbach JS. The hepatocyte nuclear factor 3beta stimulates the
     transcription of the human insulin-like growth factor I gene in a direct and indirect manner[J].J
     Biol Chem. 1996 Dec 13;271(50):31846~54.
    [136] Wang XM, Liu JH, Shen WW. A primary study on the relationship between the weight of newborn
     and sucking pressureShanghai Kou Qiang Yi Xue[J]. 1998 Mar;7(1):10~1.  
    [137] Nolten L.A, F.M. van Schaik, and P.H.Steenbergh et al, 1994. Expression of the insulin-like growth
     factor I gene is stimulated by the liver-enriched transcription factors C/EBP alpha and LAP. Mol
     Endocrino[J]l. Dec;8(12):1636~1645.
    [138] Clarke S.D.,and Abraham S. 1992 Gene expression :nutient control of pre- and posttranscriptional
     events[J], FASEB.J 6,3146~3152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700