阴阳分治发作期癫痫的临床与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“阴阳分治法”是根据发作期癫痫不同病机属性,分为阴痫和阳痫两型进行治疗的一种中医疗法。这种辨治方法最早由元代巢元方提出。后来,元代危亦林《世医得效方》提出用五生饮治疗阴痫,清代程国彭《医学心悟》提出用定痫丸治疗阳痫,至此阴阳分治法基本确立。时至今日,已历经700多年的临床验证。目前《中医内科学》教材已将五生饮合二陈汤列为治疗阴痫的代表方,黄连解毒汤合定痫丸列为治疗阳痫的代表方。由于这些方剂中含有生南星、生半夏、生白附子、生川乌、朱砂等多味毒性药物,当今临床应用较少。在癫痫的中医药基础研究中,目前国内使用的动物实验模型均是单纯的西医病理模型,尚未建立符合中医证候特点的癫痫动物模型。本研究分为临床研究和实验研究两部分。其中,实验研究又分为动物实验研究和细胞培养实验研究两节。目的是探讨阴阳分治法的抗痫疗效、安全性及作用机理,同时建立阴痫和阳痫两个中医证候癫痫动物模型。
     第一部分阴阳分治发作期癫痫的临床研究
     目的:
     观察阴阳分治法治疗发作期癫痫的临床疗效及安全性。
     方法:
     将入院当天癫痫发作≥3次的癫痫患者随机分为治疗组与对照组,对照组仅给予常规抗痫西药治疗,治疗组给予常规抗痫西药的同时,按阴阳分治法辨证口服中药(阴痫予减味五生饮合二陈汤,阳痫予黄连解毒汤合定痫丸)及醒脑静注射液静滴。通过治疗前后癫痫发作次数减少率、中医证候评价、抗癫痫西药平均总用量及NHS3、MRS、MBI等多种量表进行评价。
     结果:
     共纳入合格受试者12例,有11例完成治疗方案,其中对照组5例,治疗组6例,脱落1例。治疗组与对照组治疗前后癫痫发作次数减少率、抗癫痫西药平均总用量及NHS3、MRS、MBI等量表得分比较均无统计学意义。中医证候评价结果显示,对照组改善闭证疗效较好(P<0.05),治疗组改善风、闭、肾阴虚、痰、脾气虚等证疗效较好(P<0.05),其中以痰证、脾气虚证最显著(P<0.01)。治疗组所有病例未见药物不良反应。
     结论:
     阴阳分治法可能能够较好地改善发作期癫痫患者中医证候,其中以痰证和脾气虚证效果最好,且未见不良反应。
     第二部分阴阳分治发作期癫痫的实验研究
     第一节动物实验研究
     一、实验一:减味五生饮合二陈汤治疗阴痫型癫痫大鼠的实验研究
     目的:
     建立阴痫型癫痫大鼠模型,探讨减味五生饮合二陈汤的抗痫疗效和机理。
     方法:
     长期予大鼠喂饲高脂饲料及寒性中药稀释煎液,并以匹罗卡品致痫,以制作阴痫型癫痫大鼠模型。以治疗阴痫的代表方减味五生饮合二陈汤治疗阴痫型癫痫大鼠,同时以治疗阳痫的代表方黄连解毒汤合定痫丸(汤剂)为对照,记录癫痫发作潜伏期和到达癫痫持续状态(SE)时间;高效液相色谱(HPLC)法检测脑内氨基酸神经递质;HE染色切片观察病理变化;免疫组化技术半定量分析caspase-3表达情况,以评价建模质量及探讨减味五生饮合二陈汤的抗痫疗效和机制。
     结果:
     与正常对照组比较,各致痫组大鼠脑内谷氨酸(Glu)、天门冬氨酸(Asp)、γ-氨基丁酸(GABA)、甘氨酸(G1y)、丙氨酸(A1a)等氨基酸类神经递质浓度均下降,caspase-3表达量均上升,其中以阴痫中药组变化幅度最小,阴痫中药对照组次之,但均无统计学意义。各致痫组大鼠癫痫发作潜伏期和到达SE时间比较均无统计学意义。各组癫痫大鼠大脑皮质、海马、肺、肝、肾等组织均出现较严重损伤,但组间比较无明显差异。
     结论:
     本实验初步建立了阴痫型癫痫大鼠模型。减味五生饮合二陈汤及黄连解毒汤合定痫丸(汤剂)均可抑制阴痫型癫痫大鼠脑内Glu、Asp、GABA、Gly、Ala等氨基酸类神经递质的下降及caspase-3的表达,其中以减味五生饮合二陈汤作用较强,提示这些方剂均可能对阴痫型癫痫大鼠具有一定的治疗作用,其中可能以减味五生饮合二陈汤疗效较佳。
     二、实验二:黄连解毒汤合定痫丸(汤剂)治疗阳痫型癫痫大鼠的实验研究
     目的:
     建立阳痫型癫痫大鼠模型,探讨黄连解毒汤合定痫丸(汤剂)的抗痫疗效和机理。
     方法:
     长期予大鼠喂饲高脂饲料及热性中药稀释煎液,并以匹罗卡品致痫,以制作阳痫型癫痫大鼠模型。以治疗阳痫的代表方黄连解毒汤合定痫丸(汤剂)治疗阳痫型癫痫大鼠,同时以治疗阴痫的代表方减味五生饮合二陈汤为对照,记录癫痫发作潜伏期和到达SE时间;HPLC法检测脑内氨基酸类神经递质;HE染色切片观察病理变化;免疫组化技术半定量分析caspase-3表达情况,以评价建模质量及黄连解毒汤合定痫丸(汤剂)的抗痫疗效和机制。
     结果:
     与正常对照组比较,各组致痫大鼠脑内Glu、Asp、GABA、Gly、Ala等氨基酸类神经递质浓度均下降,caspase-3表达量均上升,其中阳痫中药组Asp、Ala下降幅度及caspase-3上升幅度在各组中最小,阴痫中药对照组各种氨基酸类神经递质浓度下降及caspase-3上升幅度最大,但均无统计学意义。各致痫组大鼠癫痫发作潜伏期和到达SE时间比较均无统计学意义。各组致痫大鼠大脑皮质、海马、肺、肝、肾等组织均出现较严重损伤,但组间比较无明显差异。
     结论:
     本实验初步建立了阳痫型癫痫大鼠模型。黄连解毒汤合定痫丸(汤剂)可抑制阳痫型癫痫大鼠脑内Glu、Asp、GABA、Gly、Ala等氨基酸类神经递质的下降及caspase-3的表达,提示其可能对阳痫型癫痫大鼠有一定的治疗作用。减味五生饮合二陈汤可促进阳痫型癫痫大鼠脑内Glu、Asp、GABA、Gly、Ala等氨基酸类神经递质的下降及caspase-3的表达,提示其可能会加重阳痫型癫痫大鼠的病情。
     第二节细胞培养实验研究
     一、实验一:谷氨酸损伤PC12细胞模型的建立实验研究
     目的:
     探讨Glu损伤PC12细胞模型的建立方法。
     方法:
     以不同浓度的Glu作用PC12细胞,分别于24小时、48小时和72小时三个时间点观察细胞形态学;MTT法检测细胞活力,以确立Glu对PC12细胞活力影响的量效及量时关系,探讨合适的造模时间及浓度。
     结果:
     细胞形态的观察结果显示,在同一时间点中,自5mMGlu组开始,随Glu浓度的升高,细胞折光性及立体感逐渐下降,轮廓逐渐模糊,生长逐渐稀疏,但不同时间点同一Glu浓度组的细胞形态未发现有明显差别。
     细胞活力检测结果显示,与正常对照组比较,24小时、48小时和72小时三个时间点均自Glu浓度为5mM开始,随着浓度的逐渐升高,细胞活力逐渐下降。除40mM组外,正常对照组和各不同浓度的Glu模型组细胞随着培养时间的延长,细胞活力逐渐增加,即Glu对PC12细胞的活力存在剂量、时间依赖作用:细胞活力随Glu浓度的递增而下降,随培养时间的延长而上升。浓度为10mmol/L以上的Glu处理PC12细胞,在24小时、48小时和72小时三个时间点,其细胞活力与正常对照组比较均显著降低(P<0.01)。
     结论:
     Glu对PC12细胞的作用呈剂量和时间依赖关系:细胞活力随Glu浓度增高而降低,随培养时间延长而增强。10mmol/L的Glu作用PC12细胞24小时可能是建立Glu损伤PC12细胞模型较理想的实验条件。
     二、实验二:减味五生饮合二陈汤含药血清对谷氨酸损伤PC12细胞治疗作用的实验研究
     目的:
     在细胞水平上进一步探讨减味五生饮合二陈汤的抗痫疗效和机理。
     方法:
     将实验细胞随机分为6组,分别是正常对照组、Glu损伤模型组、正常大鼠血清组、寒痰型大鼠血清组、阴痫中药对照血清组、阴痫中药血清组。以长期喂饲高脂饲料及寒性中药稀释煎液的方法建立“寒痰”型体质大鼠,并以这些大鼠制作的减味五生饮合二陈汤含药血清处理Glu损伤PC12细胞模型,同时以黄连解毒汤合定痫丸(汤剂)含药血清为对照。MTT法检测细胞活力;流式细胞技术检测细胞内游离Ca2+浓度。
     结果:
     与正常对照组比较,各组细胞活力均下降,其中以阴痫中药血清组下降幅度最小,阴痫中药对照血清组次之,除阴痫中药血清组外,均有显著差异(P<0.01)。阴痫中药血清组与阴痫中药对照血清组比较亦有统计学意义(P<0.05)。
     与正常对照组比较,除G1u损伤模型组细胞内游离Ca2+浓度升高外,各组均下降,以阴痫中药血清组最低,阴痫中药对照血清组次之。其中,Glu损伤模型组、阴痫中药对照血清组、阴痫中药血清组与正常对照组比较均有显著差异(P<0.01)。阴痫中药血清组与中阴痫中药对照血清组比较亦有显著差异(P<0.01)。
     结论:
     以“寒痰”型体质大鼠制作的减味五生饮合二陈汤含药血清及黄连解毒汤合定痫丸含药血清均能提高Glu损伤PC12细胞活力及减少Ca2+内流,提示上述方剂的含药血清可能均有治疗Glu损伤PC12细胞的作用,其中可能以减味五生饮合二陈汤含药血清疗效较佳。
     三、实验三:黄连解毒汤合定痛丸(汤剂)含药血清对谷氨酸损伤PC12细胞治疗作用的实验研究
     目的:
     在细胞水平上进一步探讨黄连解毒汤合定痫丸(汤剂)的抗痫疗效和机理。
     方法:
     将实验细胞随机分为6组,分别是正常对照组、Glu损伤模型组、正常大鼠血清组、痰热型大鼠血清组、阳痫中药对照血清组、阳痫中药血清组。以长期喂饲高脂饲料及热性中药稀释煎液的方法建立“痰热”型体质大鼠,并以之制作的黄连解毒汤合定痫丸(汤剂)含药血清处理Glu损伤PC12细胞模型,同时以减味五生饮合二陈汤含药血清为对照。MTT法检测细胞活力;流式细胞技术检测细胞内游离Ca2+浓度。
     结果:
     与正常对照组比较,各组细胞活力均下降,其中以阳痫中药对照血清组下降幅度最小,阳痫中药血清组次之。各组与正常对照组比较,均有显著差异(P<0.01)。阳痫中药对照血清组与阳痫中药血清组比较亦有显著差异(P<0.01)。
     与正常对照组比较,除G1u损伤模型组外,各组细胞内游离Ca2+浓度均下降,痰热型大鼠血清组最低,阳痫中药血清组次之,阳痫中药对照血清组再次之。除阳痫中药对照血清组外,痰热型大鼠血清组、阳痫中药血清组与正常对照组比较均有统计学意义(P<0.05)。阳痫中药对照血清组与阳痫中药血清组比较无统计学意义。
     结论:
     以“痰热”型体质大鼠制作的黄连解毒汤合定痫丸含药血清和减味五生饮合二陈汤含药血清均能提高Glu损伤PC12细胞活力,其中黄连解毒汤合定痫丸含药血清尚能减少Ca2+内流,提示上述方剂的含药血清均可能对Glu损伤PC12细胞有一定治疗,但黄连解毒汤合定痫丸含药血清与减味五生饮合二陈汤含药血清疗效高低尚需进一步研究。
The therapy based on yin and yang differentiation is a kind of traditional therapy in Chinese medicine (CM) which treats epilepsy attacking frequently under two conditions that are yinxian and yangxian, one of approaches of classification of epilepsy from the respect of CM on the basis of different pathogenesis between cold and heat property in terms of CM. This therapy originated from the suggestion of Chao Yuanfang in the Yuan era. Then Wushengying was put forward to treating yinxian in Shi Yi De Xiao Fang writed by Wei Yilin in the Yuan period. And Dingxianwan was recommended to treat yangxian in Yi Xue Xin Wu authored by Cheng Guopeng in the qing dynasty. It is advisable to treat yinxian in wushengyin (WSY) and Erchentang (ECT), while yangxian in huanglianjiedutang (HLJDT) and dingxianwan (DXW) in the teaching material of Internal of Medicine of CM. However, clinical appliance for these decoctions is little, the reason for which may result from their inclusion of certain toxic Chinese medicines like Rhizoma Arisaematis Erubescentis, Rhizoma Pinelliae, Rhizoma Typhonii Gigantei, all of which have not been processed, and Cinnabaris. Besides, domestic researches on anti-epileptic effects and mechanisms of Chinese medicine are carried on by pathological animal models of western medicine (WM) nowadays, and animal models characterized by CM differentiation of symptoms and signs, which is named zheng hou in traditional Chinese medicine, have not been established. From what had been discussed above, we designed and undertook this program which was consisted of two parts that were clinical trial and empirical study which included the animal experiment and the cell culture experiment. And the main aim was to explore the effects, safety, and mechanisms of the therapy based on yin and yang differentiation, and set up epileptic animal models which were yinxian and yangxian characterized by zheng hou of CM.
     Part1Clinic Trial of The Therapy Based on Yin and Yang Differentiation
     Objective
     To observe clinical effects and safety of the therapy based on yin and yang differentiation in epilepsy attacking frequently.
     Methods
     Patients who suffered from epileptic seizure more than three times were randomly divided into the treatment group and the control group. The control group only received conventional AEDs, while the treatment group received conventional AEDs, Chinese herbal drugs that were JWWSY and ECT, or HLJDT and DXW on the basis of the therapy based on yin and yang differentiation, and intravenous drip of xingnaojing parenteral solution as well. Therapeutic effects were measured by the decrease in seizure rate between prior and post-treatment, zheng hou evaluation, average total dosages of different AEDs, NHS3, MBI, and MRS respectively.
     Results
     There were12cases who participated in this trial, and11of them completed the program, of which5were in the control group, and6were in the treatment group, while1lost due to sudden death. Although most of parameters like the decrease in seizure rate between prior and post-treatment, average total dosages of different AEDs, NHS3, MBI, MRS, and etc we measured were no statistical difference between the two groups. In terms of evaluation of zheng hou, the control group adepted in improving asthenia(P<0.05), while the treatment group was effective at ameliorating wind, asthenia, renal yin deficiency, phlegm, and spleen energy deficiency(P<0.05), especially at phlegm and spleen energy deficiency (P<0.01). There was no side effect in all the cases in the treatment group.
     Conclusion
     It is superior for the therapy based on yin and yang differentiation in terms of improvement in relative symptoms and signs of zheng hou of patients suffering from epilepsy attacking frequently, especially in zhenghou of phlegm and spleen energy deficiency, and no side effect was observed.
     Part2Experimental Research of The Therapy Based on Yin and Yang Differentiation
     Section1Animal Research
     Experiment1Research on Effects of JWSY and ECT on Yinxian Epileptic Rats
     Objective
     To explore anti-epileptic effects and mechanisms of JWWSY and ECT, and establish yinxian epileptic rat model.
     Methods
     The yinxian epileptic rat model was made by the method of feeding on high fat diet and CM in cold property for a long time, and then the being induced seizure by PILO. Yinxian epileptic rats induced by PILO were treated with JWWSY and ECT, the representative recipe for treatment of yinxian, while HLJDT and DXW, the representative recipe for treatment of yangxian, was used as the control formula. Time spots of seizure latency period and seizure status were record, and concentrations of amino acid neurotransmitters were measured by HPLC method, and the expression of caspase-3was determined by immunohistochemisty technology, and pathological changes were observed by hematoxylin and eosin stain. All of indexes mentioned above were adopted to evaluate the anti-epileptic effects and mechanisms of JWWSY and ECT, and assess the quality of epileptic animal model characterized by zheng hou.
     Results
     All kinds of concentrations of amino acid neurotransmitters measured in this experiment were lower, and the expression of caspase-3was higher in all the epileptic rats, in all of which the variation of yinxian CM group was the least, and the yinxian CM control group was the second, when compared with normal control group. However, there was no statistical difference in concentrations of amino acid neurotransmitters of Glu, Asp, GABA, Gly, and Ala, and in the expression of caspase-3between epileptic rats and normal control ones. Also, There was no recognizable difference in time spots of seizure latency period and seizure status among epileptic groups. And the tissue of the cerebral cortex and hippocampus, lung, liver, and kidney of all epileptic rats was injured severely, but there was no significant difference in all epileptic groups.
     Conclusion
     JWWSY and ECT, as well as HLJDT and DXW can inhibit the declination of different sorts of amino acid neurotransmitters, including Glu, Asp, GABA, Gly, and Ala, and apoptosis in the central nervous system, and effects of JWWSY and ECT on which are better, which indicates that such decoctions may have certain effects in treating the yinxian epileptic rats induced by PILO, and JWWSY and ECT seems to be superior. Yinxian epileptic rat model was set up in this experiment initially.
     Experiment2Research on Effects of HLJDT and DXW on Yangxian Epileptic Rats Objective
     To explore anti-epileptic effects and mechanisms of HLJDT and DXW, and establish yangxian epileptic rat model.
     Methods
     The yangxian epileptic rat model was made by the method of feeding on high fat diet and CM in heat property for a long time, and then being induced seizure by PILO. Yangxian epileptic rats induced by PILO were treated with HLJDT and DXW, the representative recipe for treatment of yangxian, while JWWSY and ECT, the representative recipe for treatment of yinxian, was used as the control formula. Time spots of seizure latency period and seizure status were record, and concentrations of amino acid neurotransmitters were measured by HPLC method, and the expression of caspase-3was determined by immunohistochemisty technology, and pathological changes were observed by hematoxylin and eosin stain. All of indexes mentioned above were adopted to evaluate the anti-epileptic effects and mechanisms of HLJDT and DXW, and assess the quality of epileptic animal model characterized by zheng hou.
     Results
     All kinds of concentrations of amino acid neurotransmitters measured in this experiment were lower, and the expression of caspase-3was higher in all the epileptic rats, when compared with normal control group. In all of epileptic groups, the variation of amino acid neurotransmitters including Asp and Ala and the expression of caspase-3of yangxian CM group was the least. In contrast, the variation of the indexes concerned of yangxian CM control group was the biggest. However, there was no statistical difference in concentrations of amino acid neurotransmitters of Glu, Asp, GABA, Gly, and Ala, and in the expression of caspase-3between epileptic rats and normal control ones. And there was no meaningful difference in time spots of seizure latency period and seizure status among epileptic groups. The tissue of the cerebral cortex and hippocampus, lung, liver, and kidney of all epileptic rats was injured severely, but there was also no significant difference in all of the epileptic groups.
     Conclusion
     HLJDT and DXW can inhibit the declination of different sorts of amino acid neurotransmitters, including Glu, Asp, GABA, Gly, and Ala, and apoptosis in the central nervous system, which shows that such decoctions may have certain effects in treating the yangxian epileptic rats induced by PILO. The yangxian epileptic rats model was established initially in this experiment.
     Section2Cell Culture Research
     Experiment1Research on Establishment of PC12Cell Trauma Model Induced by Glutamate Objective
     To explore a proper methods to establish PC12cell trauma model for the following experiments.
     Methods
     PC12cells were treated with various concentrations of Glu, and cell morphology and viability were measured by MTT assay at24h,48h, and72h respectively so that the concentration-effect and concentration-time relationship between the effects of Glu neurotoxicity and the viability of PC12cells was investigated.
     Results
     The results of the observation of cell morphology indicated that the cell reflection, dimensionality, sketch, and the growth condition become bad to worse step by step as the increasing concentrations of Glu at the same time spot from5mM Glu group, while there was on obvious difference in cell morphology at different time spots comparison. The outcomes of the vitality of cells manifested that the cell vitality declined gradually as the increase of the concentration of Glu from5mM at24h,48h, and72h time spots. However, the vitality of cells in normal control group and trauma model groups induced by Glu in different concentrations. The relationship between effects of Glu neurotoxicity and viability of PC12cells was in manner of concentration and time-dependence:the higher the concentration of Glu is, the lower the viability of PC12cells becomes;the longer the incubation time is, the higher the viability of PC12cells becomes. There was significant difference in the cell vitality between PC12cells administered by Glu in the concentration of10mmol/L and in the normal control group.
     Conclusion
     The relationship between effects of Glu neurotoxicity and viability of PC12cells was in manner of concentration and time-dependence:the higher the concentration of Glu is, the lower the viability of PC12cells becomes;the longer the incubation time is, the higher the viability of PC12cells becomes. PC12cells administered by Glu neurotoxicity in the concentration of10mmol/L for24h maybe the ideal conditions for the following experiment.
     Experiment2Therapeutic effects of JWSY and ECT drug-containing serum on PC12cell trauma model induced by Glu neurotoxicity
     Objective
     To move forward a single step to explore the therapeutic action and mechanisms of anti-epileptic effects of JWWSY and ECT at the cellular level.
     Methods
     The experimental cells were randomly devided into six groups, which were the normal control group, the Glu trauma model group, the normal rat serum group, the cold phlegm rat group, the yinxian CM control group, and the yinxian CM group. The PC12cell trauma models induced by Glu neurotoxicity were treated in JWWSY and ECT drug-containing serum made by rats with body constitution in cold phlegm, which were made by the method of feeding on high fat diet and CM in cold property for a long time, while HLJDT and DXW drug-containing serum was used as the control formula. The MTT assay was utilized to detect the viability of cells, and flow cytometry was adopted to assess the concentration of intra-cellular calcium.
     Results
     The cell viability of all groups administrated by Glu declined, in all of which the yinxian CM serum group was the least, and the yinxian CM control serum group was the second, when compared with the normal control group. There was a significant difference between groups administrated by Glu and the normal control group (P<0.01), except the yinxian CM serum group. And there was a meaningful difference between the yinxian CM serum group and the yinxian CM control serum group as well (P<0.01).
     Except the Glu trauma model group, the concentrations of intra-cellular calcium of all groups administrated by Glu decreased, in all of which the yinxian CM serum group was the most, and the yinxian CM control serum group was the second, when compared with the正常对照group. Both the yinxian CM control serum group and the yinxian CM serum group had a recognizable difference in contrast to the正常对照group(P<0.01). And there also was a noticeable difference between the yinxian CM control serum group and the yinxian CM serum group(P<0.01).
     Conclusion
     JWWSY and ECT, as well as HLJDT and DXW drug-containing serum made by rats with body constitution in cold phlegm can increase the vitality and inhabit internal flow of calcium of the PC12cell trauma models induced by Glu neurotoxicity, which indicates that the drug-containing serum of such decoctions, especially JWWSY and ECT drug-containing serum, may have certain therapeutic effects in treating the PC12cell trauma models.
     Experiment3Therapeutic effects of HLJDT and DXW drug-containing serum on PC12cell trauma model induced by Glu neurotoxicity Objective
     To further explore the therapeutic action and mechanisms of anti-epileptic effects of HLJDT and DXW at the cellular level.
     Methods
     The experimental cells were randomly devided into six groups, which were the normal control group, the Glu trauma model group, the normal rat serum group, the heat phlegm rat serum group, the yangxian CM control serum group, and the yangxian CM serum group. The PC12cell trauma models induced by Glu neurotoxicity were treated in HLJDT and DXW drug-containing serum made by rats with body constitution in heat phlegm, which were made by the method of feeding on high fat diet and CM in heat property for a long time while JWWSY and ECT drug-containing serum was used as the control formula. The MTT assay was utilized to detect the viability of cells, and flow cytometry was adopted to assess the concentration of intra-cellular calcium.
     Results
     The cell viability of all groups administrated by Glu declined, in all of which the range in declination of the yangxian CM control serum group was the least, and the yangxian CM serum group was the second, when compared with the normal control group. There was a significant difference between groups administrated by Glu and the normal control group(P<0.01). And there was a meaningful difference between yangxian CM serum group and the yangxian CM control serum group as well (P<0.01).
     Except the Glu trauma model group, the concentrations of intra-cellular calcium of all groups administrated by Glu decreased, in all of which, the range of the heat phlegm rat serum group was the most, the yangxian CM serum group was the second, and the yangxian CM control serum group was the last, when compared with the normal control group. And except the yangxian CM control serum group, both the heat phlegm rat serum group and the yangxian CM serum group had a statistical difference in contrast to the normal control group(P <0.05), while there was no noticeable difference between the yangxian CM control serum group and the yangxian CM serum group.
     Conclusion
     HLJDT and DXW, as well as JWWSY and ECT drug-containing serum made by rats with body constitution in heat phlegm can increase the vitality of the PC12cell trauma models induced by Glu neurotoxicity, and the HLJDT and DXW drug-containing serum can also inhabit the internal flow of calcium, which manifests that there seems to be certain the therapeutic effects for the drug-containing serum of such decoctions in treating the PC12cell trauma models, but which decoction, the HLJDT and DXW, or JWWSY and ECT drug-containing serum of yangxian pre-seizure rats,is better needs further exploration.
引文
[1]陈灏珠,林果为.实用内科学[M].第1版.北京:人民卫生出版社,2009:2882-2883.
    [2]Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma[J]. Epilepsia,2011,52(4):657-78.
    [3]田德禄,蔡淦.中医内科学[M].第1版.上海:上海科学技术出版社,2006:176-181.
    [4]Ma S, Liu H, Jiao H, et al. Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and Ca(2+) influx[J]. Neurotoxicology,2012,33(1):59-69.
    [5]朱萱萱,戴兵,殷坤,等.定痫丸对戊四唑点燃癫痫大鼠脑内神经递质含量及海马c-fos表达的影响[J].中华中医药学刊,2011,(03):468-470.
    [6]张横柳.益气熄风化痰药抗癫痫的机理研究[J].中药新药与临床药理,2003,(04):237-240.
    [7]杨蓉,王明正,成银霞.半夏超临界CO_2乙醇萃取物对皮层定位注射青霉素诱发大鼠痫性放电和海马区癫痫相关递质的影响[J].中华中医药学刊,2009,(10):2108-2110.
    [8]张晓东,潘国凤.病证结合模式评价中药临床前有效性探讨[J].中华中医药学刊,2007,(10):2144-2146.
    [9]王永炎,沈绍功.今日中医内科[M].第1版:人民卫出版社,2000:166-191.
    [10]刘瑞明.帛书《五十二病方》“人病马不痫”考证[J].中医文献杂志,2007,(04):33-36.
    [11]杨锡强,易著文.儿科学[M].第6版.北京:人民卫生出版社,2006:458.
    [12]贡明才.儿童惊厥200例临床分析[J].中国妇幼保健,2007,(03):378-379.
    [13]Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy[J]. Nat Rev Neurol,2010.
    [14]王维治,罗祖明.神经病学[M].第5版.北京:人民卫生出版社,2007:228.
    [15]张葆青,陈鲁.古代文献中癫痫的病名演化[J].辽宁中医药大学学报,2008,(11):16-17.
    [16]王永炎,严世芸.实用中医内科学[M].第2版.北京:上海科学技术出版社,2009:449-452.
    [17]马融.经方治痫进展[J].北京中医,1988,(04):49-50.
    [18]蒙显军.小柴胡汤合桂枝加芍药汤治疗癫痫的国外研究概况[J].中国中医药信息杂志,1999,(07):79.
    [19]杨敏.加减柴胡桂枝干姜汤对戊四唑诱导癫痫小鼠作用的实验研究[J].中华中医药学刊,2007,(12):2567-2568.
    [20]徐心仁.柴胡加龙牡汤治疗头痛、眩晕、癫痫[J].四川中医,1986,(09):34.
    [21]陈晓薇,沈创鹏,曹伟锋,等.痫宁片对氯化锂-匹罗卡品致痫大鼠大脑神经元损伤及c-fos表达的影响[J].福建中医药,2010,(03):45-47.
    [22]张横柳,贾晓林.痫宁片治疗癫痫266例脑电图分析[J].中医杂志,1996,(06):353-355+324.
    [23]陈晓薇.张横柳教授辨治癫痫经验介绍[J].新中医,2008,(02):9-10.
    [24]汤铁城.宁痫散治疗癫痫[J].中国医药学报,1989,(06):46.
    [25]王宗起.癫痫丸治疗痫证324例疗效观察[J].吉林中医药,1988,(01):10-11.
    [26]朱文中,阎孝诚.化痫止抽二号方治疗75例癫痫小结[J].湖北中医杂志,1982,(05):24-25.
    [27]李善举,肖洪涛,梁孟玲.吐泻导痰法为主治疗癫痫106例[J].辽宁中医杂志,1994,(05).
    [28]陈少玫,高树彬,尤文质.谢海洲教授治疗癫痫用药特点探析[J].中医药通报,2004,(06):19-21.
    [29]中华医学会.临床诊疗指南-癫痫病分册[M].第1版.北京:人民卫生出版社,2007:130.
    [30]佟丹,张文华,张卉.中药治疗小儿多发性抽动症疗效观察[J].辽宁中医杂志,2008,(05):711-712.
    [31]崔闽鲁,黄鼎明,吴凌峰.定(疒间)丸合丹参滴注治疗多发梗塞性痴呆17例[J].中国中西医结合杂志,1992,(07):438-439.
    [32]李泰.辨证分型治疗84例血管性头痛的体会[J].河北中医,1988,(05):1-4.
    [33]马学清,马圣华,耿昱.定痫丸治疗癫痫27例疗效观察[J].北京中医,1993,(04):29-30.
    [34]张文林.零壹散合定痫丸治疗中风继发痫病69例[J].浙江中西医结合杂志,2004,(09).
    [35]毕道才,张霞,韩金秀.定痫丸加减治疗小儿痫证[J].湖北中医杂志,2000,(08):32-33.
    [36]许杰红,赖新生,赖东兰.针刺结合定痫丸加减治疗小儿癫痫64例[J].中医杂志,2004,(05):349.
    [37]洪丽妃.针刺结合定痫丸治疗小儿癫痫的临床研究[J].2007.
    [38]粟茂.定痫汤合针刺治疗癫痫56例临床体会[J].四川中医,2009,(06):76-77.
    [39]郭鼎天.定痫丸化裁治疗痫证8例[J].陕西中医,2007,(11):1522.
    [40]牛攀东.定癎汤治疗脑血管病后癫癎32例疗效观察[J].实用神经疾病杂志,2004,(05):75.
    [41]毕道才,张霞,韩金秀.定痫丸加减治疗小儿痫证[J].湖北中医杂志,2000,(08):32-33.
    [42]王学峰,晏勇,吕克潜.定痫丸煎剂对癫痫病人安定—脑电图β功率及脑脊液中亮脑啡肽的影响[J].中国医药学报,1996,(03):58.
    [43]谢炜,于云红,赵云燕,等.同病异治复方对戊四氮慢性点燃大鼠痫性发作的影响[J].辽宁中医杂志,2010,(10):1898-1900+2079.
    [44]谢炜,汪珍珍,赵云燕,等.同病异治复方对三种不同急性癫痫模型的药效学观察[J].中医药导报,2010,(07):4-7.
    [45]王学峰,文世全,吕洋,等.定痫丸抗痫作用及其安全性的实验研究[J].中国中医急症,
    2004,(04):236-237+270.
    [46]于云红.“同病异治”复方对戊四氮慢性点燃大鼠脑区兴奋性及海马区谷氨酸代谢通路的影响.硕士论文.南方医科大学,52,2010.
    [47]汪珍珍.同病异治复方对急性癫痫模型的作用及对PTZ点燃大鼠GABA传导通路的影响.硕士论文.南方医科大学,47,2010.
    [48]黄兆胜.中药学[M].第1版.北京:人民卫生出版社,2002:333-334+370-371.
    [49]周超凡,林育华.传统中药朱砂应用概况及其安全性[J].药物不良反应杂志,2008,(03):184-189.
    [50]梁爱华,王金华,薛宝云,等.朱砂对大鼠的肝肾毒性研究[J].中国中药杂志,2009,(03):312-318.
    [51]齐江宁,胡广林,庞京团,等.含朱砂口服中成药中汞的生物利用性及安全性评价[J].时珍国医国药,2010,(11):2749-2751.
    [52]刘云.学习仲景重用生半夏的体会[J].江苏中医杂志,1984,(03):29-30.
    [53]林大勇,李海波.论吴鞠通之用半夏[J].吉林中医药,2009,(04):355-357.
    [54]陈百平,董其圣.辛热开破治癫痫[J].中医杂志,1984,(07):39-40.
    [55]西安医学院中医学教研组.镇痫丸治疗癫痫的临床观察[J].西安交通大学学报(医学版),1959,(01):17-19.
    [56]刘文龙,宋凤瑞,刘志强,等.川乌与半夏配伍禁忌的化学研究[J].化学通报,2008,(06):435-438.
    [57]林武.胡建华教授治疗顽固性癫痫经验——附35例报告[J].福建中医药,1995,(04).
    [58]吴秀珍.自拟定痫汤治疗癫痫18例[J].临床医学,1996,(09):36-37.
    [59]西安医学院药理学教研组.镇痫丸治疗癫痫作用的初步探讨[J].西安交通大学学报(医学版),1959,(01):13-17.
    [60]陈晓平,陈沛嘉.生半夏的临床应用[J].辽宁中医杂志,1983,(12):18-19.
    [61]冀汝文.治痫方疗效观察[J].山西中医,2009,(06):21.
    [62]李文虎,张壮丽,孟素云.中西药结合治疗癫痫持续状态30例[J].中国实用医药,2008,(21):165.
    [63]张跃进,孟祥海,许玲,等.不同炮制方法对半夏化学成分含量的影响研究[J].中国实验方剂学杂志,2008,(12):21-23.
    [64]王志强,李炳超.半夏药理作用研究进展[J].山西医药杂志(下半月刊),2009,(01):65-67.
    [65]杨守业,叶文华,吴子伦,等.半夏炮制前后对小白鼠急性、亚急性和蓄积性毒性的研究[J].中成药,1988,(07):18-19.
    [66]何前松,蒋婧妍,冯泳,等.小半夏加茯苓汤的急性毒性研究[J].辽宁中医药大学学报,2009,(05):200-201.
    [67]国家药典委员会编.中华人民共和国药典:2010年版·一部[M].第1版.北京:中国医药科技出版社,2010:54+110.
    [68]汤丽霞,邵家德.《中国药典》2000年版一部内容寻疵[J].中医药学刊,2002,(05):675.
    [69]王瑞根.生半夏的毒性及临床应用[J].中国中药杂志,1989,(01):53-54.
    [70]冯永辉,汪兴军.浅谈生半夏的临床应用[J].陕西中医,2006,(03):353-354.
    [71]余国俊.关于半夏毒性与用量的答问[J].中国社区医师,2002,(06):40.
    [72]朱良春.中药用量与作用之关系[J].中医药通报,2007,(05):7-11.
    [73]冀汝文.治痫方疗效观察[J].山西中医,2009,(06):21.
    [74]吴桂平.生半夏煎煮内服的应用体会[J].中国中医药现代远程教育,2010,(07):71.
    [75]冯永辉,汪兴军.浅谈生半夏的临床应用[J].陕西中医,2006,(03):353-354.
    [76]王娟.生半夏的临床应用体会[J].国医论坛,2003,(05):29.
    [77]董其圣.姜春华教授应用毒剧药的经验[J].辽宁中医杂志,1996,(08):3-5.
    [78]李文虎,张壮丽,孟素云.中西药结合治疗癫痫持续状态30例[J].中国实用医药,2008,(21):165.
    [79]孙其新.中医之秘在于量——李可学术思想探讨之十二[J].中医药通报,2008,(05):8-12.
    [80]谢恬.俞栩老中医治疗中风心得[J].新中医,1987,(11):7-8.
    [81]李可.中医急危重症疑难病经验专辑[M].第1版:山西科学技术出版社,2005:7-8.
    [82]冀汝文.治痫方疗效观察[J],山西中医,2009,(06):21.
    [83]曾俊辉,曾智春.自拟通脉愈痫丸治疗脑外伤继发性癫痫43例疗效观察[J].新中医,1987,(06):35+43.
    [84]陈园桃.定痫方治疗癫痫病145例[J].南京中医药大学学报,1998,(04):57.
    [85]汤正才,杨光华,卫丽,等.新加保和丸治疗难治性癫痫41例报告[J].四川中医,1992,(12):28-29.
    [86]胡建华,周英豪,顾明昌,等.熄风豁痰法治疗癎证148例的临床分析与药理实验[J].天津中医,1985,(06):14-15.
    [87]吴连英,程丽萍,毛淑杰,等.天南星(虎掌南星)生、制品毒性比较研究[J].中国中药杂志,1997,(02):26-28.
    [88]徐伯平.大剂量生南星煎服的临床毒性观察[J].新中医,1997,(02):35-36+34.
    [89]汪桃利,张蓓,黄圆圆,等.大剂量生南星治疗鼻咽癌的毒性学研究[J].中药材,2009,(05):829-831.
    [90]张文炜,张鹰.张鹰教授妙用生南星治疗癫痫的经验[J].中国中医药信息杂志,2001,(05):72.
    [91]龚雨萍.胡建华应用生南星经验[J].江西中医药,1999,(05):7-8.
    [92]陈园桃,陈顺中.化瘀定痫方治疗中风后迟发性癫痫的临床报告[J].黑龙江中医药,2007,(01):14-15。
    [93]邵继军.刘嘉湘用生南星治恶性肿瘤的经验[J].上海中医药杂志,1994,(01):27-28.
    [94]李金兰,范尚坦,肖华.生天南星的临床应用[J].海峡药学,2003,(05):98-99.
    [95]周虹,徐文弟.生物化学与分子生物学高级教程[M].第1版.北京:科学出版社,2002:273.
    [96]Rowley NM, Madsen KK, Schousboe A, et al. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control[J]. Neurochem Int,2012.
    [97]McDonald JW, Johnston MV, Excitatory amino acid neurotoxicity in the developing brain[J]. NIDA Res Monogr,1993,133:185-205.
    [98]McDonald JW, Johnston MV. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development[J]. Brain Res Brain Res Rev, 1990,15(1):41-70.
    [99]Rodriguez MJ, Bernal F, Andres N, et al. Excitatory amino acids and neurodegeneration: a hypothetical role of calcium precipitation[J]. Int J Dev Neurosci, 2000,18(2-3):299-307.
    [100]Santos PS, Campelo LM, Freitas RL, et al. Lipoic acid effects on glutamate and taurine concentrations in rat hippocampus after pilocarpine-induced seizures[J]. Arq Neuropsiquiatr,2011,69(2B):360-4.
    [101]Radwan NM, El HANA, Ibrahim KM, et al. Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine[J]. Photomed Laser Surg,2009,27(3):401-9.
    [102]Smolders I, Bortolotto ZA, Clarke VR, et al. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures[J]. Nat Neurosci, 2002,5 (8):796-804.
    [103]Ronne-Engstrom E, Hillered L, Flink R, et al. Intracerebral microdialysis of extracellular amino acids in the human epileptic focus[J]. J Cereb Blood Flow Metab, 1992,12(5):873-6.
    [104]Rakhade SN, Loeb JA. Focal reduction of neuronal glutamate transporters in human neocortical epilepsy [J]. Epilepsia,2008,49(2):226-36.
    [105]Zeng LH, Bero AW, Zhang B, et al. Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of Tuberous Sclerosis Complex[J].Neurobiol Dis, 2010,37 (3):764-71.
    [106]Tremblay N, Warren R, Dykes RW. The effects of strychnine on neurons in cat somatosensory cortex and its interaction with the inhibitory amino acids, glycine, taurine and beta-alanine[J]. Neuroscience,1988,26(3):745-62.
    [107]Hayashi M, Kumada S, Shioda K, et al. Neuropathological analysis of the brainstem and cerebral cortex lesions on epileptogenesis in hereditary dentatorubral-pallidoluysian atrophy[J]. Brain Dev,2007,29(8):473-81.
    [108]Stagg CJ, Lang B, Best JG, et al. Autoantibodies to glutamic acid decarboxylase in patients with epilepsy are associated with low cortical GABA levels[J]. Epilepsia, 2010,51(9):1898-901.
    [109]Mazzuferi M, Palma E, Martinello K, et al. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy[J]. Proc Natl Acad Sci U S A,2010,107(7):3180-5.
    [110]Pavlov I, Walker MC. Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy[J]. Neuropharmacology,2012.
    [111]Jaeken J. Genetic disorders of gamma-aminobutyric acid, glycine, and serine as causes of epilepsy[J]. J Child Neurol,2002,17 Suppl 3:3S84-7; discussion 3S88.
    [112]王金发.细胞生物学[M].第1版.北京:科学出版社,2003:604.
    [113]Shelton SN, Dillard CD, Robertson JD. Activation of caspase-9, but not caspase-2 or caspase-8, is essential for heat-induced apoptosis in Jurkat cells[J]. J Biol Chem, 2010,285(52):40525-33.
    [114]Chen M, Wang J. Initiator caspases in apoptosis signaling pathways[J]. Apoptosis, 2002,7(4):313-9.
    [115]Zandy AJ, Lakhani S, Zheng T, et al. Role of the executioner caspases during lens development[J]. J Biol Chem,2005,280(34):30263-72.
    [116]Braun JS, Tuomanen El, Cleveland JL. Neuroprotection by caspase inhibitors[J]. Expert Opin Investig Drugs,1999,8(10):1599-1610.
    [117]Wang Z, Watt W, Brooks NA, et al. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors[J]. Biochim Biophys Acta,2010,1804(9):1817-31.
    [118]Schindler CK, Pearson EG, Bonner HP, et al. Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy [J]. J Cereb Blood Flow Metab,2006,26(4):583-9.
    [119]Chhanabhai M, Krajewski S, Krajewska M, et al. Immunohistochemical analysis of interleukin-lbeta-converting enzyme/Ced-3 family protease, CPP32/Yama/Caspase-3, in Hodgkin's disease [J]. Blood,1997,90(6):2451-5.
    [120]郭小明.Caspase-3与癫痫神经元损伤[J].中国康复理论与实践,2004,(05):34-35.
    [121]Henshall DC, Clark RS, Adelson PD, et al. Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy[J]. Neurology,2000,55(2):250-7.
    [122]Chen X, Bao G, Hua Y, et al. The effects of topiramate on caspase-3 expression in hippocampus of basolateral amygdala (BLA) electrical kindled epilepsy rat[J]. J Mol Neurosci,2009,38(2):201-6. [123]Yamauchi T. [Molecular mechanism of learning and memory based on the research for Ca2+/calmodulin-dependent protein kinase II] [J]. Yakugaku Zasshi,2007,127(8):1173-97.
    [124]Higley MJ, Sabatini BL. Calcium signaling in dendritic spines[J]. Cold Spring Harb Perspect Biol,2012,4(4):a005686.
    [125]寿天德.神经生物学[M].第1版.北京:高等教育出版社,2001:57-59.
    [126]Marchi S, Marinello M, Bononi A, et al. Selective modulation of subtype III IP(3)R by Akt regulates ER Ca(2+) release and apoptosis[J]. Cell Death Dis,2012,3:e304.
    [127]Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis[J]. Cell Calcium,2011,50(3):222-33.
    [128]Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy [J]. Pharmacol Ther, 2005,105(3):229-66.
    [129]Linnertz R, Wurm A, Pannicke T, et al. Activation of voltage-gated Na(+) and Ca(2)(+) channels is required for glutamate release from retinal glial cells implicated in cell volume regulation[J]. Neuroscience,2011,188:23-34.
    [130]Lin TY, Lu CW, Huang SK, et al. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca(2)(+) influx in rat cerebral cortex nerve terminals[J]. Pharmacology,2011,88(1-2):26-32.
    [131]Marchetti C, Gavazzo P, Stafford GI, et al. South African plants used in traditional medicine to treat epilepsy have an antagonistic effect on NMDA receptor currents [J]. J Ethnopharmacol,2011,137(1):382-8.
    [132]Steinbeck JA, Henke N, Opatz J, et al. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy[J]. Exp Neurol, 2011,232(2):185-94.
    [133]王晓鹏,王维平.癫痫动物模型点燃的研究进展[J].脑与神经疾病杂志,2006,(04):316-317+310.
    [134]Garcia GME, Garcia MI, Matias GJ. [Experimental models in epilepsy] [J]. Neurologia, 2010,25(3):181-8.
    [135]Scorza FA, Arida RM, Naffah-Mazzacoratti MG, et al. The pilocarpine model of epilepsy: what have we learned?[J]. An Acad Bras Cienc,2009,81(3):345-65.
    [136]Curia G, Longo D, Biagini G, et al. The pilocarpine model of temporal lobe epilepsy [J]. J Neurosci Methods,2008,172(2):143-57.
    [137]Cavalheiro EA, Leite JP, Bortolotto ZA, et al. Long-term effects of pilocarpine in rats:structural damage of the brain triggers kindling and spontaneous recurrent seizures[J]. Epilepsia,1991,32(6):778-82.
    [138]赵立新,张春丽,赵建新.王国三治疗癫痫经验[J].中华中医药杂志,2011,(06):1324-1326.
    [139]高学敏.中医药学高级丛书-中药学[M].第1版.北京:人民卫生出版社,2000:1302-1303.
    [140]Szyndler J, Maciejak P, Turzynska D, et al. Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats[J]. Neurosci Lett, 2008,439(3):245-9.
    [141]戴兵.定痫丸对戊四唑点燃癫痫大鼠脑内神经递质含量及海马c-fos表达的影响[J].2010.
    [142]国家中医药管理局.中医病证诊断疗效标准[M].第1版.南京:南京大学出版社,1994:35-36.
    [143]张伯臾.中医内科学[M].第第1版版.上海:上海科学技术出版社,1985:214-215.
    [144]瞿治平.癫痫发作分类及药物临床疗效评定的建议(草案)[J].神经精神疾病杂志,1980,(04):248.
    [145]庞增园,于征淼,吴智兵,等.中西医结合综合方案治疗癫痫的临床观察[J].湖南中医药大学学报,2011,(04):42-44.
    [146]王文志,王德生,王太平,等.中国五省农村人群癫痫流行病学抽样调查[J].中华医学杂志,2002,(07):20-23.
    [147]Duggan MB. Epilepsy in rural Ugandan children:seizure pattern, age of onset and associated findings[J]. Afr Health Sci,2010,10(3):218-25.
    [148]Karaagac N, Yeni SN, Senocak M, et al. Prevalence of epilepsy in Silivri, a rural area of Turkey[J]. Epilepsia,1999,40(5):637-42.
    [149]Hauser WA, Annegers JF, Kurland LT. Prevalence of epilepsy in Rochester, Minnesota: 1940-1980[J]. Epilepsia,1991,32(4):429-45.
    [150]Yemadje LP, Houinato D, Boumediene F, et al. Prevalence of epilepsy in the 15 years and older in Benin:A door-to-door nationwide survey [J]. Epilepsy Res,2012,99(3):318-26.
    [151]汤颖,马广玉.中国农村黑龙江省东宁县癫痫的流行病学研究(英文)[J].中国临床康复,2004,(04):770-771,
    [152]Quinn TJ, Langhorne P, Stott DJ. Barthel index for stroke trials:development, properties, and application[J]. Stroke,2011,42(4):1146-51.
    [153]Lees KR, Bath PM, Schellinger PD, et al. Contemporary outcome measures in acute stroke research:choice of primary outcome measure[J]. Stroke,2012,43(4):1163-70.
    [154]周东,耿嘉.量表在癫癇诊治中的应用[J].中华神经科杂志,2004,(06):99-100.
    [155]O'Donoghue MF, Duncan JS, Sander JW. The National Hospital Seizure Severity Scale: a further development of the Chalfont Seizure Severity Scale[J]. Epilepsia, 1996,37(6):563-71.
    [156]Nickel R, Silvado CE, Germiniani FM, et al. Quality of life issues and occupational performance of persons with epilepsy[J]. Arq Neuropsiquiatr,2012,70(2):140-4.
    [157]Lusic I, DzamonjaG, Titlic M, et al. Psychometric validation of the Croatian version of the Quality of Life in Epilepsy Inventory (QOLIE-31)[J]. Coll Antropol, 2011,35 (4):1177-84.
    [158]Hu Y, Guo Y, Wang YQ, et al. [Reliability and validity of a Chinese version of the Quality of Life in Epilepsy Inventory (QOLIE-31-P)] [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2009,38(6):605-10.
    [159]Yuan JL, Bruno A, Li T, et al. Replication and extension of the simplified modified rankin scale in 150 chinese stroke patients[J]. Eur Neurol,2012,67(4):206-10.
    [160]Sulter G, Steen C, De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials[J]. Stroke,1999,30(8):1538-41.
    [161]MAHONEY FI, BARTHEL DW. FUNCTIONAL EVALUATION:THE BARTHEL INDEX[J]. Md State Med J,1965,14:61-5.
    [162]Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation[J]. J Clin Epidemiol,1989,42(8):703-9.
    [163]Collin C, Wade DT, Davies S, et al. The Barthel ADL Index:a reliability study[J]. Int Disabil Stud,1988,10(2):61-3.
    [164]卓大宏.中国康复医学[M].第2版.北京:华夏出版社,2003:122.
    [165]Leung SO, Chan CC, Shah S. Development of a Chinese version of the Modified Barthel Index- validity and reliability[J]. Clin Rehabil,2007,21(10):912-22.
    [166]Morley D, Selai C, Thompson A. The self-report Barthel Index:preliminary validation in people with Parkinson's disease[J]. Eur J Neurol,2012,19(6):927-9.
    [167]周信杰.《癫痫中医证候调查表》的专家问卷调查及临床预调查.硕士论文.广州中医药大学,48,2010.
    [168]Perucca E, Tomson T. The pharmacological treatment of epilepsy in adults [J]. Lancet Neurol,2011,10(5):446-56.
    [169]Bauer J, Bos M, Reuber M. Treatment strategies for focal epilepsy[J]. Expert Opin Pharmacother,2009,10(5):743-53.
    [170]Racine RJ. Modification of seizure activity by electrical stimulation:cortical areas[J]. Electroencephalogr Clin Neurophysiol,1975,38(1):1-12.
    [171]Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats:behavioural, electroencephalographic and neuropathological study[J]. Behav Brain Res,1983,9(3):315-35.
    [172]Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures[J]. Neuroscience, 1987,23(3):953-68.
    [173]Chaudhary G, Malhotra J, Chaudhari JD, et al. Effect of different lithium priming schedule on pilocarpine-induced status epilepticus in rats[J]. Methods Find Exp Clin Pharmacol,1999,21(1):21-4.
    [174]Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats with pilocarpine:low mortality but high proportion of rats developing epilepsy[J]. Epilepsy Res,2001,46(2):111-9.
    [175]Turski WA. Pilocarpine-induced seizures in rodents--17 years on [J]. Pol J Pharmacol, 2000,52(1):63-5.
    [176]Jope RS, Morrisett RA, Snead OC. Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats[J]. Exp Neurol,1986,91(3):471-80.
    [177]Roth D, Hamburger-Bar R, Lerer B. Peripheral versus central manifestations in the toxic interaction of lithium and pilocarpine[J]. Biol Psychiatry,1989,25(2):153-8.
    [178]Turski L, Cavalheiro EA, Czuczwar SJ, et al. The seizures induced by pilocarpine: behavioral, electroencephalographic and neuropathological studies in rodents[J]. Pol J Pharmacol Pharm,1987,39(5):545-55.
    [179]曾凡猛,梁军潮,詹纯列,等.锂-匹罗卡品颞叶癫痫模型的建立及致痫大鼠早期死亡原因分析[J].立体定向和功能性神经外科杂志,2009,(06):329-332.
    [180]Ellenberger C, Mevissen M, Doherr M, et al. Inhibitory and excitatory neurotransmitters in the cerebrospinal fluid of epileptic dogs[J].Am J Vet Res, 2004,65 (8):1108-13.
    [181]el-Yamany NA, Horn E. Time courses of aspartate and glutamate concentrations in the focus area during penicillin induced epileptiform activity in awake rats[J]. Arch Ital Biol,2002,140(1):13-30.
    [182]姚泰.生理学[M].第1版.北京:人民卫生出版社,2001:357-358.
    [183]Heja L, Barabas P, Nyitrai G, et al. Glutamate uptake triggers transporter-mediated GABA release from astrocytes[J]. PLoS One,2009,4(9):e7153.
    [184]Heja L, Nyitrai G, Kekesi O, et al. Astrocytes convert network excitation to tonic inhibition of neurons[J]. BMC Biol,2012,10:26.
    [185]Scarpace ET, Matheny M, Strehler KY, et al. Simultaneous introduction of a novel high fat diet and wheel running induces anorexia [J]. Physiol Behav,2012,105(4):909-14.
    [186]Kim KJ, Lee OH, Han CK, et al. Acidic Polysaccharide Extracts from Gastrodia Rhizomes Suppress the Atherosclerosis Risk Index through Inhibition of the Serum Cholesterol Composition in Sprague Dawley Rats Fed a High-Fat Diet[J]. Int J Mol Sci, 2012,13 (2):1620-31.
    [187]Wang YL, Zhai Y, Huo XL, et al. [The effect of low frequency transcranial magnetic stimulation on neuropeptide-Y expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine][J]. Zhonghua Wai Ke Za Zhi,2007,45(24):1685-7.
    [188]Shan Y, Qin J, Chang XZ, et al. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure][J]. Zhonghua Er Ke Za Zhi,2004,42 (4):260-3.
    [189]Li Q, Liu LY, Zhu YY, et al. [Effect of chronic transauricular kindled seizures on passive-avoidance test memory retention in rats] [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2006,35(4):419-23.
    [190]Noda A, Hashizume R, Maihara T, et al. NER rat strain:a new type of genetic model in epilepsy research[J]. Epilepsia,1998,39(1):99-107.
    [191]Weise J, Engelhorn T, Dorfler A, et al. Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus:contribution of delayed neuronal cell death to seizure-induced neuronal injury[J]. Neurobiol Dis, 2005,18(3):582-90.
    [192]Henshall DC, Chen J, Simon RP. Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures[J]. J Neurochem, 2000,74 (3):1215-23.
    [193]Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, et al. Roles of glutamine in neurotransmission[J]. Neuron Glia Biol,2010,6(4):263-76.
    [194]中医药科学研究思路与方法[M].第1版.上海:上海中医药大学出版社,2003:143,225-227.
    [195]Evans RC, Morera-Herreras T, Cui Y, et al. The Effects of NMDA Subunit Composition on Calcium Influx and Spike Timing-Dependent Plasticity in Striatal Medium Spiny Neurons[J]. PLoS Comput Biol,2012,8(4):e1002493.
    [196]Otsuki T, Nakama H, Kanamatsu T, et al. Glutamate metabolism in epilepsy: 13C-magnetic resonance spectroscopy observation in the human brain[J]. Neuroreport, 2005,16(18):2057-60.
    [197]Lee E, Williams Z, Goodman CB, et al. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells [J]. Neurotoxicology, 2006,27(4):558-66.
    [198]Bai G, Kusiak JW. Nerve growth factor up-regulates the N-methyl-D-aspartate receptor subunit 1 promoter in PC12 cells[J]. J Biol Chem,1997,272(9):5936-42.
    [199]Diao HX, Song SL, Liang H, et al. [Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC12 cells][J]. Zhong Yao Cai, 2009,32(3):398-400.
    [200]Wang N, Deng Y, He Q, et al. [Neuroprotective effects of serum with Tongqiao Huoxue decoction (TQHXD) against glutamate-induced neurotoxicity in PC12 cells] [J]. Zhongguo Zhong Yao Za Zhi,2010,35(10):1307-10.
    [201]Edwards MA, Loxley RA, Williams AJ, et al. Lack of functional expression of NMDA receptors in PC12 cells[J]. Neurotoxicology,2007,28(4):876-85.
    [202]Casado M, Lopez-Guajardo A, Mellstrom B, et al. Functional N-methyl-D-aspartate receptors in clonal rat phaeochromocytoma cells [J]. J Physiol,1996,490 (Pt 2):391-404.
    [203]朱琳琳.柴胡皂苷a对IL-1β刺激神经元样PC12细胞的干预作用及机制研究.硕士论文.南方医科大学,44,2009.
    [204]李卫华,唐荣华,张宇红.戊四氮及NF-κB圈套结构对神经元样细胞突触素表达的影响[J].华中科技大学学报(医学版),2006,(04):429-432+561.
    [205]Penugonda S, Mare S, Goldstein G, et al. Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12[J]. Brain Res,2005,1056(2):132-8.
    [206]刘红.中药复方药理研究方法进展——血清药理学[J].湖北民族学院学报(医学版),2004,(04):38-40.
    [207]路晓钦.中药复方现代化药理研究方法进展[J].中药新药与临床药理,2002,(01):59-61.
    [208]胡继鹰.基础医学细胞生物学[M].第2版.湖北:武汉大学出版社,2000:164.
    [209]Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway[J]. J Ethnopharmacol, 2010,131(1):122-9.
    [210]Rui C, Yuxiang L, Yinju H, et al. Protective effects of Lycium barbarum polysaccharide on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion[J]. J Mol Histol,2012.
    [211]Touret M, Parrot S, Denoroy L, et al. Glutamatergic alterations in the cortex of genetic absence epilepsy rats[J]. BMC Neurosci,2007,8:69.
    [212]Furshpan EJ, Potter DD. Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture[J]. Neuron,1989,3(2):199-207.
    [213]Sombati S, Coulter DA, DeLorenzo RJ. Neurotoxic activation of glutamate receptors induces an extended neuronal depolarization in cultured hippocampal neurons[J]. Brain Res,1991,566(1-2):316-9.
    [214]Sombati S, Delorenzo RJ. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture[J]. J Neurophysiol,1995,73(4):1706-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700