华南早—中二叠世碳酸盐岩岩石磁学特征及高分辨率地质年代标尺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中二叠世是地史时期中的一个关键时段,峨眉山大火成岩省在此时喷发,导致了古-中生代之交双幕式生物大灭绝启动。在中二叠世建立高分辨率年代标尺对了解生物灭绝和峨眉山玄武岩喷发的时间及原因均具有重要意义。然而,由于精确的放射性同位素年龄数据较少(唯一的精确锆石年龄来自于卡匹敦阶底界之下-37.2m的火山灰层),中二叠世年代标尺的精度相对于其它时代严重落后,急需提高。精确绝对年龄的缺乏,使其它定年方法的应用显得十分必要。近几十年来,随着对轨道参数变化影响地球气候变化理论(米兰科维奇理论)的认识和研究,在利用天文周期定年、建立高分辨率地质年代标尺方面取得了丰硕成果,而定年精度比传统放射性同位素定年更高。因此,本文选择了华南地区两个典型剖面,在岩石磁学、沉积学研究基础上,利用磁化率数据的频谱分析结果对中二叠统卡匹敦阶和沃德阶进行高分辨率天文周期标定。
     早二叠世,华南发生了晚古生代以来最大规模的海侵作用,为大型孤立台地型海洋环境,在地质历史时期极为罕见。本文对广西来宾铁桥剖面下-中二叠统碳酸盐岩进行了详细的岩石磁学研究。铁桥剖面早中二叠世碳酸盐岩的磁化率大部分为负值,表明抗磁性方解石占主导,顺磁性、亚铁磁性和反铁磁性矿物含量较少。岩石磁学实验结果表明,铁桥剖面样品中主要磁性矿物是顺磁性矿物(伊利石为主)以及少量磁铁矿、钛磁铁矿、赤铁矿和针铁矿。从底部到顶部,携磁矿物中硬磁组分(赤铁矿和针铁矿)所占比例逐渐增加,在上部的卡匹敦阶,完全以硬磁性矿物为主。在瓜德鲁普-乐平统界线附近,岩石磁学特征发生明显变化,磁化率先增大再减小,携磁矿物成分呈硬磁性矿物→软磁性矿物→硬磁性矿物的变化趋势,而携磁矿物含量先减少再增多,这些转变仅在界线上下大约4m的岩层内完成,与瓜德鲁普晚期海平面变化、古海水温度变化同步,可能指示中-晚二叠之交短暂(-0.1myr)的特殊地质事件。另外,在栖霞组底部深水相中发现大量草莓状黄铁矿,证实磁性矿物还原成岩作用的存在。
     基于详细的岩石磁学分析和生物地层工作,本文对铁桥剖面卡匹敦阶进行天文周期标定。铁桥剖面卡匹敦阶样品的磁化率大部分为负值(抗磁性),表明来宾地区在该段沉积期孤立于古陆,与卡匹敦期来宾地区古地理格局吻合。通过生物地层对比,我们认为卡匹敦阶上部牙形石J.altudaensis带中磁化率的突然增加与峨眉山玄武岩喷发有关,这次喷发事件向黔桂盆地输送了更多的碎屑物质。K-T曲线测试表明,样品中主要的磁性矿物为顺磁性矿物(伊利石)及少量磁铁矿。利用多窗谱法(MTM)和傅里叶变换法(FT)对原始质量磁化率(未平滑)进行频谱分析,提取出五个米兰科维奇周期,分别是:长偏心率周期(~405kyr)、短偏心率周期(-100kyr)、长地轴斜率周期(~44.Ikyr)、长岁差周期(~20.95kyr)和短岁差周期(~17.7kyr)。基于频谱分析结果,利用图形对比方法(Graphic Comparison),以半个E2周期(-200kyr)为单位在卡匹敦阶建立了高分辨率浮点年代标尺。计算出卡匹敦阶的时限为~3.85Ma,而整个沉积序列(包括沃德阶上部、整个卡匹敦阶和吴家坪阶下部)的平均沉积速率为~2.9cm/kyr。计算出卡匹敦阶内部七个牙形石带的时限,从最短的~10.3kyr到最长的~2.43myr。另外,根据峨眉山玄武岩喷发与卡匹敦阶顶部磁化率增大的对应关系,估算出峨眉山大火成岩省喷发的启动时间,为~262.67Ma,位于瓜德鲁普-乐平统界线之下~1.42myr,同时这也是古中生代之交双幕式生物大灭绝事件的启动时间。
     前人对广元上寺剖面沃德阶生物地层的研究比较精细,因此,在本次研究中选择了广元上寺剖面沃德阶作为天文周期定年对象。上寺剖面活德阶样品的磁化率同样绝大多数为负值,表明广元地区在沃德期孤立于古大陆,输送到沉积盆地中的陆源碎屑较少,自生抗磁性方解石主导了磁信号。K-T曲线测试表明,上寺剖面样品中主要磁性矿物为顺磁性矿物(伊利石)及少量磁铁矿。利用MTM和FT分析,从高分辨率磁化率数据中提取出五个米兰科维奇旋回,分别是:长偏心率周期(~405kyr)、长地轴斜率周期(~44.0kyr)、短地轴斜率周期(~35.0kyr)、长岁差周期(~20.9kyr)和短岁差周期(~17.6kyr)。通过图形对比方法,对整个沉积序列建立了分辨率为~200kyr的浮点年代标尺。计算出沃德阶的时限为~2.84Ma,整个沉积序列(包括罗德阶上部,整个沃德阶和卡匹敦阶下部)的平均沉积速率为。~1.65cm/kyr。
Middle Permian is a critical period in geological history. The eruption of Emeishan large igneous province which was considered as the trigger of the Paleozoic-Mesozoic double mass extinction launched at this time. The establishment of high-resolution time scale in Middle Permian is all important for understanding the onset time and cause of the mass extinction and the eruption of Emeishan large igneous province. However, the precision of time scale for Middle Permian is seriously limited due to the lack of high precision radiometric ages (The only zircon age currently available, comes from an ash bed that~37.2m below the base of the Capitanian stage). According to the fact that it is difficult to obtain accurate absolute ages, it's necessary to consider other dating methods. In recent decades, as the understanding and research of the theory that Earth's orbital parameters can affect climate change, a great number of achievements have been achieved in aspects of dating and establishment of high-resolution geological time scale by astronomical cycles. In this study, a high resolution float point time scale(FPTS) has been established for the Wordian stage in Shangsi section and the Capitanian stage in Tieqiao section by astronomical cycles dating based on the research of sedimentology and rock magnetism.
     The largest transgression since Late Paleozoic had begun in South China during the Early Permian. That formed a rigorously isolated platform-type marine environment which was rare in the geological history. We investigated the characteristics of rock magnetism and sedimentology for Lower-Middle Permian carbonates at Tieqiao section, Guangxi area, South China. The magnetic susceptibility (MS) data sets of Tieqiao section are mostly negative, indicating the dominant magnetic components are diamagnetic calcite and chert, with subordinate paramagnetic, ferrimagnetic and antiferromagnetic minerals. Laboratory measurements on rock magnetism suggest that the magnetic minerals are mainly paramagnetic minerals (mainly are illite) with a small amount of ferrimagnetic minerals and antiferromagnetic minerals, including soft magnetic magnetite and titanomagnetite, hard magnetic hematite and goethite. The proportion of hard magnetic component increased from bottom to top in the section profile. Hard magnetic minerals are dominant in the upper part of the Capitanian stage. The characteristics of rock magnetism near the Guadalupian-Lopingian boundary showed a pronounced shift. The magnetic minerals are changed from hard magnetic minerals to soft magnetic minerals and then returned to hard magnetic minerals. The MS increased first and reduced later, but the content of magnetic particles showed a contrary tendency. All these transitions were finished in4m strata around the Guadalupian-Lopingian (G-L) boundary that synchronizes with the regressive and subsequent transgressive at Later Guadalupian, also the shift of paleotemperature of seawater. These transitions probably indicated a short-lived (0.1myr) special event at the G-L boundary. In addition, a large number of pyrite framboids were found in Lower Chihsia formation, confirming the existence of reduction of magnetic minerals.
     Astronomical cycles are used to dating the Capitanian stage based on detailed research of rock magnetism and biostratigraphic work at Tieqiao section. The MS data sets of Capitanian stage are mostly negative (diamagnetic), suggesting that the Laibin area was isolated from terrigenous sources during most of the Capitanian. A sudden increase in the MS signal at the top of J.altudaensis just below the Guadalupian-Lopingian (G-L) boundary is recorded. The coincidence of the increase with the onset of the Emeishan Large Igneous Province (LIP) eruptions argues strongly for volcanic effects controlling the MS in this part of the section. The thermomagnetic susceptibility measurements indicate that the dominant magnetic constituents in this study are paramagnetic and subordinate ferrimagnetite minerals. Spectral (time-series) analysis of the MS data was performed using Multi Taper Method (MTM) and Fourier Transform (FT) analysis. Five frequencies that are consistent with Milankovitch-band orbital forcing were compared to this data set:eccentricity E1and E2(~‖100and~405kyr, respectively), obliquity02(-44.10kyr), and precession P1(~17.70kyr) and P2(-20.95kyr). Interpretation of these results indicates that the duration for the Capitanian in the Tieqiao section was~3.85myr. In turn, the mean sediment accumulation rate (SAR) for the whole Capitanian was~2.9cm/kyr. In addition, graphic comparison of the Tieqiao MS data to a floating point time scale(FPTS) for the Upper Wordian throughout Capitanian time allows estimates of the duration for conodont zones identified from the section, these ranging from~10.3kyr to~2.43myr before the extinction of individual conodont species. In turn, timing of the onset age of Emeishan LIP eruptions was estimated, yielding an age of~262.67Ma, with the start of these eruptions at~1.42myr below the G-L boundary, and it is also the onset time of Paleozoic-Mesozoic mass extinction event.
     We chose the Wordian stage of Shangsi section in Guangyuan, Sichuan province as the object of astronomical cycles dating because biostratigraphic works were well done by previously researchers. The MS data sets of Wordian in Shangsi section also are mostly negative, suggesting that the Guangyuan area was isolated from terrigenous sources during most of the Wordian. Thermomagnetic susceptibility measurements indicate that the magnetic carriers in this study mainly are paramagnetic with subordinately magnetite. Spectral (time-series) analysis of the MS data was performed using MTM and FT analysis. Five frequencies that are consistent with Milankovitch-band orbital forcing were compared to this data set:eccentricity E2(~405kyr,~100kyr), obliquity01(-35.00kyr) and O2(~44.00kyr), and precession P1(~17.60kyr) and P2(-20.9kyr). A FPTS was built for Wordian of Shangsi section by graphic comparison, with resolution of~200kyr. Interpretation of spectral analysis indicates that the duration for the Wordian in the Shangsi section was~2.84myr. In turn, the mean sediment accumulation rate (SAR) for the whole section (from upper Roadian to lower Capitanian) was~1.65cm/kyr.
引文
[1]Thompson R, Oldfield F. Environmental Magnetism. London:Allen and Unwin,1986. 1-277.
    [2]Oldfield F, Yu L. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea. Sedimentology,1994,41(6):1093-1108.
    [3]Maher B A, Thompson R. Quaternary climates, environments and magnetism. England: Cambridge University Press,1999.1-391.
    [4]Evans M E, Heller F. Environmental magnetism:principles and applications of enviromagnetics. London:Academic Press,2003.1-299.
    [5]郑妍,张世红.北京市区尘土与表土的磁学性质及其环境意义.科学通报,2007,52(20):2399-2406.
    [6]乔庆庆,张春霞,李静等.北京市朝阳区大气降尘磁学特征及对空气污染物浓度的指示.地球物理学报,2011,54(1):151-162.
    [7]Borradaile G J. Magnetic susceptibility, petrofabrics and strain. Tectonophysics,1988, 156(1-2):1-20.
    [8]Uyeda S, Fuller M D, Belshe J C, et al. Anisotropy of magnetic susceptibility of rocks and minerals. Journal of Geophysical Research,1963,68(1):279-291.
    [9]Kent D V, Lowrie W. On the magnetic susceptibility anisotropy of deep-sea sediment. Earth and Planetary Science Letters,1975,28(1):1-12.
    [10]McElhinny M W, McFadden P L. Paleomagnetism:continents and oceans. San Diego: Academic Press,2000.1-386.
    [11]Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters,1990,17(2):159-162.
    [12]Chang L, Roberts A P, Tang Y, et al. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal of Geophysical Research,2008,113(B6):B6104, doi:10.1029/2007JB00550.
    [13]Roberts A P. Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters,1995,134(3-4):227-236.
    [14]Maher B A. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal,1988,94(1):83-96.
    [15]刘青松,邓成龙.磁化率及其环境意义.地球物理学报,2009,52(4):1041-1048.
    [16]Liu Q S, Torrent J, Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research,2005,110:B11102, doi:10.1029/2005JB003726.
    [17]Ellwood B B, Crick R E, El Hassani A, et al. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks:Detrital input versus carbonate productivity. Geology,2000,28(12):1135-1138.
    [18]Crick R E, Ellwood B B, Hladil J, et al. Magnetostratigraphy susceptibility of the Pridolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,167(1):73-100.
    [19]Ellwood B B, Benoist S L, Hassani A E, et al. Impact ejecta layer from the Mid-Devonian: possible connection to global mass extinctions. Science,2003,300(5626):1734-1737.
    [20]Zegers T E, Dekkers M J, Bailly S. Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes:role of temperature, fluids, and deformation. Journal of Geophysical Research,2003,108(B7):2537, doi:10.1029/2002JB002213.
    [21]Ellwood B B, Crick R E, El Hassani A. The Megneto-Susceptibility Event and Cyclostratigraphy (MSEC) Method Used in Geological Correlation of Devonian Rocks from Anti-Atlas Morocco. AAPG Bulletin,1999,83(7):1119-1134.
    [22]Ellwood B B, Petruso K M, Harrold F B, et al. High-resolution paleoclimatic trends for the Holocene identified using magnetic susceptibility data from archaeological excavations in caves. Journal of Archaeological Science,1997,24(6):569-573.
    [23]Tite M S, Linington R E. Effect of climate on the magnetic susceptibiiity of soils. Nature, 1975,256(5518):565-566.
    [24]Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. The Journal of Geology,1983,91(1):1-21.
    [25]Hovius N. Controls on sediment supply by large rivers. In:Shanley K W and McCabe P J (eds.). Relative role of eustasy, climate and tectonics in continental rocks. SEPM Special Publication,1998,59:3-16.
    [26]Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers. The Journal of Geology,1992,100(5): 525-544.
    [27]Crick R E, Ellwood B B, El Hassani A, et al. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes,1997,20(3):167-175
    [28]Racki G, Racka M, Matyja H, et al. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins:integrated event-stratigraphical approach Palaeogeography, Palaeoclimatology, Palaeoecology,2002,181(1):251-297
    [29]张世红,王训练,朱鸿.碳酸盐岩磁化率与相对海平而变化的关系—黔南泥盆石炭系例析.中国科学(D辑:地球科学),1999,29(6):558-566
    [30]刘健.磁性矿物还原成岩作用述评.海洋地质与第四纪地质,2000,20(4):103-107
    [31]Rey D, Mohamed K J, Bemabeu A, et al. Early diagenesis of magnetic minerals in marine transitional environments:Geochemical signatures of hydrodynamic forcing. Marine Geology,2005,215(3):215-236
    [32]李海燕,张世红,方念乔.东帝汶海MD98-2172岩芯磁记录与还原成岩作用过程.第 四纪研究,2007,27(6):1023-1030.
    [33]Liu J, Zhu R, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. Journal of Geophysical Research,2004,109(B3):B3103, doi:10.1029/2003JB002813.
    [34]Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxie marine sediments. Geochimica et Cosmochimica Acta,1987,51(3):645-659.
    [35]Raiswell R, Fisher Q J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments:implications for the formation of concretions. Chemical geology,2004,211(1):71-85.
    [36]Ingalls A E, Aller R C, Lee C, et al. Organic matter diagenesis in shallow water carbonate sediments. Geochimica et cosmochimica acta,2004,68(21):4363-4379.
    [37]Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis. Geochimica et Cosmochimica Acta,1979,43(7):1075-1090.
    [38]Lovley D R. Dissimilatory metal reduction. Annual Reviews in Microbiology,1993, 47(1):263-290.
    [39]Lovley D R. Dissimilatory Fe (Ⅲ) and Mn (Ⅳ) reduction. Microbiological Reviews, 1991,55(2):259-287.
    [40]Lovley D R, Phillips E J. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and environmental microbiology,1988,54(6):1472-1480.
    [41]陈忠,陈翰,颜文等.南海北部白云凹陷08C F7岩心沉积物的磁化率特征及其意义.现代地质,2010,24(3):515-520.
    [42]Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochimica et cosmochimica acta,2005,69(16):4117-4126.
    [43]Garming J, Bleil U, Riedinger N. Alteration of magnetic mineralogy at the sulfate-methane transition:Analysis of sediments from the Argentine continental slope. Physics of the Earth and Planetary Interiors,2005,151(3):290-308.
    [44]Marz C, Hoffmann J, Bleil U, et al. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Marine Geology,2008,255(3):118-130.
    [45]da Silva A C, Mabille C, Boulvain F. Influence of sedimentary setting on the use of magnetic susceptibility:examples from the Devonian of Belgium. Sedimentology,2009, 56(5):1292-1306.
    [46]Ellwood B B, Ledbetter M T. Antarctic bottom water fluctuations in the Vema Channel: effects of velocity changes on particle alignment and size. Earth and Planetary Science Letters,1977,35(2):189-198.
    [47]Warner N R, Domack E W. Millennial-to decadal-scale paleoenvironmental change during the Holocene in the Palmer Deep, Antarctica, as recorded by particle size analysis. Paleoceanography,2002,17(3):8004, doi:10.1029/2000PA000602.
    [48]Febo L A. Paleoceanography of the gulf of papua using multiple geophysical and micropaleontological proxies:[Dissertation]. Louisiana:Louisiana State University, 2007.
    [49]Blakemore R P. Magnetotactic bacteria. Science,1975,190(4212):377-379.
    [50]Stolz J F, Chang S R, Kirschvink J L. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature,1986,321(6073):849-851.
    [51]Karlin R, Lyle M, Heath G R. Authigenic magnetite formation in suboxic marine sediments. Nature,1987,326(6112):490-493.
    [52]Petermann H, Bleil U. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth and planetary science letters,1993,117(1):223-228.
    [53]彭先芝,贾蓉芬,李荣森等.黄土—古土壤序列中趋磁细菌分布和磁小体形成的古环境研究.科学通报,2000,45(s1):2710-2715.
    [54]范国昌,李荣森,李小刚等.我国趋磁细菌的分布及其磁小体的研究.科学通报,1996,41(4):349-352.
    [55]韩家楙,姜文英,褚骏.黄土和古土壤中磁性矿物的粒度分布.第四纪研究,1997,17(3):281-287.
    [56]韩吟文,马振东,张宏飞等.地球化学.北京:地质出版社,2003.1-370.
    [57]Jovane L, Florindo F, Sprovieri M, et al. Astronomic calibration of the late Eocene/early Oligocene Massignano section (central Italy). Geochemistry, Geophysics, Geosystems, 2006,7(7):Q7012, doi:10.1029/2005GC001195.
    [58]徐国真,冯凡斌,雷勇等.贵州安顺新民二叠系—三叠系界线剖面磁化率变化及古气候环境意义.沉积学报,2012,30(5):817-824.
    [59]Ellwood B B, Brett C E, MacDonald W D. Magnetostratigraphy susceptibility of the Upper Ordovician Kope Formation, Northern Kentucky. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243(1-2):42-54.
    [60]Whalen M T, Day J E. Magnetic susceptibility, biostratigraphy, and sequence stratigraphy: insights into Devonian carbonate platform development and basin infilling, Western Alberta. In:Lukasik J and Simo J A(eds.). Controls on Carbonate Platform and Reef Development. SEPM Special Publication,2008,89:291-314.
    [61]袁爱华,朱宗敏,林文姣等.山西宁武陆相二叠系-三三叠系界线剖面的磁化率研究.地质科技情报,2003,22(3):37-40.
    [62]彭元桥,童金南,Hansen H等.华南二叠-三叠系界线处的磁化率特征及其对比意义.华南地质与矿产,2000,12(2):22-28.
    [63]Whalen M T, Day J E. Cross-Basin Variations in Magnetic Susceptibility Influenced by Changing Sea Level, Paleogeography, and Paleoclimate:Upper Devonian, Western Canada Sedimentary Basin. Journal of Sedimentary Research,2010,80(12):1109-1127.
    [64]da Silva A C, Yans J, Boulvain F. Early-Middle Frasnian (early Late Devonian) sedimentology and magnetic susceptibility of the Ardennes area (Belgium):identification of severe and rapid sea-level fluctuations. Geologica Belgica,2010,13(4):319-332.
    [65]Michel J, Boulvain F, Philippo S, et al. Palaeoenvironmental study and small scale correlations using facies analysis and magnetic susceptibility of the Mid-Emsian (Himmelbaach quarry, Luxembourg). Geologica Belgica,2010,13(4):447-458.
    [66]da Silva A, Boulvain F. Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,240(3-4):373-388.
    [67]da Silva A C, Potma K, Weissenberger J A W, et al. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada. Sedimentary Geology,2009,214(1-4): 3-18.
    [68]Gradstein F M, Ogg J G, Schmitz M, et al. The Geologic Time Scale 2012. Boston: Elsevier,2012.1-1144.
    [69]Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the End-Permian mass extinction. Science,1998,280 (5366):1039-1045.
    [70]Zhu Z Y, Jiang S Y, Liu G X, et al. Precise dating of the Middle Permian:Zircon U-Pb geochronology from volcanic ash beds in the basal Gufeng Formation, Yangtze region, South China. Gondwana Research,2012, http://dx.doi.org/10.1016/j.gr.2012.08.008.
    [71]Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 2007,4(2-3):239-251.
    [72]龚一鸣,杜远生,童金南等.旋回地层学:地层学解读时间的第三里程碑.地球科学-中国地质大学学报,2008,33(4):443-457.
    [73]Jin Y G, Zhang J, Shang Q H. Two phases of the end-Permian mass extinction. Canadian Society of Petroleum Geologists Memoir,1994,17:813-822.
    [74]Stanley S M, Yang X. A double mass extinction at the end of the Paleozoic era. Science, 1994,266(5189):1340-1344.
    [75]Wignall P B, Sun Y, Bond D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science,2009,324(5931):1179-1182.
    [76]Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 500,000-Year Climate Record from Vein Calcite in Devils Hole, Nevada. Science,1992,258(5080):255-256.
    [77]Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science,2001,294(5550): 2345-2348.
    [78]Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit:pacemaker of the ice ages. Science,1976,194(4270):1121-1132.
    [79]Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature,1993,364(6434):218-220.
    [80]Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature,1995,375(6529):305-308.
    [81]Pisias N G, Imbrie J. Orbital geometry, CO2, and Pleistocene climate. Oceanus,1986, 29(4):43-49.
    [82]Berger A L. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences,1978,35(12):2362-2367.
    [83]Laskar J. The chaotic motion of the solar system:A numerical estimate of the size of the chaotic zones. Icarus,1990,88(2):266-291.
    [84]Quinn T R, Tremaine S, Duncan M. A three million year integration of the Earth's orbit. The Astronomical Journal,1991,101(6):2287-2305.
    [85]Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science,1992,255(5044):560-566.
    [86]Laskar J, Joutel F, Boudin F. Orbital, precessional, and insolation quantities for the Earth from-20Myr to+10Myr. Astronomy and Astrophysics,1993,270(1-2):522-533.
    [87]Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics,2004,428(1):261-285.
    [88]Varadi F, Runnegar B, Ghil M. Successive refinements in long-term integrations of planetary orbits. The Astrophysical Journal,2008,592(1):620-630.
    [89]Vernekar A D. Long-period global variations of incoming solar radiation. Boston: American Meteorological Society,1972.1-21.
    [90]龚一鸣,徐冉,汤中道等.广西上泥盆统轨道旋回地层与牙形石带的数字定年.中国科学(D辑:地球科学),2004,34(7):635-643.
    [91]田铮,戎海武.动态数据处理的理论与方法:时间序列分析.西安:西北工业大学出版社,1995.1-180.
    [92]赵庆乐.磁化率在碳酸盐岩地层旋回分析中的应用[学位论文].北京:中国地质大学(北京),2010.
    [93]吴怀春,张世红,冯庆来等.旋回地层学理论基础,研究进展和展望.地球科学-中国地质大学学报,2011,36(3):409-428.
    [94]赵庆乐,张世红,王婷婷等.利用Matlab函数识别沉积物中的米兰柯维奇旋回信号.吉林大学学报:地球科学版,2010(5):1217-1220.
    [95]田军,汪品先,成鑫荣等.南海ODP1143站上新世至更新世天文年代标尺的建立.地球科学-中国地质大学学报,2005,30(1):31-39.
    [96]Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In:Berger, A I, Imbrie J, Hays J D, Kukla G and Saltzman B (eds.). Milankovitch and Climate. Part 1. Dordrecht: D. Reidel Publishing Company,1984.269-305.
    [97]Tiwari R K. A Walsh spectral comparison of oxygen (δ 18O) and carbon isotope (δ 13C) variations of the Pleistocene bore hole (Eureka 67-135) from the Gulf of Mexico and their orbital significance. Marine Geology,1987,78(1-2):167-174.
    [98]Heard T G, Pickering K T, Robinson S A. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters, 2008,272(1):130-138.
    [99]Rodriguez-Tovar F J, Lowemark L, Pardo-Iguzquiza E. Zoophycos cyclicity during the last 425 ka in the northeastern South China Sea:Evidence for monsoon fluctuation at the Milankovitch scale. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,305(1-4): 256-263.
    [100]鹿化煜,周杰Heinrich事件和末次冰期气候的不稳定性.地球科学进展,1996,11(1):40-44.
    [101]Hyun S, Ahagon N, Yoon H. Milankovitch cycles and paleoceanographic evolution within sediments from ODP Sites 980 and 983 of the North Atlantic Ocean. Geosciences Journal,2005,9(3):235-242.
    [102]Helmke J P, Schulz M, Bauch H A. Sediment-color record from the Northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500,000 years. Quaternary Research,2002,57(1):49-57.
    [103]陈建业,冯庆来,陈晶等.广西东攀二叠系-三叠系界线剖面基于岩石磁参数的米兰科维奇旋回特征和地层对比.地层学杂志,2007,31(4):309-316.
    [104]Wu H C, Zhang S H, Feng Q L, et al. Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research,2011,22(2):748-759.
    [105]张小会,赵重远.鄂尔多斯盆地上三叠统延长组米兰科维奇旋回的确定.石油与天然气地质,2002,23(4):372-375.
    [106]郭少斌,陈成龙.利用米兰科维奇旋回划分柴达木盆地第四系层序地层.地质科技情报,2007,26(4):27-30.
    [107]乔彦国,时志强,王艳艳等.四川广元上寺剖面晚二叠世-早三叠世旋回地层:基于小波分析的P-T界线地质事件探讨.古地理学报,2012,14(3):403-410.
    [108]李凤杰,王多云,程微.应用自然伽马曲线反演陇东地区延安组沉积旋回.成都理工大学学报(自然科学版),2004,31(5):473-477.
    [109]李凤杰,赵俊兴.基于Matlab的测井曲]线频谱分析及其在地质研究中的应用——以川东北地区二叠系长兴组为例.天然气地球科学,2007,18(4):531-534.
    [110]彭兴芳,冯庆来,李周波等.广西东攀二叠系-三叠系界线剖面地球化学高分辨率旋回研究.中国科学(D辑:地球科学),2007,37(12):1565-1570.
    [111]Dickson J A D, Coleman M L. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology,1980,27(1):107-118.
    [112]Hasiuk F J, Lohmann K C. Mississippian Paleocean Chemistry from Biotic and Abiotic Carbonate, Muleshoe Mound, Lake Valley Formation, New Mexico, USA. Journal of Sedimentary Research,2008,78(2):147-160.
    [113]Popp B N, Anderson T F, Sandberg P A. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin, 1986,97(10):1262-1269.
    [114]Huang C J, Tong J N, Hinnov L, et al. Did the great dying of life take 700 ky? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology, 2011,39(8):779-782.
    [115]Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology,1996,122(1):1-26.
    [116]郭刚,童金南,张世红等.安徽巢湖早三叠世印度期旋回地层研究.中国科学(D辑:地球科学),2007,37(12):1571-1578.
    [117]Boulila S, Hinnov L A, Huret E, et al. Astronomical calibration of the Early Oxfordian (Vocontian and Paris basins, France):consequences of revising the Late Jurassic time scale. Earth and Planetary Science Letters,2008,276(1-2):40-51.
    [118]Ellwood B B, Tomkin J H, El Hassani A, et al. A climate-driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage:a test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,304(1-2):85-95.
    [119]田军,汪品先,成鑫荣等.南海ODP 1148站中中新世12-18.3Ma天文调谐的年代标尺.地球科学-中国地质大学学报,2005,30(5):513-518.
    [120]Tian J, Wang P, Cheng X, et al. Astronomically tuned Plio-Pleistocene benthic δ 18O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters,2002,203(3):1015-1029.
    [121]鹿化煜,安芷生,杨文峰.洛川黄土序列时间标尺的初步建立.高校地质学报,1996,2(2):230-236.
    [122]Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews,1994,13(1):39-70.
    [123]Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ 18O record. Paleoceanography,2002,17(3), doi:10.1029/2001PA000725.
    [124]李凤杰,郑荣才,罗清林等.四川盆地东北地区长兴组米兰科维奇周期分析.中国矿业大学学报,2007,36(6):805-810.
    [125]龚一鸣,李保华.泥盆系弗拉阶/法门阶之交米兰柯维奇旋回及高分辨率地层对比.地质学报,2001,75(4):440.
    [126]Shaw A B. Time in stratigraphy. New York:McGraw-Hill,1964.1-365.
    [127]Garcia-Alcalde J L, Ellwood B B, Soto F, et al. Precise timing of the Upper Taghanic Biocrisis, Geneseo Bioevent, in the Middle - Upper Givetian (Middle Devonian) boundary in Northern Spain using biostratigraphic and magnetic susceptibility data sets. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,313-314:26-40.
    [128]Ellwood B B, Tomkin J H, Ratcliffe K T, et al. High-resolution magnetic susceptibility and geochemistry for the Cenomanian/Turonian boundary GSSP with correlation to time equivalent core. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,261(1): 105-126.
    [129]Ellwood B B, Tomkin J H, Richards B C, et al. MSEC data sets record glacially driven cyclicity:examples from the arrow canyon Mississippian-Pennsylvanian GSSP and associated sections. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,255(3-4): 377-390.
    [130]Ellwood B B, Lambert L L, Tomkin J H, et al. Magnetostratigraphy susceptibility for the Guadalupian series GSSPs (Middle Permian) in Guadalupe Mountains National Park and adjacent areas in West Texas. Geological Society, London, Special Publications,2012, 373,doi:10.1144/SP373.1.
    [131]殷鸿福,吴顺宝,杜远生等.华南是特提斯多岛洋体系的一部分.地球科学-中国地质大学学报,1999,24(1):3-14.
    [132]赵崇贺,何科昭,莫宣学等.赣东北深断裂带蛇绿混杂岩中含晚古生代放射虫硅质岩的发现及其意义.科学通报,1995,40(23):2161-2163.
    [133]何科昭,周正国.赣东北蛇绿混杂岩带中多处发现含晚古生代放射虫硅质岩.现代地质,1996,10(3):303-307.
    [134]Valentine J W, Moores E M. Plate-tectonic regulation of faunal diversity and sea level:a model. Nature,1970,228(5272):657-659.
    [135]Veevers J J. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup:supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews,2004,68(1):1-132.
    [136]Robinson P L. Palaeoclimatology and continental drift, in Tarling D H and Runcorn S K(eds.). Implications of continental drift to the earth sciences. London:Academic Press, 1973.449-476.
    [137]Kutzbach J E, Gallimore R G. Pangean climates:Megamonsoons of the megacontinent. Journal of Geophysical Research,1989,94(D3):3341-3357.
    [138]Parrish J T. Climate of the supercontinent Pangea. The Journal of Geology,1993,101(2): 215-233.
    [139]冯增昭,杨玉卿,金振奎等.中国南方二叠纪岩相古地理.东营:石油大学出版社,1997.1-246.
    [140]王立亭,陆彦邦,赵时久等.中国南方二叠纪岩相古地理与成矿作用.北京:地质出版社,1994.1-147.
    [141]Jin Y, Shen S, Henderson C M, et al. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 2006,29(4):253-262.
    [142]沙庆安,吴望始,傅家谟.黔桂地区二叠系综合研究—兼论含油气性.北京:科学出版社,1990.1-215.
    [143]Mei S L, Jin Y G, Wardlaw B R. Conodont succession of the Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and West Texas, USA. Palaeoworld,1998,9: 53-57.
    [144]Jin Y G, Mei S L, Wang W, et al. On the Lopingian series of the Permian system. Palaeoworld,1998,9:1-18.
    [145]Shen S Z, Wang Y, Henderson C M, et al. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld,2007,16(1-3): 120-139.
    [146]Wignall P B, Vedrine S, Bond D, et al. Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society,2009,166(4): 655-666.
    [147]Chen Z Q, George A D, Yang W R. Effects of Middle-Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China. Australian Journal of Earth Sciences,2009,56(6):745-763.
    [148]邱振,王清晨.广西来宾铁桥剖面中上二叠统沉积微相.沉积学报,2010,28(5):1020-1036.
    [149]姚尧,颜佳新,李傲竹.广西来宾中二叠世碳酸盐岩沉积特征与孤立台地演化.地球科学-中国地质大学学报,2012,37(s2):184-194.
    [150]沈尔卜,胡超涌,马仲武等.广西来宾铁桥剖面二叠系生物地球化学信号的解读.古地理学报,2010,12(2):194-201.
    [151]四川省地质局.1:20万区域地质报告广元幅.成都:四川省地质局,1996.1-1-13.
    [152]杨基端,李子舜,张景华等.我国二叠—三叠系界线和事件研究的新进展.地球学报,1986(3):133-144.
    [153]Yan J X, Man Z X, Xie X N, et al. Subdivision of Permian fossil communities and habitat types in northeast Sichuan, South China. Journal of China University of Geosciences, 2008,19(5):441-450.
    [154]Ma Z W, Hu C Y, Yan J X, et al. Biogeochemical Records at Shangsi Section, Northeast Sichuan in China:The Permian Paleoproductivity Proxies. Journal of China University of Geosciences,2008,19(5):461-470.
    [155]Xie X N, Li H J, Xiong X, et al. Main controlling factors of organic matter richness in a Permian section of Guangyuan, Northeast Sichuan. Journal of China University of Geosciences,2008,19(5):507-517.
    [156]李波,颜佳新,薛武强等.四川广元地区中二叠世斑状白云岩成因及地质意义.地球科学-中国地质大学学报,2012,37(s2):136-146.
    [157]李国辉,李翔,宋蜀筠等.四川盆地二叠系三分及其意义.天然气勘探与开发,2005,28(3):20-25.
    [158]颜佳新,刘新宇.从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式.地球科学:中国地质大学学报,2007,32(6):789-796.
    [159]全国地层委员会.中国区域年代地层(地质年代)表说明书.北京:地质出版社,2002.1-72.
    [160]金玉玕,王向东,尚庆华等.中国二叠纪年代地层划分和对比.地质学报,1999,73(2):99-108.
    [161]殷鸿福,丁梅华,张克信等.扬子区及其周缘东吴-印支期生态地层学.北京:科学出版社,1995.1-338.
    [162]王志根,赵嘉明.广西来宾中二叠世的珊瑚群.古生物学报,1998,37(1):40-59.
    [163]江海水,罗根明,赖旭龙.牙形石的分离方法简介.地质科技情报,2004,23(4):109-112.
    [164]张春霞,黄宝春.环境磁学在城市环境污染监测中的应用和进展.地球物理学进展,2005,20(3):705-711.
    [165]Hrouda F. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International,1994,118(3):604-612.
    [166]Dunlop D J, Ozdemir O. Rock magnetism:fundamentals and frontiers. England: Cambridge University Press,1997.1-573.
    [167]Liu Q, Deng C, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment:implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International,2005,161(1):102-112.
    [168]Deng C L, Zhu R X, Verosub K L, et al. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research,2004,109(B1):B1103, doi:10.1029/2003JB002532.
    [169]敖红,邓成龙.磁性矿物的磁学鉴别方法回顾.地球物理学进展,2007,22(2):432-442.
    [170]Radhakrishnamurty C, Likhite S D. Hopkinson effect, blocking temperature and Curie point in basalts. Earth and Planetary Science Letters,1970,7(5):389-396.
    [171]Bouchikhi H,王夏,马仲武等.广西来宾二叠系栖霞组黏土矿物和地球化学特征初步研究及地质意义.地质科技情报,2011,30(1):15-19.
    [172]Oldfield F. Environmental magnetism - a personal perspective. Quaternary Science Reviews,1991,10(1):73-85.
    [173]陈曦,张卫国,俞立中.赤铁矿与磁铁矿混合比例对磁性参数的影响.地球物理学进展,2009,24(1):82-88.
    [174]King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials:some results from lake sediments. Earth and Planetary Science Letters,1982,59(2):404-419.
    [175]Chen B, Joachimski M M, Sun Y, et al. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections:Climatic or sea-level signal? Palaeogeography, Palaeoclimatology, Palaeoecology,2011,311(3):145-153.
    [176]陈建业,冯庆来.广西东攀二叠-三叠系界线剖面磁学特征及古气候意义.地球物理学进展,2011,26(2):529-539.
    [177]McCabe C, Elmore R D. The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Reviews of Geophysics,1989,27(4):471-494.
    [178]Rochette P. Metamorphic control of the magnetic mineralogy of black shales in the Swiss Alps:toward the use of "magnetic isogrades". Earth and Planetary Science Letters,1987, 84(4):446-456.
    [179]McNeill D F, Kislak J I.11:data report:paleomagnetism of carbonate sediments from hole 1006A, Bahamas transect, leg 166. In:Swart P K, Eberli G P, Malone M J and Sarg J F(eds.). Proceedings of the Ocean Drilling Program, Scientific Results. Texas:College Station,2000.123-127.
    [180]McNeill D F. A review and comparison of carbonate rock magnetization:Leg 133, Queensland Plateau, Australia. In:McKenzie J A, Davies P J and Palmer-Julson A(eds.). Proceedings of the Ocean Drilling Program. Texas:Scientific Results,1993.749-753.
    [181]李洪星,陆现彩,边立曾等.有孔虫壳体内草莓状黄铁矿成因及其地质意义—以湖北雁门口地区栖霞组有孔虫化石为例.高校地质学报,2009,15(4):470-476.
    [182]王琦,朱而勤,张建华等.海南岛三亚湾表层沉积中的自生铁矿物组合.地质学报,1985,4:293-304.
    [183]徐家声,孟毅,张效龙等.晚更新世末期以来黄河口古地理环境的演变.第四纪研究,2006,26(3):327-333.
    [184]Wignall P B, Bond D P G, Kuwahara K, et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change,2010,71(1-2):109-123.
    [185]Ali J R, Thompson G M, Song X Y, et al. Emeishan Basalts (SW China) and the 'end-Guadalupian' crisis:magnetobiostratigraphic constraints. Journal of the Geological Society,2002,159(1):21-29.
    [186]Bond D P G, Wignall P B, Wang W, et al. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,292(1-2):282-294.
    [187]Bond D P G, Hilton J, Wignall P B, et al. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews,2010,102(1-2):100-116.
    [188]He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China:geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters,2007,255(3):306-323.
    [189]Sun Y D, Lai X L, Wignall P B, et al. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos,2010,119(1-2):20-33.
    [190]Wignall P B. Large igneous provinces and mass extinctions. Earth-Science Reviews,2001, 53(1-2):1-33.
    [191]Wignall P B, Bond D P G, Haas J, et al. Capitanian (Middle Permian) mass extinction and recovery in western tethys:a fossil, facies, and δ 13C study from Hungary and Hydra island (Greece). Palaios,2012,27(2):78-89.
    [192]Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters,2002,196(3):113-122.
    [193]Gradstein F M, Ogg J G, Smith A G. Geologic Time Scale 2004. England:Cambridge University Press,2004.1-589.
    [194]Ogg J G, Ogg G, Gradstein F M. The Concise Geologic Time Scale. England:Cambridge University Press,2008.1-177.
    [195]郑和荣,胡守业.中国前中生代构造-岩相古地理图集.北京:地质出版社,2010.1-194.
    [196]Qiu Z, Wang Q, Zou C, et al. Transgressive-regressive sequences on the slope of an isolated carbonate platform (Middle-Late Permian, Laibin, South China). Facies,2013: 1-19.
    [197]Wang Y, Jin Y G. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,160(1-2):35-44.
    [198]Jin Y G, Henderson C M, Wardlaw B R, et al. Proposal for the Global Stratotype Section and Point (GSSP) for the Guadalupian-Lopingian boundary. Permophiles,2001,39: 32-42.
    [199]Ellwood B B, Tomkin J H, Febo L A, et al. Time series analysis of magnetic susceptibility variations in deep marine sedimentary rocks:a test using the Upper Danian-Lower Selandian proposed GSSP, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,261(3-4):270-279.
    [200]Ellwood B B, Hrouda F, Wagner J. Symposia on magnetic fabrics:introductory comments. Physics of the Earth and Planetary Interiors,1988,51(4):249-252.
    [201]Ellwood B B, Algeo T J, El Hassani A, et al. Defining the timing and duration of the Kacak Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,304(1-2):74-84.
    [202]Weedon G P. Time-series analysis and cyclostratigraphy:examining stratigraphic records of environmental cycles. England:Cambridge University Press,2003.1-259.
    [203]Jenkins G M, Watts D G. Spectral analysis and its applications. San Francisco: Holden-Day,1968.1-525.
    [204]Dettinger M D, Ghil M, Strong C M, et al. Software expedites singular-spectrum analysis of noisy time series. EOS Transactions American Geophysical Union,1995,76(2):12-21.
    [205]Ghil M, Allen M R, Dettinger M D, et al. Advanced spectral methods for climatic time series. Reviews of Geophysics,2002,40(1), doi:10.1029/2001RG000092.
    [206]Kasuya A, Isozaki Y, Igo H. Constraining paleo-latitude of a biogeographic boundary in Mid-Panthalassa:fusuline province shift on the Late Guadalupian (Permian) migrating seamount. Gondwana Research,2012,21(2-3):611-623.
    [207]Ziegler A M, Hulver M L, Rowley D B. Permian world topography and climate. In: Martini, I.P. (ed.). Late Glacial and Postglacial Environmental Changes-Quaternary, Carboniferous-Permian, and Proterozoic. New York:Oxford University Press,1997. 111-146.
    [208]Crowley T J, Yip K J, Baum S K, et al. Modelling Carboniferous coal formation. Paleoclimates,1996,2:159-177.
    [209]Ali J R, Thompson G M, Zhou M, et al. Emeishan large igneous province, SW China. Lithos,2005,79(3):475-489.
    [210]Clark M A. Magnetostratigraphy susceptibility correlations for the Guadalupian-Lopingian Boundary and the placement of the North American Ochoan series:Texas (USA) and South China:[Dissertation]. Baton Rouge, LA.:Louisiana State University,2012.
    [211]Liu C Y, Zhu R X. Geodynamic significances of the Emeishan Basalts. Earth Science Frontiers,2009,16(2):52-69.
    [212]He B, Xu Y G, Wang Y M, et al. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism:new insights into surface response to mantle plume activity. The Journal of Geology,2006,114(1): 117-132.
    [213]He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters,2003,213(3):391-405.
    [214]Glenister B F, Wardlaw B R, Lambert L L, et al. Proposal of Guadalupian and component Roadian, Wordian and Capitanian stages as international standards for the Middle Permian series. Permophiles,1999,34:3-11.
    [215]Ma Z X, Yan J X, Xie X N, et al. Depositional and Ecological Features of Permian Oxygen Deficient Deposits at Shangsi Section, Northeast Sichuan, China. Journal of China University of Geosciences,2008,19(5):488-495.
    [216]Sun Y D, Lai X L, Jiang H S, et al. Guadalupian (Middle Permian) conodont faunas at Shangsi Section, northeast Sichuan province. Journal of China University of Geosciences, 2008,19(5):451-460.
    [217]冯增昭,杨玉卿,金振奎等.中国南方二叠纪岩相古地理.沉积学报,1996,14(2):1-11.
    [218]何斌,徐义刚,王雅玫等.东吴运动性质的厘定及其时空演变规律.地球科学-中国地质大学学报,2005,30(1):89-96.
    [219]Shackleton N J, Crowhurst S J, Weedon G P, et al. Astronomical calibration of Oligocene-Miocene time. Philosophical Transactions of the Royal Society of London., 1999,357(1757):1907-1929.
    [220]Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean:records from lost deep sea. Science,1997,276(5310):235-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700