两种标签引物RT-PCR结合Sanger测序检测登革病毒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立两种标签引物RT-PCR结合Sanger测序的方法,检测登革病毒,包括新变异的登革病毒。一种方法可以快速诊断急性期单一血清型感染的登革热,另一种方法可以诊断双重血清型感染的登革热
     3’末端锚定-标签引物RT-PCR(NAT-PCR)结合Sanger测序法是利用登革病毒(“正链”)3’最末端的保守序列作为锚定靶点进行反转录,合成带有3’最末端序列的cDNA(“负链”)(RT步骤),以登革病毒特异性的简并引物合成cDNA的第二条链(SS步骤)。由于cDNA合成引物与简并引物的5’末端均带有人工设计的“标签”序列,所以新合成的第二条链(“正链”)的两端分别带有彼此互补的“标签”序列,再以“标签”序列作为引物进行PCR扩增(AMP步骤)。扩增产物带有的相同3’最末端序列(cDNA合成引物)作为测序引物进行Sanger测序。并利用SYBR Green I real-time PCR进行监测和筛选NAT-PCR产物及其反应参数,优化出最佳的NAT-PCR扩增效率以及最快速的Sanger测序程序。该方法对A型流感病毒、拉沙病毒、西尼罗病毒、乙型脑炎病毒、肾综合征出血热病毒和黄热病病毒检测不到可读序列,具有较好的特异性;对四个血清型登革病毒RNA的检出限为11-31个拷贝/反应(两步NAT-PCR)或110-310个拷贝/反应(一步NAT-PCR),敏感性较高。对25份临床血清样本RNA的检测结果与临床诊断一致,可获得400-520bp的可读序列,其中包括3份登革I型、5份登革II型、3份登革III型病毒阳性样本,其他样本均为阴性结果。一步NAT-PCR比两步NAT-PCR获得检测结果好:阳性检出率较高、可读序列更长。
     随机PCR方法也是利用标签引物进行RT-PCR,扩增的步骤与NAT-PCR方法相同,但以随机引物进行反转录和cDNA第二条链的合成。获得的扩增产物进行TA克隆,以单克隆的M13 PCR产物为模板进行Sanger测序。通过优化反应条件,并利用SYBR Green I real-time PCR和Bioanalyzer DNA质量分析仪进行监测和筛选,优化出无偏嗜扩增的随机PCR反应模式,可对双重感染以及因RNA降解而缺失3’末端序列的所有登革病毒进行检测。该方法不仅可以检测登革病毒,还可以检测样本中其他的单链不分节段RNA病毒以及该类型的未知病毒。其测序鉴定登革病毒的敏感性为100个拷贝的RNA/μl血清。检测DENV-1和DENV-2的混合感染样本,Sanger测序鉴定的阳性克隆率分别为21/92和32/96。对25份临床血清样本RNA的阳性检测结果与临床诊断一致,也与NAT-PCR结合Sanger测序的检测结果一致;但在阴性样本中,有1例被鉴定含有丙型肝炎病毒。在所有的阳性样本中,没有发现双重血清型登革病毒感染的样本。
     NAT-PCR结合Sanger测序方法,通过锚定3’末端高度保守的序列,以单管反应同时鉴定四个血清型的登革病毒及其新变异毒株。该方法可在5个小时内完成从样本RNA的提取到序列分析的全过程,检测特异性强、敏感性高,具有广泛的临床应用价值。由于在登革热流行非常严重的地方会出现双重感染的情况,为此本研究建立了随机PCR结合TA克隆和Sanger测序的方法可诊断双重血清型登革病毒的混合感染,并具有检测新的病毒变异株以及未知病毒的能力,有助于发现由单股正链不分节段的RNA病毒引起的人或动物传染病的混合感染。
Dengue virus which causes one of the most prevalent arbovirus diseases can be transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes in the tropical and subtropical regions of the world. There are four serotypes of Dengue virus (DENV-1, DENV-2, DENV-3, DENV-4), all of which cause dengue fever, dengue hemorrhagic fever and dengue shock syndrome. Clinical diagnosis of Dengue virus infections is difficult due to the non-specific symptoms. Therefore, laboratory diagnosis is essential. Serology detections depend on the existence of antibody and are not suitable for rapid diagnosis. Molecular methods, especially for PCR, have been widely used in early diagnosis of dengue fever. However, new sequence variation can inhibit these specific methods. This study developed a rapid assay for detection of Dengue virus including new strains using 3’-endfragment anchored and tag primed amplification (NAT-PCR) in combination with Sanger sequencing. It also described another tag primed amplification of randomPCR followed cloning M13 PCR products and Sanger sequenging to detect the dual infection of dengure.
     For the assay integrating a NAT-PCR with a new Fast Sanger sequencing, the conserved 3’genome end was targeted for specific cDNA synthesis. Degenerated primers were used for second strand synthesis. On all primers a common artificial tag was added to the 5’end, facilitating tag primed amplification. Fast Sanger sequencing was started from the anchored 3’genome end. The resulting sequences were analyzed by BLAST。The assay is specific against Influenza A, Lassa and yellow fever virus with no amplification or sequences got from NAT-PCR respectively Sanger sequencing. The specific SYBR Green I QPCR assays for Dengue cultured strains were applied for quantifying the virual RNA and throughout the whole procedure of NAT-PCR optimization. This assay demonstrated a high sensitivity with a detection limit of 11-31 copies viral RNA/reaction for a two-step protocol and 100-500copies for a one-step protocol. All four serotypes of Dengue can be tested in one reaction in similar to multiplex Real-Time PCR with high efficiency. In this study, sixty samples were run in parallel each time, but for higher throughput a 96-well format can be used for most steps. This assay was evaluated with 25 clinical serum samples. The detection results were consistent with clinical diagnosis reports. The one-step RT-PCR gave better results for the samples tested compared with two-step, since more positive rate and longer sequences were obtained. A random PCR was developed to get uniform and nonbiased amplification for non-segment single-stranded RNA. In combination with TA cloning and Sanger sequencing for M13 PCR products, the detection limit was 100 copies viral RNA/reaction. Twenty-one positive colonies for DENV-1 and thirty-two for DENV-2 were identified from 96 colonies in dual infection of Dengue with 100copies for each type. This assay was not specific for Dengue, but used to detect all the non-segment sigle-stranded RNA in the serum samples. It was also evaluated with the same 25 clinical serum samples. The positive results were the same as clinical diagnosis reports, but one negative sample was found to be Hepatitis C virus infection.
     Due to the virus strain differences in virulence, in particular for the emergence of new variant strains may determine the rate and severity of dengue infection, the variation of dengue virus was paid much attention. Dengue virus including new strains can be detected with 5 hours using NAT-PCR in combination with Sanger sequencing. For the endemic regions, dual infections of Dengue two serotypes can be resolved and distinguished by the assay of random PCR in combination with TA cloning and Sanger sequencing.This assy also hase a capability for detection of other non-segment single-stranded RNA in serum samples.
引文
[1] Dos Santos H W, Poloni T R, Souza K P, et al. A simple one-step real-time RT-PCR for diagnosis of Dengue virus infection [J]. J Med Virol, 2008, 80:1426-1433.
    [2] WHO, Dengue/DHF, Situation of Dengue/Dengue Haemorrhagic Fever in the South-East Asia Region. http://www.searo.who.int/en/Section10/Section332_1098.htm
    [3]王云霞,黄庆,陈鸣,等.登革病毒快速检测方法研究进展[J]. 2006, 4(29): 379-380.
    [4] Talada A and Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications [J]. Rev Med Virol, 2003, 13:387-398.
    [5] Halstead S B. Dengue[J]. Lancet, 2007, 370: 1644-1652.
    [6] Gomes A L V, Silva A M, Cordeiro M T, et al. Single-tube nested PCR using immobilized internal primers for the identification of dengue virus serotype [J]. J Virol Methods, 2007, 145: 76-79.
    [5] Harris E, Videa E, Perez L, et al. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua [J]. Am J Trop Med Hyg, 2000, 63: 5-11.
    [7]Singh K, Lale A, Eong Ooi E, et al. A prospective clinical study on the use of reverse transcription-polymerase chain reaction for the early diagnosis of dengue fever. J Mol Diagn, 2006, 8: 613-616.
    [8]秦鄂德,秦成峰和姜涛.登革病毒与登革病毒病[M].北京:科学出版社, 2008
    [9] Johnson B W, Russell B J and Lanciotti R S. Serotype-specific detection of Dengue vireses in a fourplex real-time reverse transcriptase PCR assay [J]. J Clin Microbiol, 2005, 43: 4977-4983.
    [10] Kong YY, Thay CH, Tin TC, et al. Rapid detection, serotyping and quantitation of dengue viruses by TaqMan real-time one-step RT-PCR [J]. J Virol Methods, 2006, 138: 123-130.
    [11] Yong Y K, Thayan R, Chong H T, et al. Rapid detection and serotyping of dengue virus by multiplex RT-PCR and real time SYBR Green RT-PCR [J]. Singapore Med J, 2007, 48: 662-668.
    [12] Lo C L, Yip S P, Cheng P K, et al. One-step rapid reverse transcription-PCR assay for detecting and typing dengue viruses with GC tail and induced fluorescence resonance energy transfer techniques for melting temperature and color multiplexing [J]. Clin Chem, 2007, 53: 594-599.
    [13] Lai Y L, Chung Y K, Tan H C, et al. Cost-effictive real-time reverse transcriptase PCR (PCR) to screen for dengue virus followed by rapid single-tube multiplex RT-PCR for serotyping of the virus [J]. J Clin Microbiol, 2007, 45: 935-941.
    [14] Gubler D J. Dengue and dengue hemorrhagic fever [J].Clin Microbiol Rev, 1998, 11(3):480-496.
    [15] Carey D F. Chikungunya and dengue: a case of mistaken identity? [J]. J Hist Med Allied Sci, 1971, 26:243-262.
    [16]罗会明主编.登革热防治手册[M].北京:中国标准出版社, 2003. 72:66.
    [17]袁荣宝,王海明.登革热的研究进展[J].上海预防医学杂志.2005, 5(17):246-248.
    [18] Kuhn R J, Zhang W, Rossmann M G, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion [J]. Cell, 2002, 108(5):717-25.
    [19] Swaminathan S, Khanna N. Dengue: recent advances in biology and current status of translational research [J]. Curr Mol Med, 2009, 9(2):152-73.
    [20]陈维钧.蚊子传播登革病毒的机制[J].科学发展, 2003, 368:54-59.
    [21] Leyssen P, Clercq E D and Neyts J. Perspectives for the treatment of infections with Flaviviridae [J]. Clin Microbiol, 2000, 13:67.
    [22] Brinton M A, Fernandez A V and Dispoto J H. The 3’-nucleotides of flavivirus genomic RNA form a conserved secondary structure [J]. Virology, 1986, 153: 113–121.
    [23] Mohan P M and Padmanabhan R. Detection of stable secondary structure at the 39 terminus of dengue virus type 2 RNA [J]. Gene, 1991, 108: 185–191.
    [24] Markoff L. 5’- and 3’-noncoding regions in flavivirus RNA [J]. Adv Virus Res, 2003, 59: 177–228.
    [25] Filomatori C V, Lodeiro M F, Alvarez D E, et al. Long-range RNA-RNA interactions circularize the Dengue virus genome [J]. J Virol, 2005, 79 (11):6631-6643.
    [26] Filomatori C V, Lodeiro M F, Alvarez D E, et al. A 5’RNA element promotes dengue virus RNA synthesis on a circular genome [J]. Genes Dev, 2006, 20(26): 2238–2249.
    [27] Khromykh A A, Meka H, Guyatt K J, et al. Essential role of cyclization sequences in flavivirus RNA replication [J]. J Vorol, 2001, 75(14):6719-28.
    [28] You S and Padmanabhan R. A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'- and 3'-terminal complementary sequence motifs of the viral RNA [J]. J Biol Chem, 1999, 274(47):33714-22.
    [29] De Nova-Ocampo M, Villegas-Sepúlveda N, del Anfel RM. Translation elongation factor-1alpha, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA [J]. Virology, 2002, 295(2):337-47.
    [30] Ackermann M and Padmanabhan R. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase [J]. J Biol Chem, 2001, 276: 39926–39937.
    [31] Alvarez D E, Lodeiro M F, Luduena S J, et al. Long-range RNA–RNA interactions circularize the dengue virus genome [J]. J Virol, 79: 6631–6643.
    [32] Alvarez D E, De Lella Ezcurra A L, Fucito S, et al. Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication [J]. Virology, 2005, 339(2):200-12.
    [33] Samuel C E. Antiviral actions of interferons [[J]. Clin. Microbiol.Rev, 2001, 14: 778–809.
    [34] Lu R, Maduro M, Li F, Li, et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans [J]. Nature, 2005, 436(7053):1040-1043.
    [35] Pierro DJ, Salazar MI, Beaty BJ, et al.Infectious clone construction of dengue virus type 2, strain Jamaican 1409, and characterization of a conditional E6 mutation [J]. J Gen Virol, 2006,87(Pt 8):2263-2268.
    [36]杨佩英,秦鄂德主编.登革热和登革出血热[M].北京:人民军医出版社,1998. Gubler 1998
    [37]廖德芳.登革病毒及其所致疾病的研究概况[J],2005,3:4-15.
    [38] van der Schaar H M, Wilschut J C, Smit J M. Role of antibodies in controlling dengue virus infection. Immunobiology [J]. 2009, 2. [Epub ahead of print]
    [39] Bancroft T L. On the aethology of dengue fever [J]. Australian Medical Gazette, 1996,25:17-18.
    [40] Krishnan M N, Sukumaran B, Pal U, et al. Rab 5 is required for the cellular entry of dengue and West Nile viruses [J]. J Virol, 2007, 81:4881- 4885.
    [41] Markoff L. 5'- and 3'-noncoding regions in flavivirus RNA [J]. Adv Virus Res, 2003, 59:177-228.
    [42] Thurner C, Witwer C, Hofacker I L, et al. Conserved RNA secondary structures in Flaviviridae genomes [J]. J Ge. Virol, 2004, 85, 1113-1124.
    [43] Romero T A, Tumban E, Jun J, et al. Secondary structure of dengue virus type 4 3' untranslated region: impact of deletion and substitution mutations [J]. J Gen Virol,2006, 87: 3291-3296.
    [44] Gritsun T S and Gould E A. Direct repeats in the flavivirus 3' untranslated region; a strategy for survival in the environment?[J]. Virology, 2007, 358:258-265.
    [45] Endy T P, Nisalak A, Chunsuttitwat S, et al. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand [J].J Infect Dis, 2004, 189: 990-1000.
    [46] Pokidysheva E, Zhang Y, Battisti A J, et al. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN [J]. Cell, 2006,124: 485-493.
    [47] Jessie K, Fong M Y, Devi S, et al. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization [J]. J Infect Dis, 2004, 189, 1411-1418.
    [48] Edgil D, Diamond M S, Holden K L, et al. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains [J]. Virology, 2003, 317: 275-290.
    [49] Kapoor M, Zhang L, Ramachandra M, et al. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5 [J]. J Biol Chem, 1995, 270: 19100-19106.
    [50] Wilder-Smith A, Chen LH, Massad E, et al. Threat of dengue to blood safety in dengue-endemic countries [J]. Emerg Infect Dis, 2009,15(1):8-11.
    [51]但妍,郑建和黄爱龙.登革病毒的分子生物学检测技术研究进展[J].国际病毒学杂志,2007,14:181-185.
    [52] Gubler D J. Dengue and dengue hemorrhagic fever [J]. Clin Microbiol Rev, 1998, 11: 480-496.
    [53] World Health Organization. Wkly Epidemiol Rec, 2004, 79: 53-64.
    [54] Wilder-Smith A, Deen JL. Dengue vaccines for travelers. Expert Rev Vaccines. 2008 Jul;7(5):569-78.
    [55] WHO, Dengue/DHF, Situation of Dengue/Dengue Haemorrhagic Fever in the South-East Asia Region. http://www.searo.who.int/en/Section10/Section332_1103.htm
    [56] World Health Organization. 2009. Epidemic and Pandemic Alert and Response:Impact of Dengue. [Online.] http://www.who.int/csr/disease/dengue/impact/en/index.htm
    [57] Vijayakumar T S ,Chandy S ,Sathish N ,et al. Is dengue emerging as a major public health problem [J]. Indian J Med Res ,2005 ,121 (2) :100 - 107.
    [58]资料来源∶世界疫症情报网2009年7月13日.
    [59] Marianneau P, Mégret F, Olivier R, et al. Dengue 1 virus binding to human hepatoma HepG2 and siian Vero cell surfaces differs [J]. J General Virology, 1996 ,77 :2547-2554.
    [60] Mentor NA, Kurane I. Dengue virus infection of human T lymphocytes [J]. Acta virol, 1997 ,41 :175-176.
    [61]韩万柏,杨学颖.我国登革热研究概况临床军医杂志[J], 2003, 3(31):103-104.
    [62]郭勇,容顺明,李锦清,等.佛山市登革热流行病学监测分析[J].预防医学情报杂志, 2000, 3: 268-269.
    [63]登革热患者的症状及致病机制,http://www.oovoo.net.cn/clinical/20070604/1795.html
    [64]首次看到病毒感染初期过程。http://www.ebiotrade.com/newsf/2006-2/200621594132.htm
    [65] Sullivan N J. Antibody-mediated enhancement of viral disease [J]. Curr Top Microbiol Immunol, 2001, 260: 145-169.
    [66] Porterfield J S. Antibody-dependent enhancement of viral infectivity [J]. Adv Virus Res, 1986, 31: 335–355.
    [67] Morens D M. Antibody-dependent enhancement of infection and the pathogenesis of viral disease [J]. Clin Infect Dis, 1994, 19: 500–512.
    [68] Hawkes R A. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls [J]. Aust J Exp Biol Med Sci, 1964, 42: 465–482.
    [69] Hawkes R A, Lafferty K J. The enhancement of virus infectivity by antibody [J]. Virology, 1967, 33: 250–261.
    [70] Guzman MG, Kouri G, Soler M, et al. Dengue 2 virus enhancement in asthmatic and non asthmatic individual [J]. Mem Inst Oswaldo Cruz, 1992, 87(4):559-564.
    [71] World Health Organization. 2009. Epidemic and Pandemic Alert and Response: Impact of Dengue. [Online.] http://www.who.int/csr/disease/dengue/impact/en/index.html
    [72] Halstead S B, O’Rourke E J, Allison A C. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection [J]. J Exp Med 1977; 146: 218–229.
    [73] Lei H Y, Yeh T M, Liu H S, et al. Immunopathogenesis of dengue virus infection [J]. J Biomed Sci, 2001, 8:377–388.
    [74] Mongkolsapaya J, Dejnirattisai W, Xu X, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever [J]. Nat Med, 2003, 9:921-927.
    [75] Peiris J S, Porterfield J S. Antibody-mediated enhancement of flavivirus replication in macrophage-like cell lines [J]. Nature, 1979, 282: 509–511.
    [76] Peiris J S, Gordon S, Unkeless J C, et al. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages [J]. Nature, 1981, 289: 189–191.
    [77] Daughaday C C, Brandt W E, McCown J M,et al. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsinresistant immune complex receptors [J]. Infect Immun, 1981,32: 469–473.
    [78] Schlesinger J J, Brandriss M W. Antibody-mediated infection of macrophages and macrophage-like cell lines with 17D-yellow fever virus [J]. J Med Virol, 1981, 8: 103–117.
    [79] Schlesinger J J, Brandriss M W. 17D yellow fever virus infection of P388D1 cells mediated by monoclonal antibodies: properties of the macrophage Fc receptor [J]. J Gen Virol, 1983, 64: 1255–1262.
    [80] Cardosa M J, Porterfield J S, Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages [J]. J Exp Med, 1983, 158: 258–263.
    [81] Halstead S B. Dengue haemorrhagic fever—a public health problem and a field for research [J]. Bull World Health Organ, 1980, 58: 1–21.
    [82] Sangkawibha N, Rojanasuphot S, Ahandrik S, et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak [J]. Am J Epidemiol, 1984, 120: 653–669.
    [83] Halstead S B. Antibody, macrophages, dengue virus infection, shock and hemorrhagic cascade [J]. Rev Infect Dis, 1989, 11: S830–S839.
    [84] Kurane I, Meager A, Ennis FA. Dengue virus-specific human T cell clones . Serotype crossreactive proliferation proliferation, interferon- production and cytotoxic activity [J]. J Exp Med, 1989, 170: 763–775.
    [85] Kurane I, Innis B L, Nimmannitya S, et al. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferongamma in sera of children with dengue [J]. J Clin Invest, 1991, 88: 1473–1480.
    [86] Guzman M G, Kouri G, Bravo J, et al. Effect of age outcome of secondary dengue 2 infections [J]. Int J Infect Dis, 2002, 6:118-24.
    [87]四联登革热疫苗试验成功.http://www.scidev.net/zh/news/zh-23458.html
    [88]登革热疫苗在新加坡进行临床试验. http://www.ebiotrade.com/newsf/2009-4/200943090357306.htm
    [89] Inovio新型登革热疫苗可以同时预防四种病毒. Http://www.chinapharm.com.cn/html/kyxx/1248770967453.html
    [90]英国拟以基因改造蚊灭登革热印度怕怕. http://www.epochtimes.com/gb/9/7/25/n2601440.htm
    [91]让蚊子自相残杀,以控制登革热http://science.solidot.org/article.pl?sid=09/07/20/1514229&from=rss
    [92] Dussart P, Petit L, Labeau B, et al. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum [J]. Plos Neql Trop Dis, 2008, 2: e280.
    [93] Guzmán M G, KouríG. Advances in dengue diagnosis [J]. Clin Diagn Lab Immunol, 1996,3(6):621-627.
    [94] Xu H, Di B, Pan Y X, et al. Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: implications for early diagnosis and serotyping of dengue virus infections [J]. J Clin Microbiol, 2006, 44: 2872-2878.
    [95] Koraka P, Burghoorn-Maas C P, Falconar A, et al. Detection of immunecomplex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections [J]. J Clin Microbiol, 2003, 41:4154–4159.
    [96] McBride W J. Evaluation of dengue NS1 test kits for the diagnosis of dengue fever [J]. Diagn Microbiol Infect Dis, 2009, 64: 39-44.
    [97] Chaiyaratana W, Chuansumrit A, Pongthanapisith V, et al. Evaluation of dengue nonstructural protein 1 antigen strip for the rapid diagnosis of patients with dengue infection [J]. Diagn Microbiol Infect Dis, 2009, 64: 91-92.
    [98] Shu P Y, Yang C F, Kao J F, et al. Application of dengue NS1 antigen rapid test for on-site detection of imported dengue cases at airports [J]. Clin Vaccine Immunol, 2009, 16: 589-591.
    [99] Kumarasamy V, Chua S K, Hassan Z, et al. Evaluating the sensitivity of a commercial dengue NS1 antigen-capture ELISA for early diagnosis of acute dengue virus infection [J]. Singapore Med J, 2007, 48: 669-673.
    [100] Kumarasamy V, Wahab A H, Chua S K, et al. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection [J]. J Virol Methods, 2007, 140: 75-79.
    [101] Cardosa J, Wang S, Sum M, et al. Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses [J]. BMC Microbiol, 2002, 2:9.
    [102] Guzman M G and Kouri G. Dengue diagnosis, advances and challenges [J]. Int J Infect Dis,2004, 8:69-80.
    [103] Miagostovich M P, Nogueira R M R, Dos Santos F B, et al. Evaluation of an IgG enzyme-linked immunosorbent assay for dengue diagnosis [J]. J Clin Virol, 1999, 14:183-189.
    [104]鹿侠,孙超.登革热/登革出血热[J].口岸卫生控制, 2000, 2:34.
    [105] Vaughn D W, Green S, Kalayanarooj S, et al. Dengue in the early febrile phase: viremia and antibody responses [J]. J Infect Dis, 1997, 176:322-330.
    [106] Sa-Ngasang A, Anantapreecha S, A-Nuegoonpipat A, et al. Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-liked immunosorbent assay [J]. Epidemiol Infect, 2006, 134:820-825.
    [107] de Souza V A, Tateno A F, Oliveira R R, et al. Sensitivity and specificity of three ELISA-based assays for discrimination primary from secondary acute dengue virus infection [J]. J Clinical Virol, 2007, 39: 230-233.
    [108] Shu P Y, Chen L K, Chang S F, et al. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections [J]. Clin Diang Lab Immunol, 2003, 10: 622-630.
    [109]张治位,王璨,祝令香,等.一种不对称PCR扩增方法及其专用引物与应用:中国, CN200410056866.0 [P]. 2004.08.26.
    [110] Loh K S, Chong S M, Pang Y T, et al. Rhinosporidiosis: differential diagnosis of a large nasal mass [J]. Otolaryngol Head Neck Surg, 2001,124(1):121-122.
    [111] Verhasselt P, Voet M, Volckaert G. DNA sequencing by a subcloning-walking strategy using a specific and semi-random primer in the polymerase chain reaction [J]. DNA Seq, 1992,2(5):281-287.
    [112] Lee W H, Wong C W, Leong WY ,et al. LOMA: a fast method to generate efficient tagged-random primers despite amplification bias of random PCR on pathogens [J]. BMC Bioinformatics, 2008,9:368.
    [113]徐元祖,包其郁,牛宇欣. PCR产物直接测序技术中影响因素的研究[J].遗传,2002 , 24 (5) :548 - 550.
    [114]李智伟,窦晓光,刘沛.应用PCR产物直接测序技术测定乙型肝炎病毒前C区基因序列[J].中国医科大学学报, 2002,31:247-248.
    [115]毛伟华.菌落PCR产物直接测序方法的建立及在水稻基因测序中的应用中国水稻科学[J].Chinese J Rice Sci), 2005 , 19 (5) :463-466.
    [116]陈泽良,王玉飞,赵瑾,等. PCR产物直接测序快速识别病原菌[J].现代预防医学, 2008, 35(2) :32-34.
    [117] Wu S J, Lee E M, Putvatana R, et al. Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay [J]. J Clin Microbiol, 2001, 39:2794–2798.
    [118] Parida M, Horioke K, Ishida H, et al. Rapid detection and differentiation of Dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay [J]. J Clin Microbiol, 2005, 43: 2895-2903.
    [119] Nordstr?m H, Falk K I, Lindegren G, et al. DNA microarray technique for detection and identification of seven flaviviruses pathogenic for man [J]. J Med Virol, 2005, 77:528-540.
    [120] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for dengue virus detection: sensitive, rapid and serotype specific [J]. Anal Chem, 2002, 74:1442-1448.
    [121] Zaytseva N V, Montagna R A, Baeumner A J. Microfluidic biosensor for the serotype-specific detection of Dengue virus RNA [J]. Anal Chem, 2005, 77:7520-7527.
    [122] Chang W S, Shang H, Perera R M, et al. Rapid detection of dengue virus in serum using magnetic separation and fluorescence detection [J]. Analyst, 2008, 133:233-240.
    [123] Ansorge W, EMBL Heidelberg. Process for sequencing nucleic acids without gel sieving media on solid support and DNA chips (Verfahren zur Sequenzierung von Nukleinsauren ohne Gele) [C]. German Patent Application DE 41 41 178 A1 and Corresponding Worldwide Patent Applications, 1991.
    [124]倪红兵,鞠少卿,王惠民.焦磷酸测序技术及其应用进展[J].现代检验医学杂志, 2005, 20(6): 42-47.
    [125] Ziebolz B, Droege M. Toward a new era in sequencing [J]. Biotechnol Annu Rev, 2007,13:1-26.
    [126] Wilhelm J Ansorge. Next-generation DNA sequencing techniques [J]. , 2009 ,25(4):195-203.
    [127] Elaine R Mardis. Next-generation DNA sequencing methods [J]. Annu Rev Genomics Hum Genet, 2008,9:387-402.
    [128] Gupta P K. Single-molecule DNA sequencing technologies for future genomics research [J]. Trends Biotechnol, 2008,26(11):602-611.
    [129] Moran-Mirabal J M, Craighead H G. Zero-mode waveguides for single molecule analysis at high concentrations [J]. Science, 46(1):11-17.
    [130] Korlach J, Marks P J, Ciceero R L, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures [J]. Proc Nat. Acad Sci U S A, 2008,105(4): 1176–1181
    [131] Lindegren G, Vene S, Lundkvist A, Falk K I. Optimized diagnosis of acute dengue fever in Swedish travelers by a combination of reverse transcription-PCR and immunoglobulin M detection [J]. J Clin Microbiol, 2005,43(6):2850-5.
    [132] Rico-Hesse R. Molecular evolution and istribution of dengue viruses type 1 and 2 in nature [J]. Virology, 1990,174:479-493.
    [133]杨敬.黄病毒基因组RNA5’和3’非编码区的结构和功能[J].微生物学免疫学进展, 2001,29 (1):63-65.
    [134] Chien L J, Liao T L, Shu P Y, et al. Development of Real-Time reverse transcriptase PCR assays to detect and serotype Dengue viruses [J]. J Clin Microbiol, 2006, 44(4):1295-304.
    [135] Yong Y K, Thayan R, Chong H T, et al. Rapid detection and serotyping of dengue virus by multiplex RT-PCR and real time SYBR Green RT-PCR [J]. Singapore Med J, 2007, 48: 662-668.
    [136]Gurukumar KR, Priyadarshini D, Patil JA, Bhagat A, Singh A, Shah PS, Cecilia D.Development of real time PCR for detection and quantitation of Dengue Viruses. Virol J. 2009 Jan 23;6:10
    [137] Leparc-Goffart I, Baragatti M, Temmam S, et al. Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses [J]. J Clin Virol, 2009, 45(1):61-6.
    [138] Bekkaoui F, Poisson I, Crosby W,et al. Cycling probe technology with RNase H attached to an oligonucleotide [J]. Biotechniques, 1996 ,20(2):240-248.
    [139]资料来源∶世界疫症情报网2007年8月29日.
    [140] Kuo G, Choo Q L, Alter H J, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis [J]. Science, 1989, 21;244(4902):362-4.
    [141] Birkenmeyer L G, Desai S M, Muerhoff A S,et al. Isolation of a GB virus-related genome from a chimpanzee [J]. J Med Virol, 1998,56(1):44-51.
    [142] Djikeng A, Halpin R, Kuzmickas R, et al . Viral genome sequencing by random priming methods. BMC Genomics [J]. 2008,7;9:5.
    [143]王火生,张红梅,李晓娟等.不明病因感染性疾病DNA病毒性病原检测方法的建立[J].中国老年学杂志. 2007,24:14-16.
    [144] Allander T, Tammi M T, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples [J]. Proc Natl Acad Sci U S A. 2005, 102(36):128911-128916.
    [145] Allander T, Jartti T, Gupta S, et al. Human bocavirus and acute wheezing in children [J]. Clin Infect Dis, 2007, 44 (7):904-910.
    [146] Stang A, Korn K, Wildner O, et al. Characterization of virus isolates by particle-associated nucleic acid PCR [J]. J Clin Microbiol, 2005,43(2):716-720.
    [147]杨银辉,朱晓光,张永国,等.利用基因芯片技术对新分离病毒的筛查与鉴定.第七届全国病毒学学术研讨会暨第二届武汉现代病毒学国际研讨会[C]. 2007年10月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700