反应堆控制系统容错控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应堆控制系统由大量的传感器、执行器等设备组成,它是保证核电站安全、稳定运行的重要系统之一。目前,核电站主要采用硬件冗余的容错控制技术以保证设备发生故障时系统仍能正常运行,这种技术不仅需要大量的资金投入,而且在设计和建造阶段也会带来大量的可靠性和安全性方面的问题。随着计算机技术、人工智能技术的发展,采用人工神经网络技术、模糊逻辑控制技术等智能控制技术对反应堆控制设备进行容错控制,将可以在很大程度上改善因采用硬件冗余方法所带来的缺陷。因此,研究反应堆控制系统的故障诊断与容错控制方法,对于提高核电站的安全性能、可靠性能和经济性能将具有十分重要的意义。
     本文以核电站反应堆控制系统作为研究对象,针对在不同的功率运行工况下设备发生故障的情况,对反应堆控制系统的容错控制技术和方法进行了分析和研究。
     首先,对反应堆控制系统进行了研究。分别对稳压器压力控制系统、稳压器水位控制系统和蒸汽发生器水位控制系统进行了分析,研究了控制系统的功能、特点,控制系统各项参数之间的相互关系,以及各项参数的变化规律等,同时研究了传感器和执行器典型的故障模型,分析了在这两个控制设备之间故障模型相互转换所需要的条件。
     其次,对几种常用的容错控制设计方法进行了研究。分析了被动容错控制方法和主动容错控制方法几种常见的类型。对基于Riccati型方程的容错设计方法、基于控制律重组的容错设计方法和基于状态反馈控制器的容错设计方法进行了研究。分析了这三种容错设计方法容错控制的设计过程,并指出其不足之处。
     在此基础上,研究了基于BP神经网络的容错控制方法。针对标准的BP神经网络算法具有收敛速度较慢、容易陷入局部极小点而得不到全局最优等缺点,在增加动量项、改进变换函数、改进误差信号和改变学习速率等几个方面,对BP神经网络算法进行了改进,通过仿真实验验证了改进后的BP神经网络算法能够有效的提高网络的收敛速度,并且更有可能获得全局最优。进而确定了容错控制方案,并建立了动态模型库,对于已知的故障,系统能够自动识别故障模型,同时启动控制律重构单元对其进行控制律重构;对于未知的故障,系统将对其进行模型辨识,并将新建立的模型储存到模型库中不断对其完善。文中首先以稳压器压力测量传感器作为研究对象,在三种功率运行工况下(功率处于100%的运行工况、功率由100%下降至90%的运行工况和功率由90%上升至100%的运行工况),对其发生卡死故障和恒偏差故障的情况进行研究,仿真实验结果表明,基于改进的BP神经网络算法的容错控制方法对于修正稳压器压力测量传感器的故障是有效的。其次以蒸汽发生器压力测量传感器作为研究对象对该方法进行验证,仿真实验结果表明,该方法对于修正蒸汽发生器压力测量传感器的故障也同样有效。
     最后,研究了基于模糊神经网络的容错控制方法。针对人工神经网络连接权值的物理意义不明确、知识解释困难的缺点,采用将人工神经网络与模糊逻辑控制相结合的模糊神经网络的方法对控制设备进行容错控制。以稳压器水位测量传感器作为研究对象,在上述三种功率运行工况下对其进行研究,仿真实验结果表明,采用该方法能够实时的获取到传感器的可信度,并且该方法对于修正稳压器水位测量传感器的故障是有效的。
The reactor control system includes a large number of sensors and actuators. It is oneof the important systems which can ensure the nuclear power plant to secure and stableoperation. At present, the nuclear power plant mainly makes use of the hardwareredundancy fault-tolerant control technology to ensure that system can still run normally inthe control equipment failure occurs. This technology not only needs a lot of money, butalso will pruduce a lot of problems about reliability and safety in design and constructionstage. When the intelligent control technology such as artificial neural network technologyand fuzzy logic control technology is used to carry through fault-tolerant control for thereactor control system, it will greatly improve the defects of using the hardware redundancymethod. So studying the fault diagnosis and fault-tolerant control methods for the reactorcontrol system, it is the very vital significance that improve safety, reliability and economyof the nuclear power plant.
     In this paper, the reactor control system will be as the research object. Against thecontrol equipment fault in different power operating condition, the fault-tolerant controltechnology and method of the reactor control system will be analyzed and studied from thefollowing aspects.
     Firstly, the reactor control system is studied. Respectively on the pressurizer pressurecontrol system, the pressurizer water level control system and the steam generator water levelcontrol system are analyzed, and studied the function and characteristics of the control system,the relationship among various parameters and the change law of various parameters.Meanwhile, the sensor and actuator is studied in typical fault model, and analyzes the requiredconditions of the fault model mutual transformation between the two control equipment.
     Secondly, several kinds of fault-tolerant comtrol design methods are studied. Severalcommon types of the passive fault-tolerant control method and the active fault tolerantcontrol method are analyzed. It will respectively study the fault-tolerant design methodbased on the Riccati equation, the fault-tolerant design method based on the control ratereconfiguration and the fault-tolerant design method based on the state feedback controller.It mainly analyzes their application condition, the design process of fault-tolerant controland points out its shortcomings.
     On this basis, the fault-tolerant control method based on BP neural network is studied. Inview of the standard BP neural network algorithm has the slower convergence speed, easy tofall into local minimum point and can not get the global optimal, the BP neural networkalgorithm will be improved by increasing the momentum, improving the transform function,improving the error signal and changing the learning rate. Through simulation experiment, itis shown that the improved BP neural network algorithm can effectively improve theconvergence speed and obtain the global optimal. And then, it determines the fault-tolerantcontrol scheme and establishes the dynamic model library. For the known fault, the systemcan automatically identify fault model, at the same time carry through fault-tolerant control bythe control rate reconfiguration unit. For the unknown fault, the system will use the modelidentification method, and the new fault model will be stored into the dynamic model libraryto continuously improve on it. The pressurizer pressure measuring sensor will be as theresearch object in the simulation experiment. In three kinds of power operating condition (theoperating condition of power at100%,the operating condition of power from100%to90%and the operating condition of power from100%to90%), the simulation experimentsimulates the sensor fault of the locked and the constant deviation. The simulationexperimental results show that the fault-tolerant control method based on the improved BPneural network algorithm can effectively correct the pressurizer pressure measuring sensorfault. The steam generator pressure measuring sensor will be as the research object to validatethe method. The simulation experimental results show that this metnod is equally effective tocorrect the steam generator pressure measuring sensor fault.
     Finally, the fault-tolerant control method based on fuzzy neural network is studied. Inview of the physical meaning of the artificial neural network connection weights is not clear,and its knowledge to explain difficultly, the fuzzy neural network method will be used forfault-tolerant control by combining with the artificial neural network and fuzzy logic control.The simulation experimental will adopt the pressurizer water level measuring sensor as theresearch object. The simulation experimental results show that using this method can get thecredibility of sensor in real time, and the method can effectively correct the pressurizerwater level measuring sensor fault.
引文
[1]石雷,丁保君.切尔诺贝利核事故对白俄罗斯生态环境的影响[J].环境与可持续发展,2012,1:93-96.
    [2]刘兴武.美国运载火箭最近几次失败原因的初步分析[J].国际太空,1999,8:3-5.
    [3]王天运,高官文,薛一江.福岛核电站泄漏事故污染控制与消除的成与败[J].环境科学与管理,2012,37(4):112-116.
    [4] Karpenko M.,Sepehri N. Fault-tolerant control of a servo hydraulic positioning systemwith cross port leakage[J]. IEEE Transactions on Control Systems Technology,2005,13(1):155-161.
    [5] Weng Z.,Patton R. J.,Cui P. Active fault-tolerant control of a double invertedpendulum[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal ofSystems and Control Engineering,2007,221(6):895-904.
    [6]孙多青.六轮摇臂式月球探测车协调驱动自适应模糊容错控制[J].宇航学报,2012,33(1):76-84.
    [7] Bonivento C.,Isidori A.,Marconi L.,Paoli A. Implicit fault-tolerant control:application to induction motors[J]. Automatica,2004,40(3):355-371.
    [8] Sauter D.,Hamelin F.,Noura H.,Theilliol D. Fault tolerant control in dynamicsystems[C].15thIFAC World Congress,Barcelona,Spain,2002,177-182.
    [9]梁津津,王青,董朝阳.基于自适应模糊估计器的卫星容错控制系统[J].宇航学报,2010,31(8):1970-1975.
    [10]林常青,李学虎.临近空间飞行器的自适应积分滑模容错控制[J].装备指挥技术学院学报,2012,23(1):79-83.
    [11]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [12]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [13]王仲生.智能容错控制技术及应用[M].北京:国防工业出版社,2002.
    [14] Zhang D. F.,Wang Z. Q.,Hu S. S. Robust satisfactory fault tolerant control ofuncertain linear discrete-time systems:an LMI approach[J]. International Journal ofSystems Science,2007,38(2):151-165.
    [15] Hu Q. L.,Xiao B.,Friswell M. I. Robust fault tolerant control for spacecraft attitudestabilization subject to input saturation[J]. IET Control Theory and Applications,2011,5(2):271-282.
    [16] Fan L. L.,Song Y. D. On fault tolerant control of dynamic systems with actuatorfailures and external disturbances[J]. Acta Automatica Sinica,2010,36(11):1620-1625.
    [17] Yu D. L.,Chang T. K.,Yu D. W. Adaptive neural model based fault tolerant control formulti-variable processes[J]. Engineering Applications of Artificial Intelligence,2005,18(4):393-411.
    [18] Tang X. D.,Tao G.,Wang L. F.,Stankovic J. A. Robust and adaptive actuator failurecompensation designs for a rocket fairing structural-acoustic model[J]. IEEETransactions on Aerospace and Electronic Systems,2004,40(4):1359-1366.
    [19] Xu L. F.,Li J. Q.,Ouyang M. G.,Hua J. F.,Li X. J. Active fault tolerance controlsystem of fuel cell hybrid city bus[J]. International Journal of Hydrogen Energy,2010,35(22):12510-12520.
    [20] MacFarlane A G I. Complex Variable Methods for Linear Multivariable FeedbackSystems[M]. Taylor and Francis Ltd. London,1980.
    [21] Sule V R. Design of feedback controllers with integrity[J]. Control Theory andAdvanced Technology,1991,7(2):285-299.
    [22] Gundes A N. Stability of feedback system with sensors or actuators failures:analysis[J].International Journal Control,1992,56(4):735-753.
    [23] Yang Y.,Yang G. H.,Soh Y. C. Reliable control of discrete-time systems with actuatorfailure[J]. IEE Proceedings-Control Theory and Applications,2000,47(4):428-432.
    [24]杨洁亮,杨新红,王绪雄.传感器失效系统的鲁棒容错控制[J].河南科技大学学报(自然科学版),2004,25(5):21-24.
    [25] Ye Y. Z. Fault-tolerant pole assignment for multivariable system using a fixed statefeedback[J]. Control Theory and Applications,1993,10(2):212-218.
    [26] Joshi S M. Design of failure-accommodation multiloop LQG-type controllers[J]. IEEETransactions on Automatic Control,1987,32(8):740-741.
    [27] Veillette R J. Reliable Linear-quadratic state-feedback control[J]. Automatic,1995,31(1):137-143.
    [28] Colaneri P,Geromel J C,Locatelli A. Control Theory and Design[M]. AcademicPress,Toronto,1997.
    [29]陈雪芹,耿云海,张世杰,张迎春.基于混合H2H∞的集成故障诊断与容错控制研究[J].宇航学报,2007,28(4):890-896,902.
    [30]王佑恩,肖民卿.参数不确定δ算子时滞系统的可靠保性能控制[J].福建师范大学学报(自然科学版),2011,27(5):23-28.
    [31] Ackermann J E. Robust Control:Systems with Uncertain Physical Parameters[M].Springer-Verlag,New York,1993.
    [32]樊方星,杨军.参数空间法在倾转旋翼机飞行控制系统设计中的应用[J].弹箭与制导学报,2006,26(2):349-350,353.
    [33] Wang Z.,Shu H.,Liu X. Reliable stabilization of stochastic time-delay systems withnonlinear disturbances[J]. International Journal of General Systems,2005,34(5):523-535.
    [34] Wu H. N.,Zhang H. Y. Reliable H∞fuzzy control for continuous-time nonlinearsystems with actuator failures[J]. IEEE Transactions on Fuzzy Systems,2006,14(5):609-618.
    [35] Abdel-Magid Y. L.,Abido M. A.,Al-Baiyat S.,Mantawy A. H. Simultaneousstabilization of multi-machine power systems via genetic algorithms[J]. IEEETransactions on Power Systems,2002,14(4):1428-1439.
    [36] Zong X.,Han Z. Parallel simultaneous stabilization of two systems governed by partialdifferential equations subject to actuator saturation[J]. Nonlinear Analysis:Theory,Methods&Applications,2009,71(3-4):829-837.
    [37]谢德晓,张登峰,黄鹤,王执铨.一类不确定网络控制系统的鲁棒容错控制[J].信息与控制,2010,39(4):472-478.
    [38] Huo Z. H.,Zheng Y.,Xu C. A robust fault tolerant control strategy for networkedcontrol systems[J]. Journal of Network and Computer Applications,2011,34(2):708-714.
    [39] Feng L.,Wang J. L.,Poh E.,Liao F. Reliable H∞aircraft flight controller designagainst faults with state/output feedback[C]. In Proceedings of the2005AmericanControl Conference,Portland,OR,USA,2005,2664-2669.
    [40] Qiao H.,Liang J. C.,Chang X. H. Reliable and adaptive compensation controllerdesign for continuous-time systems with actuator failures[C]. In Proceedings ofChinese Control and Decision Conference,Yantai,China,2008,4700-4705.
    [41] Jiang J,Zhao Q. Design of reliable control systems possessing actuator redundancies[J].Journal of Guidance,Control,and Dynamics,2000,23(4):709-718.
    [42] Patton R J. Fault-tolerant control:the1997situation[C]. In Proceedings of IFACSymp:On Fault Detection,Supervision and Safety for Technical Processes.1997,1033-1055.
    [43] Moerder D D,Halyo N,Broussard J R,Caglayan A K. Application of precomputedcontrol laws in a reconfigurable aircraft flight control system[J]. Journal of Guidance,Control and Dynamics,1989,12(3):325-333.
    [44] Paoli A.,Sartini M.,Lafortune S. Active fault tolerant control of discrete event systemsusing online diagnostics[J]. Automatica,2011,47(4):639-649.
    [45] Bodson M.,Groszkiewicz J. E. Multivariable adaptive algorithms for reconfigurableflight control[J]. IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [46]袁芳,朱大奇,叶银忠.无人水下机器人在线故障辨识及滑模容错控制[J].系统仿真学报,2011,23(2):351-357.
    [47] Deshpande A. P.,Patwardhan S. C.,Narasimhan S. S. Intelligent state estimation forfault tolerant nonlinear predictive control[J]. Journal of Process Control,2009,19(2):187-204.
    [48]陶洪峰,胡寿松.执行器饱和T-S模糊系统的鲁棒耗散容错控制[J].控制理论与应用,2010,27(2):205-210.
    [49] Mao Z. H.,Jiang B.,Shi P. Observer based fault tolerant control for a class ofnetworked control systems with transfer delays[J]. Journal of the Franklin Institute,2011,348(4):763-776.
    [50] Gertler J. Survey of model-based failure detection and isolation in complex plants[J].IEEE Control Systems Magazine,1988,8(6):3-11.
    [51] Frank P M. Fault diagnosis in dynamic system using analytical and knowledge-basedredundancy—a survey and some new results[J]. Automatica,1990,26(3):459-474.
    [52]李秀琴,源倪.基于神经网络的容错控制方法在CSTR中的应用研究[J].石油化工应用,2008,27(4):66-70.
    [53]齐俊桐,韩建达.基于MIT规则的自适应Unsce_省略_其在旋翼飞行机器人容错控制的应用[J].机械工程学报,2009,45(4):115-124.
    [54]陈雪芹,耿云海,王峰,张迎春.卫星姿态容错控制系统的鲁棒自适应逆最优控制[J].中国空间科学技术,2008,2:35-41.
    [55] Richter J. H.,Heemels W. P. M. H.,Wouw N. V. D.,Lunze Z. Reconfigurable controlof piecewise affine systems with actuator and sensor faults:stability and tracking[J].Automatica,2011,47(4):678-691.
    [56] Gao Z,Antsaklis P J. Stability of the pseudo-inverse method for reconfigurable controlsystems[J]. International Journal of Control,1991,53(3):717-729.
    [57] Gao Z,Antsaklis P J. Reconfigurable control system design via perfect modelfollowing[J]. International Journal Control,1992,56(4):783-798.
    [58] Jiang J. Design of reconfigurable control systems using eigenstructure assignment[J].International Journal Control,1994,59(2):395-410.
    [59] Ashari A. E.,Sedigh A. K.,Yazdanpanah M. J. Reconfigurable control system designusing eigenstructure assignment:static,dynamic and robust approaches[J]. InternationalJournal of Control,2005,78(13):1005-1016.
    [60] Maybeck P S. Application of multiple model adaptive algorithms to reconfigurableflight control[J]. Control and Dynamic Systems,1992,52:291-320.
    [61] Narendra K S,Balakrishnan J. Adaptive control using multiple models[J]. IEEETransactions on Automatic Control,1997,42(1):171-187.
    [62] Zhang Y M,Jiang J. Integrated active fault-tolerant control using IMM approach[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1221-1235.
    [63] Zhang Y M, Jiang J. Integrated design of reconfigurable fault-tolerant controlsystems[J]. Journal of Guidance,Control and Dynamics,2001,24(1):133-136.
    [64] Chen J,Patton R J,Chen Z. Active fault-tolerant flight control systems design using thelinear matrix inequality method[J]. Transactions of the Institute of Measurement andControl,1999,21(2):77-84.
    [65]张刚,韩祥兰,王执铨.极点与状态方差约束下的动态输出反馈可靠控制[J].控制与决策,2007,22(3):289-293.
    [66]张刚,王执铨.不确定时滞系统相容指标下的鲁棒容错控制器设计[J].控制与决策,2006,21(6):666-670.
    [67] Wang H,Wang Y. Neural-network-based fault-tolerant control of unknown nonlinearsystems[J]. IEEE Proceedings Control Theory and Applications,1999,146(5):389-398.
    [68]朱大奇,孔敏.基于平衡学习的CMAC神经网络非线性滑模容错控制[J].控制理论与应用,2008,25(1):81-86.
    [69]高立娥,刘卫东,张萍,张森.基于两级神经网络传感器故障诊断与容错控制技术[J].鱼雷技术,2008,16(6):34-37.
    [70] Rauch H E. Intelligent fault diagnosis and control reconfiguration[J]. IEEE ControlSystems Magazine,1994,6-12.
    [71] Pashilkar A. A.,Sundararajan N. Saratchandran P. A fault-tolerant neural aidedcontroller for aircraft auto-landing[J]. Aerospace Science and Technology,2006,10(1):49-61.
    [72] Abdelhameed M. M.,Darabi H. Neural network based design of fault-tolerantcontroller for automated sequential manufacturing systems[J]. Mechatronics,2009,19(5):705-714.
    [73] Huzmezan M.,Maciejowski J. M. Reconfigurable flight control during actuator failureusing predictive control[C]. Proceedings of14thIFAC World Congress,1999:301-306.
    [74] Kabore P,Wang H. Design of fault diagnosis filters and fault tolerant control for a classof nonlinear systems[J]. IEEE Transactions on Automatic Control,2001,46:1805-1809.
    [75] Wu H. N. H∞fuzzy control design of discrete-time nonlinear active fault-tolerantcontrol systems[J]. International Journal of Robust and Nonlinear Control,2008,19(10):1129-1149.
    [76] Zhang Y M,Jiang J. Fault-tolerant control system design with explicit consideration ofperformance degradation[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,37(3).
    [77] Jiang J,Zhao Q. Fault tolerant control system synthesis using imprecise faultidentification and reconfiguration control[C]. In Proceedings of the IEEE InternationalSymp. on Intelligent Control,Gaithersburg,MD,1998,169-174.
    [78] Mahmoud M,Jiang J,Zhang Y M. Stabilization of active fault tolerant control systemswith imperfect fault detection and diagnosis[J]. Journal of Stochastic Analysis andApplications,2003,21(3):673-701.
    [79] Maki M,Jiang J,Hagino K. A stability guaranteed active fault-tolerant control againstactuator failures[J]. International Journal of Robust and Nonlinear Control,2004.
    [80] Srichander R, Walker B K. Stochastic stability analysis for continuous timefault-tolerant control systems[J]. International Journal Control,1993,57(2):433-452.
    [81] Mahmoud M,Jiang J,Zhang Y M. Active Fault Tolerant Control Systems:StochasticAnalysis and Synthesis[M]. In Lecture Notes in Control and Information Sciences,Vol.287,Springer,Berlin,Germany,2003.
    [82] Wu N E. Coverage in fault-tolerant control[J]. Automatica,2004,40(4):537-548.
    [83] Goble W M. Control Systems Safety Evaluation and Reliability[S].2nd edition,ISA,1998.
    [84] Stamtis D H. Failure Mode and Effect Analysis:FMEA from Theory to Execution[S].American Society for Quality,2003.
    [85] Ganguli S.,Marcos A.,Balas G. J. Reconfigurable LPV control design for Boeing747-100/200longitudinal axis[C]. In American Control Conference,2002:3612-3617.
    [86] Ye D.,Yang G. H. Adaptive fault-tolerant tracking control against actuator faults withapplication to flight control[J]. IEEE Transactions on Control Systems Technology,2006,14(6):1088-1096.
    [87]洪少春.基于多传感器的模糊神经网络在工业污水处理中的应用研究[J].吉林化工学院学报,2007,24(3):48-54.
    [88] Guo Y. Y.,Jiang B.,Zhang Y. M.,Wang J. F. Novel robust fault diagnosis method forflight control systems[J]. Journal of Systems Engineering and Electronics,2008,19(5):1017-1023.
    [89] Kim Y. W.,Rizzoni G.,Utkin V. Developing a fault tolerant power train system byintegrating the design of control and diagnostics[J]. International Journal of Robust andNonlinear Control,2001,11:1095-1114.
    [90] Staroswiecki M.,Yang H.,jiang B. Active fault tolerant control based on progressiveaccommodation[J]. Automatica,2007,43(12):2070-2076.
    [91]宋崎,周波,姜哲,韩建达.基于主动建模的自主移动机器人自适应容错控制[J].高技术通讯,2006,16(7):691-696.
    [92] Zhou K. M. A new approach to robust and fault tolerant control[J]. Acta AutomaticaSinica,2005,31(1):43-55.
    [93]李述清,张胜修,刘毅男.基于平衡流形展开模型的涡扇发动机传感器容错控制[J].弹箭与制导学报,2011,31(2):136-138.
    [94]张燕秦,徐向东,李明.白适应模糊控制在热力系统容错控制中的应用[J].动力工程,2004,24(1):50-54.
    [95] Jiang B.,Staroswiecki M.,Cocquempot V. Fault accommodation for nonlinear dynamicsystems[J]. IEEE Transactions on Automatic Control,2006,51(9):1578-1583.
    [96]王向东,王勋.基于潮流转移的后备保护系统容错控制研究[J].华东交通大学学报,2008,25(1):68-72.
    [97]国家核安全局.核安全导则汇编(上、下册)[M].北京:中国法制出版社,2000.
    [98]广东核电培训中心编.900MW压水堆核电站系统与设备(上、下册)[M].北京:原子能出版社,2007.
    [99]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998.
    [100] Wang Z.,Shu H.,Liu X. Reliable stabilization of stochastic time-delay systems withnonlinear disturbances[J]. International Journal of General Systems,2005,34(5):523-535.
    [101] Stoustrup J.,Blondel V. D. Fault tolerant control:a simultaneous stabilization result[J].IEEE transactions on Automatic Control,2004,49(2):305-310.
    [102] Ye S. J.,Zhang Y. M.,Wang X. M.,Jiang B. Fault tolerant control for a class ofuncertain systems with actuator failures[J]. Tsinghua Science&Technology,2010,15(2):174-183.
    [103]孙新柱,胡寿松.多目标约束下的满意容错控制[J].自动化学报,2008,34(8):937-942.
    [104]王伟,梁雪,陈璐璐,任章.一种新型鲁棒容错控制器在飞控系统中的应用[J].系统仿真学报,2011,23(1):104-107.
    [105] Bao G.,Liu G.,Jiang J.,Lam C. Active fault-tolerant control system design for atwo-engine bleed air system of aircraft[C]. In The23rdCongress of the InternationalCouncil of the Aeronautical Sciences,Canada,2002:6102-6108.
    [106] Ponsart J. C.,Theilliol D.,Aubrun C. Virtual sensors design for active fault tolerantcontrol system applied to a winding machine[J]. Control Engineering Practice,2010,18(9):1037-1044.
    [107]刘小雄,章卫国,武燕,黄宜军.基于直接自适应控制的重构飞控系统研究[J].控制与决策,2007,22(4):440-444.
    [108]蒋慰孙,叶银忠.多变量控制系统分析与设计[M].北京:中国石化出版社,1997.
    [109]孙金生,冯缵刚,李军.状态反馈控制系统的容错控制又一策略[J].控制理论与应用,1995,12(4):519-523.
    [110]王镛根.重构控制律的容错控制[J].航空动力学报,1993,8(3):300-302.
    [111]赵明旺.容错控制系统动态稳定的控制律重构[J].控制理论与应用,1999,16(1):123-126.
    [112]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
    [113]马锐.人工神经网络原理[M].北京:机械工业出版社,2010.
    [114]张雨浓,蔡炳煌.人工神经网络研究进展及论文发表过程论辩[M].北京:电子工业出版社,2010.
    [115]李炜,鲁保云,乔平原.一种基于多模型的主动容错控制方法研究[J].甘肃科学学报,2007,19(4):92-96.
    [116]李炜,鲁保云.基于多模型切换的智能主动容错控制方法研究[J].计算机仿真,2008,25(1):328-331,343.
    [117]杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,1998.
    [118] Kven M.,Passino Stephen Yurkovich. Fuzzy Control[M].北京:清华大学出版社,2001.
    [119]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999.
    [120]席爱民.模糊控制技术[M].西安:西安电子科技大学出版社,2008.
    [121]曾光奇,胡均安,王东,刘春玲.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.
    [122]韩祥兰,张刚,王执铨.多性能指标约束下的模糊容错控制系统设计[J].北京理工大学学报,2009,29(1):38-43.
    [123]杨庚佼,佟绍成.带有传感器故障的模糊时滞系统的容错控制[J].辽宁工业大学学报(自然科学版),2010,30(3):190-199,204.
    [124] Chen B.,Liu X. P.,Tong S. C. Delay-dependent stability analysis and control synthesisof fuzzy dynamic systems with time delay[J]. Fuzzy Sets and Systems,2006,157:2224-2240.
    [125]古荻隆嗣,马炫译.人工神经网络与模糊信号处理[M].北京:科学出版社,2003.
    [126]李士勇.模糊控制、神经控制和智能控制[M].哈尔滨:哈尔滨工业大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700