西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原的形成演化过程一直是国际地质研究中的热点问题之一。青藏高原所包含的广大地区经历过原特提斯、古特提斯、新特提斯和印度-亚洲大陆碰撞等多个阶段的地质事件,强烈的岩浆活动出现在新特提斯洋俯冲和印度-亚洲大陆碰撞过程中。
     拉萨地体位于欧亚板块的最南缘,主体由面积大致相等的花岗岩和火山岩组成,花岗岩出露面积约占西藏花岗岩的80%,约11万平方公里,其中,尤以其南部的冈底斯花岗岩类最为发育。冈底斯花岗岩类的形成与新特提斯洋板片俯冲消减、印度-欧亚大陆的碰撞和后碰撞等事件密切相关,对于了解新特提斯洋演化、青藏高原隆升和巨厚地壳形成具有重要的科学意义。另外,冈底斯带是我国重要的斑岩铜(钼、金)成矿带,它们或是岩浆作用的产物,或与岩浆作用期后的构造-热液活动密切相关。因此,冈底斯岩浆作用的研究,对查明该地区大规模成矿作用的区域地质背景,寻找矿产资源,发展国民经济建设也有重要的意义。
     本文选择雅鲁藏布江缝合带以北的冈底斯花岗岩类为研究对象,对它们进行了野外地质观察、岩相矿物学、锆石U-Pb年龄、主量元素和微量元素、Sr-Nd同位素和锆石Hf同位素组成的综合研究,结合前人在冈底斯带有关花岗岩的研究成果,探讨了冈底斯带花岗岩类的岩石成因以及冈底斯带的构造演化历史,并进一步与西部科希斯坦-拉达克-喀喇昆仑地区和东部波密-八宿-然乌-察隅地区花岗岩类进行了对比研究,探讨了冈底斯带与它们的联系及区别。本文获得了以下几点主要认识:
     1.获得了中东部冈底斯带及中部拉萨地体42个花岗岩类LA-ICPMS锆石U-Pb年龄数据,年龄分布于205-12 Ma之间。根据锆石U-Pb年龄的间断、锆石Hf同位素组成的演化特征和早期文献的划分方案,这些年龄所标示的岩浆事件可以划分为以下5个时间段:(1)205-202 Ma,(2)~178 Ma,(3)94-87 Ma,(4)68-40 Ma和(5)25-13 Ma。其中,晚三叠世花岗岩类位于中部拉萨地体的南缘,其他花岗岩类均位于冈底斯带内。
     2.中部拉萨地体南缘出露一个晚三叠世二云母花岗岩和一个晚三叠世花岗闪长岩。二云母花岗岩属于强过铝质岩石(A/CNK=1.16-1.20),富集Rb、Th和U等元素,Eu/Eu*=0.29-0.41,Rb/Sr=2.6~5.5,Rb/Ba=1.1~1.3,锆石εHf(t)值为-12.4~-1.8。二云母花岗岩地球化学特征类似于喜马拉雅中新世淡色花岗岩,反映它们应该具有相似的岩石成因机制,即二云母花岗岩的岩浆产生于地壳中泥质岩类在无外来流体加入的情况下云母类矿物脱水反应所诱发的部分熔融作用。花岗闪长岩属于准铝质岩石(A/CNK=0.96-0.98),K2O/Na2O=1.42-1.77,Eu/Eu*=0.54-0.65,(La/Yb)N=6.76-13.35,锆石εHf(t)值为-8.2~-5.5。地球化学特征表明,花岗闪长岩的岩浆来自于地壳中基性岩类的部分熔融。拉萨地体印支期强过铝质花岗岩的确定,表明了拉萨地体在印支晚期以前曾发生地壳的缩短与加厚作用,从而进一步明确了拉萨地体印支早期的造山事件及拉萨地体经历了多期造山作用。
     3.产于冈底斯带南缘的变形花岗岩定年结果表明,其形成于早侏罗世(~178 Ma)。变形花岗岩为高硅(SiO2=73.38-76.06%)钙碱性岩系,弱过铝质岩石(A/CNK=1.03~1.07),贫大离子亲石元素和Nb、Ta等高场强元素,具有岛弧型花岗岩的地球化学特征。锆石εHf(t)值变化于+17.7~+14.1之间,表明变形花岗岩岩浆来自初生地壳的部分熔融。结合最近在冈底斯带获得的晚三叠世-早侏罗世岩浆岩的锆石年龄和岩石成因信息,推测新特提斯洋发生俯冲消减作用的开始时代应不晚于早侏罗世,说明新特提斯洋经历了较长时间的演化。
     4.古新世-始新世花岗岩类(68-40 Ma)是冈底斯岩基的主体,岩石组合多样,包括花岗岩,花岗闪长岩,石英二长岩,闪长岩,二长岩和辉长闪长岩等。岩石主体为高钾钙碱性岩系列,它们的A/CNK=0.80-1.06,表明它们为准铝质岩石或弱过铝质岩石。在微量元素组成上,该期花岗岩类总体上富集Rb、Th、U和K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P和Ti等高场强元素,具有岛弧型花岗岩的地球化学特征。花岗岩类总体具有低的初始87Sr/86Sr值(ISr=0.70369-0.70585),全岩εNd(t)值变化于+5.6~-4.1之间,锆石εHf(t)值变化于+14.7~-6.4之间。分析表明它们的岩浆主要来源于初生地壳物质,但在岩浆演化过程中混入了拉萨地体古老地壳物质。与新特提斯洋俯冲消减有关的花岗岩类在中生代仅分布于冈底斯带内,而在古新世-始新世时,向北延伸到中部拉萨地体的南部,这可能是轻和热的残留新特提斯洋板片在印度-亚洲大陆碰撞背景下向上运移,以低角度俯冲于拉萨地体之下,脱水并加热亚洲大陆使其部分熔融所致。
     5.尼木和谢通门地区发现了两个较大规模的埃达克质花岗岩体,它们均被小体积的埃达克质斑岩所侵入。LA-ICPMS锆石U-Pb定年结果表明,埃达克质花岗岩的岩浆结晶年龄为14.0-14.4 Ma,而侵入其中的斑岩也具有相似的年龄(14.2-14.6 Ma)。这反映花岗岩浆在中地壳深度结晶后快速隆升至上地壳深度,表明在中新世时拉萨地体经历了快速的地壳隆升。埃达克质花岗岩和斑岩的Sr-Nd同位素和锆石Hf同位素组成表明,它们均来自于地壳物质的部分熔融。冈底斯埃达克质岩石的锆石εHf(14Ma)值在-2.3~+6.1之间,这与东喜马拉雅构造结基性麻粒岩(印度基性下地壳)锆石的εHf(14Ma)值(-2.5~+4.8)基本一致。冈底斯埃达克质岩石的Sr-Nd同位素组成落入由印度基性下地壳和拉萨下地壳/超钾质火山岩构成的二端元混合线之间。这些证据表明渐新世-中新世埃达克质岩石可能来源于印度基性下地壳的部分熔融,并在上升就位过程中混染了超钾质岩浆和拉萨下地壳物质。这表明在早-中中新世时,印度大陆已经俯冲于拉萨地体之下。
     6.结合已有的研究成果和本文资料,冈底斯带的形成和演化及岩浆过程可总结为:在新特提斯洋盆打开之前并不存在冈底斯带。晚三叠世-早侏罗世时,随着新特提斯洋向北的俯冲,在俯冲带之上开始出现岩浆作用(即晚三叠世-早侏罗世花岗岩和早侏罗世叶巴组火山岩),但这期岩浆作用是发生在洋壳内的。晚侏罗世-白垩纪时,新特提斯洋板片持续向北俯冲,产生了早白垩世桑日群火山岩和晚白垩世花岗岩类。古新世-始新世时,新特提斯洋盆逐渐关闭,印度-亚洲大陆开始发生碰撞,由于碰撞作用使俯冲速度变慢,轻和热的残留新特提斯洋板片向上运移,以相对较低角度继续俯冲于拉萨块体之下,导致冈底斯岩浆作用向北扩展,达到中部拉萨地体的南部地区;在此之前,中部拉萨地体的古老地壳物质已经剥蚀进入南边的冈底斯带内,并通过混染等方式进入古新世-始新世花岗岩浆中,使冈底斯带内该期岩浆锆石εHf(t)值显著地降低。晚渐新世-早中新世时,印度大陆已俯冲至亚洲大陆之下,其前端因变质作用导致密度增大,由于重力不稳定,从印度大陆主体断离,致使已深俯冲的印度中上地壳较轻部分折返形成高喜马拉雅结晶岩系,而残留的印度基性下地壳与热的软流圈充分接触,加热并部分熔融产生了埃达克质岩浆,在该岩浆上升过程中混染了超钾质岩浆和拉萨下地壳物质。
     7.冈底斯带花岗岩类锆石总体具有高的176Hf/177Hf比值、正的εHf(t)值和年轻的Hf同位素模式年龄(0.1~1.1 Ga;峰值为~0.3 Ga);其中,中生代花岗岩类锆石具有更为均一的高176Hf/177Hf比值,对应的εHf(t)值为+17.7~+9.5,但新生代花岗岩类的Hf同位素组成显示了大的变化范围(εHf(t)=+14.7~-6.4),εHf(t)值开始向低值方向延伸,并出现少量负值。中部拉萨地体岩浆岩锆石主要显示负的εHf(t)值(+6.0~-14.2),但在-110 Ma时也出现了部分正的锆石εHf(t)值,指示了地幔组分的加入。中部拉萨地体花岗岩类锆石对应的地壳模式年龄主要为古元古代-中元古代早期(0.8~2.1 Ga),峰值大约出现在1.6 Ga。由此可见,中部拉萨地体和冈底斯带花岗岩类锆石Hf同位素组成存在着明显的差异,反映了它们具有不同的岩浆源区。此外,中部拉萨地体以相对发育早白垩世花岗岩类而区别于冈底斯带。西部的科希斯坦-拉达克岛弧地体和喀喇昆仑地体花岗岩类无论在年龄结构上,还是锆石Hf同位素组成上都分别与冈底斯带和中部拉萨地体可以进行很好的对比,暗示科希斯坦-拉达克岛弧地体是冈底斯带的西延,而喀喇昆仑地体是中部拉萨地体的西延。冈底斯带东部从波密-八宿-然乌-察隅地区一直向南延伸到高黎贡-腾冲-盈江地区,出露的花岗岩类锆石U-Pb年龄结构类似于中部拉萨地体,而明显不同于冈底斯带;东部中生代花岗岩类锆石εHf(t)值大多数分布在+5.0~-15.0之间,主体为负的εHf(t)值,具有老的Hf同位素模式年龄(1.0~2.2 Ga),峰值大约出现在1.7 Ga,与中部拉萨地体可以进行很好的对比,表明东部八宿-然乌-察隅等地区是中部拉萨地体的东延。但东部地区还出现有少量新生代花岗岩类,它们皆临近雅鲁藏布江缝合带一侧分布(如波密地区)。这些新生代花岗岩类锆石既具有负的εHf(t)值,同时也具有正的εHf(t)值,甚至可达+10.0左右,大部分与冈底斯带花岗岩类锆石Hf同位素组成类似。这可能意味着东部地区也存在着类似的冈底斯带,但也有可能仅代表中部拉萨地体东延部分的南缘。
The Himalayan-Tibetan orogenic system is the most distinctive landform on our planet. However, the geological evolution of the Tibetan plateau still hotly debated. The Tibetan Plateau has experienced the subduction of Tethyan oceanic lithosphere (involving the Proto-Tethys, Paleo-Tethys, Neo-Tethys) and the India-Asia continental collision, in the processes of which widespread magmatic activities occurred. In the Tibetan Plateau, the Lhasa terrane locating in the most south of the Asian continent is characterized by the widespread granitoids, which occupy 80% area of granitoid within Tibet. Especially, the granitoid magmatism is the most widesrpread in the Gangdese belt, the southern portion of the Lhasa terrane. The Gangdese belt formed as the result of subduction of the Neo-Tethyan oceanic slab and the India-Asia continental collision as well as post-collisional convergence, and thus can provide constraints on the evolution of the Neo-Tethys and the Tibetan uplift. In addition, the Gangdese belt is an important porphyry copper (molybdenum, gold) ore belt, which is either the product of magmatism, or closely related to tectonic-hydrothermal activity after magmatism. Therefore, the investigation of Gangdese magmatism could provide important constraint for the geological background of a large-scale mineralization, looking for mineral resources and the development of the national economy.
     In the paper, we present field geology, petrography, LA-ICPMS zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositons for the Gangdese granitoids, with the aim of constraining the petrogenesis and origin of these rocks and the tectonic evolution of the Gangdese belt. Combining with published data, we compared the Gangdese granitoids with the the western Kohistan-Ladakh-Karakorum granitoids and the eastern Bomi-Basu-rawu-Chayu Granitoids, and discussed their affinity. The main research results are as follows:
     1. Forty-two granitoid samples from the Gangdese belt and the Middle Lhasa terrane were selected for in situ zircon U-Pb analyses. These ages range from~205 Ma to~12 Ma, with a peak age at~50 Ma. According to the zircon U-Pb and Hf isotopic data as well as previous study, the magmatic activities are divided into five intrusive stages:(1)205-202 Ma, (2)-178 Ma, (3)94-87 Ma, (4)68-40 Ma and (5)25-13 Ma. The most granitoids were collected from the Gangdese belt, except for two Late-Triassic granitoids, which were obtained from the Middle Lhasa terrane.
     2. The paper reports geochemistry and zircon Hf isotopic compositions for two Late-Triassic plutons (a two-mica granite and a granodiorite) from the Middle Lhasa terrane. The two-mica granite is strongly peraluminous, with A/CNK=1.16-1.20. The two-mica granite is characterized by enrichments of Rb, Th and U etc. They have Eu/Eu*=0.29-0.41, Rb/Sr=2.6~5.5 and Rb/Ba=1.1~1.3. Dated zircon Hf isotopic compositions exhibitεHf(t) values ranging from-12.4 to-1.8. The geochemistry of the two-mica granite is comparable to the Himalayan Tertiary leucogranites, suggesting that the magma of the two-mica granite was dominantly derived from partial melting of argillaceous rocks in crust. The granodiorite is metaluminous, with A/CNK=0.96-0.98. They display K2O/Na2O=1.42-1.77, Eu/Eu*=0.54-0.65 and (La/Yb)N=6.76-13.35.εHf(t) values from the dated zircons range from -8.2 to -5.5. The geochemical signatures and zircon Hf isotopic compositions suggest that the magma of granodiorite formed by partial melting of basaltic rocks in crust. The occurring of the strongly peralumineous granite reveals Lhasa crustal thickening prior to Late Indosinian, and gives an impelling evidence that the Lhasa terrane took place an Early Indosinian orogenic event.
     3. LA-ICPMS zircon U-Pb dating results show that the deformed granite in the southern edge of the Gangdese belt yield a magma crystallization age of~178 Ma. The deformed granites are high silicon calc-alkline series, with SiO2=73.38-76.06% and A/CNK=1.03~1.07. The deformed granite is characterized by low large ion lithophile element (LILE) contents and low high field strength element (HFSE) contents, indicating that the granite has an island-arc-type geochemical affinity. Zircon Hf isotopic compositions from the granite displayεHf(t) values ranging from +14.1 to +17.7, suggesting that the magma was derived from partial melting of juvenile crust. Based on the study of the Late-Triassic and Early-Jurassic igneous rocks and their petrogenesis in the Gangdese belt, the beginning time of the Neo-Tethyan oceanic slab subduction is not later than Early Jurassic. The Neo-Tethyan Ocean has long lasting tectonic evolution.
     4. The Gangdese batholith are composed mainly of the Paleocene to Eocene (68-40 Ma) granitoids, which include granite, granodiorite, quartz-monzonite, diorite, monzonite and gabbric diorite etc. These granitoids are dominantly high-potassic calc-alkaline series, and are metaluminous or weakly peraluminous with A/CNK=0.80-1.06. These granitoids are relatively enriched in Rb, Th, U and K, and show negative Nb, Ta, P and Ti anomalies, indicating that the granitoids have an island-arc-type geochemical affinity. They have ISr values ranging from 0.70369 to 0.70585 andεHf(t) values ranging from +5.6 to -4.1. Zircon Hf isotopic compositions from these granitoids displayεHf(t) values ranging from +14.7 to -6.4, suggesting that the magmas were mainly derived from partial melting of juvenile crust with incorporation of the ancient crustal material deriving from the Middle Lhasa terrane. While the Neo-Tethys subduction-related granitoids in the Mesozoic distributed limitedly in the Gangdese belt, the granitoid magmatism during the Paleocene-Eocene has extended into the Middle Lhasa terrane, suggesting that a light and hot residual Neo-Tethyan ocean slab was underthrust beneath the Lhasa terrane with a low angle. Its dehydration and thermal effect caused the extensive magmatism in both the Gangdese belt and the Middle Lhasa terrane.
     5. The large-volume Pagu and Nanmuqie granitoids are firstly identified to be adakitic rocks, which are intruded by three adakitic porphyries in the Lhasa. LA-ICPMS zircon U-Pb dating for the Pagu granodiorite and Nanmuqie granite yielded identical magma crystallization ages of 14.0~14.4 Ma, which is indistinguishable from their associated adakitic porphyries (14.2~14.6 Ma). The granitoid was intruded at middle-crust depth, whereas the porphyry was intruded at upper-crust depth, indicating that the Lhasa terrane has experienced a rapid crustal uplift during the magma emplacement. Zircon Hf isotopic and whole-rock Sr-Nd isotopic compositions for these granitoids and porphyries suggest that their magmas were dominantly derived from partial melting of crustal materials. The granitoids and porphyries haveεHf(t) values overlapping with the mafic granulites in the Himalayan terrane (Indian plate). Their Sr-Nd isotopic compositions show two-endmember mixing between the Himalayan mafic lower crust and the ultrapotassic lavas/the Lhasa lower crust. We suggest that the adakitic magmas in the Lhasa terrane could be derived from partial melting of subducted Indian mafic lower crust with incorporation of the ultrapotassic lava and/or the Lhasa lower crust components. Our study suggests a new model for the adakitic magma generation in the Lhasa terrane and provides a line of geochemical evidence that the Indian continental crust was subducted beneath the southern Lhasa terrane in the Early-Middle Miocene.
     6. The evolutional history of the Gangdese belt is inferred from the granitoid magmatism, based on this study and published data. The Gangdese belt did not exist before opening of the Neo-Tethyan oceanic basin. The Late-Triassic to Early-Jurassic Neo-Tethyan oceanic subduction beneath the Lhasa micro-continental block (i.e., the Middle Lhasa terrane) yielded Yeba volcanic rocks and the contemporaneous granitoids in oceanic crust along south of the Lhasa micro-continental block. From Late-Jurassic to Cretaceous, the lasting oceanic subduction produced the Sangri volcanics and Late-Cretaceous granitoids in the Gangdese belt. Along with closing of the Neo-Tethyan oceanic basin during the Paleocene-Eocene, the India-Asia continental collision initiated. During the continental collision, light and hot residual Neo-Tethyan ocean slab was underthrust beneath the Lhasa terrane with a low angle, which induced the widespread magmatism in both the Gangdese belt and the Middle Lhasa terrane. Then the Indian continental margin began to be subducted beneath the Lhasa terrane with a slow subduction velocity and low subduction angle. By~25 Ma, the subducted felsic part was detached from the subjacent mafic part and lithosphere mantle of the Indian plate. The above felsic part was exhumed due to the buoyancy. This felsic part is equivalent to the Great Himalayan Sequence in the Himalayan terrane. The residual mafic part and lithosphere mantle became steeper from low-angle underthrusting to high-angle underthrusting, even forming a subvertical lithosphere slab. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus warm both the Asian mantle and the Indian mafic lower crust. It would induce partial melting of the Indian mafic lower crust to produce the pristine adakitic melt. During the magma migration and emplacement, the magma may incorporate the ultrapotassic magmas and/or the Lhasa lower crust materials.
     7. Zircons from granitoids in the Gangdese belt have dominantly high 176Hf/177Hf ratios, corresponding to positiveεHf(t) values and young Hf model age of 0.1 to 1.1 Ga, with a peak at~0.3 Ga. Among them, the Mesozoic zircons have homogeneous Hf isotopic compositions, withεHf(t)=+17.7~+9.5. However, the Cenozoic zircons have heterogeneous Hf isotopic compositions (εHf(t)=+14.7~-6.4). By comparison, zircons from granitoids in the Middle Lhasa terrane display dominantly negativeεHf(t) values (-14.2~+6.0). Their Hf model ages are mainly Paleoproterozoic and early Mesoproterozoic (0.8~2.1 Ga), with a peak at~1.6 Ga. Therefore the Hf isotopic compositions of zircons for granitoids in the Gangdese belt are significantly different from those in the Middle Lhasa terrane, indicating distinct sources. In addition, the Middle Lhasa terrane has widespread magmatism during Early Cretaceous, which is also different from the Gangdese belt. Either zircon U-Pb ages or Hf isotopic compositions of granitoids in the Kohistan-Ladakh island arc terrane and the Karakorum terrane are comparable to the Gangdese belt and the Middle Lhasa terrane, respectively. It suggests that the western Kohistan-Ladakh island arc terrane could be correlated with the Gangdese belt, and the Karakorum terrane could be correlated with the Middle Lhasa terrane. In the east, the framework of zircon U-Pb ages for granitoids in the Bomi-Basu-ranwu-Chayu area and Gaoligong-Tengchong-Yingjiang area is indistinguishable from that of the Middle Lhasa terrane. The Mesozoic zircons display dominantly negativeεHf(t) values (+5.0~-15.0), corresponding to old Hf model ages (1.0~2.2 Ga) with a peak at~1.7 Ga, which are also consistent with that of the Middle Lhasa terrane. Both the U-Pb ages and the Hf isotopic compositions suggest that the eatern area could be correlated with the Middle Lhasa terrane. However, there are also a small amount of Cenozoic granitoids along the Indus-Yarlung suture. They have zirconεHf(t) values overlapping largely with the granitoids in the Gangdese belt. It may imply that the eastern area either appear the Gangdese belt, or only present the southern margin of the Middle Lhasa terrane.
引文
[1]金成伟,周云生.喜马拉雅和冈底斯弧形山系中的岩浆岩带及其成因模式.地质科学,1978,13:297-312.
    [2]涂光炽,张玉泉,赵振华,等.西藏南部花岗岩类的特征和演化地球化学,1981,10:1-7.
    [3]张玉泉,戴橦谟,洪阿实.西藏高原南部花岗岩类同位素地质年代学.地球化学,1981,10:8-18.
    [4]王中刚,张玉泉,赵惠兰.西藏南部花岗岩类的岩石化学研究.地球化学,1981,10:19-25.
    [5]赵振华,王一先,钱志鑫,等.西藏南部花岗岩类稀土元素地球化学.地球化学,1981,10:26-35.
    [6]王一先,赵振华,王中刚.西藏南部花岗岩类中微量元素的某些地球化学特征.地球化学,1981,10:49-56.
    [7]王俊文,成忠礼,桂训唐,等.西藏南部某些中酸性岩体的铷-锶同位素研究.地球化学,1981,10:242-246.
    [8]桂训唐,成忠礼,王俊文.西藏拉萨冈底斯岩带中酸性岩类的Rb-Sr同位素研究.地球化学,1982,11:217-225.
    [9]刘荣谟,赵定华.西藏东部中酸性侵入岩同位素年龄讨论.地质论评,1981,27:326-332.
    [10]陈毓蔚,许荣华.西藏南部中酸性岩中锆石铀-铅计时讨论.地球化学,1981,10:128-135.
    [11]谢应雯,张玉泉,邓秉均.西藏花岗岩类中长石的特征与花岗岩类的演化.地球化学,1981,10:36-41.
    [12]Maluski, H, Proust, F, Xiao, X. 39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet Nature,1982,298:152-154.
    [13]Scharer, U, Xu, R-H, Allegre, C J. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet Earth and Planetary Science Letters,1984,69:311-320.
    [14]Xu, R, Sch rer, U, Allegre, C. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study. The Journal of Geology,1985:41-57.
    [15]Debon, R, LeFort, P, Sheppard, S M F, et al. The four plutonic belts of the Transhimalaya-Himalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. Journal of Petrology,1986,27:219-250.
    [16]Harris, N, Ronghua, X, Lewis, C, et al. Isotope geochemistry of the 1985 Tibet geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327:263-285.
    [17]潘桂棠,丁俊,姚冬生,等.青藏高原及邻区地质图(1:1,500,000,附说明书).成都:成都地图出版社,2004.
    [18]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11:281-290.
    [19]Chung, S L, Chu, M F, Zhang, Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,2005,68:173-196.
    [20]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报,2006,22:521-533.
    [21]Chung, S L, Liu, D Y, Ji, J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology,2003,31:1021-1024.
    [22]Hou, Z Q, Gao, Y F, Qu, X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters,2004,220: 139-155.
    [23]董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报,2006,22:835-844.
    [24]Mo, X X, Dong, G C, Zhao, Z D, et al. Timing of magma mixing in the Gangdise magmatic belt during the India-Aisa collision:zircon SHRIMP U-Pb dating. Acta Geologica Sinica,2005,79: 66-76.
    [25]Dong, G C, Mo, X X, Zhao, Z D, et al. Geochronologic constraints on the magmatic underplating of the Gangdise belt in the India-Eurasia collision:evidence of SHRIMP Ⅱzircon U-Pb dating. Acta Geologica Sinica,2005,79:787-794.
    [26]朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘,2009,16:1-20.
    [27]朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报,2008,27:458-468.
    [28]Chu, M F, Chung, S L, Song, B A, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,2006,34:745-748.
    [29]Ji, W Q, Wu, F Y, Chung, S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology,2009,262: 229-245.
    [30]张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报,2007,23:1347-1353.
    [31]常承法,郑锡澜.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨.中国科学A辑,1973,16:190-201.
    [32]常承法,郑锡澜.中国西藏南部珠穆朗玛峰地区构造特征.地质科学,1973,1:1-12.
    [33]Harrison, T M, Yin, A, Grove, M, et al. The Zedong window:A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research,2000,105:19211-19230.
    [34]McDermid, I R C, Aitchison, J C, Davis, A M, et al. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology,2002,187:267-277.
    [35]Wen, D R, Liu, D Y, Chung, S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet Chemical Geology,2008,252: 191-201.
    [36]纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学:D辑,2009,39:849-871.
    [37]曲晓明,辛洪波,徐文艺.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩 时代的重新厘定.矿床地质,2007,26:512-518.
    [38]杨志明,侯增谦,夏代详,等.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质,2008,27:28-36.
    [39]董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报,2006,22:661-668.
    [40]Zhu, D C, Pan, G T, Chung, S L, et al. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet. International Geology Review,2008,50:442-471.
    [41]Wen, D R. The Gangdese batholith, southern Tibet:ages, geochemical characteristics and petrogenesis:[学位论文].Taiwan:National Taiwan University,2007.
    [42]Zhu, D-C, Zhao, Z-D, Pan, G-T, et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences,2009,34:298-309.
    [43]Zhang, Z M, Wang, J L, Dong, X, et al. Petrology and geochronology of the charnockite from the southern Gangdese belt, Tibet:Evidence for the Andean-type orogen. Acta Petrologica Sinica, 2009,25:1707-1720.
    [44]张泽明,王金丽,董昕,等.青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据.岩石学报,2009,25:1707-1720.
    [45]Wen, D, Chung, S, Song, B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:petrogenesis and tectonic implications. Lithos,2008,105:1-11.
    [46]Lee, H Y. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record Tectonophysics,2009,477:151-165.
    [47]Mo, X X, Niu, Y L, Dong, G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet Chemical Geology,2008,250:49-67.
    [48]魏瑞华,高永丰,侯增谦,等.冈底斯新近纪钾质火山作用:消减沉积物折返的地球化学与Sr-Nd-Pb同位素证据.岩石学报,2008,24:359-367.
    [49]周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报,2004,49:2095-2103.
    [50]李皓揚,锺孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代,成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报,2007,23:493-500.
    [51]莫宣学,赵志丹,邓晋福,等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10:135-148.
    [52]Mo, X X, Dong, G C, Zhao, Z D, et al. Mantle input to the crust in southern Gangdese, Tibet, during the Cenozoic:zircon Hf isotopic evidence. Journal of Earth Science,2009,20:241-249.
    [53]江万,莫宣学.青藏高原冈底斯带中段花岗岩类及其中铁镁质微粒包体地球化学特征.岩石学报,1999,15:89-97.
    [54]董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报,2008,24:203-210.
    [55]Searle, M, Windley, B, Coward, M, et al. The closing of Tethys and the tectonics of the Himalaya Geological Society of America Bulletin,1987,98:678.
    [56]高永丰,侯增谦,魏瑞华.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,2003:418-428.
    [57]Miller, C, Schuster, R, Klotzli, U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology,1999,40:1399-1424.
    [58]Nomade, S, Renne, P R, Mo, X, et al. Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications. Earth and Planetary Science Letters,2004,221:227-243.
    [59]Williams, H, Turner, S, Kelley, S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology,2001,29:339-342.
    [60]Williams, H M, Turner, S P, Pearce, J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology,2004,45:555-607.
    [61]赵志丹,莫宣学,周肃,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,2006,22:787-794.
    [62]赵志丹,莫宣学.西藏中部乌郁盆地碰撞后岩浆作用——特提斯洋壳俯冲再循环的证据.中国科学(D辑),2001,31:20-26.
    [63]Zhao, Z D, Mo, X X, Dilek, Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos,2009,113:190-212.
    [64]Qu, X M, Hou, Z Q, Li, Y G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos,2004,74: 131-148.
    [65]Gao, Y F, Hou, Z Q, Kamber, B S, et al. Adakite-like porphyries from the southern Tibetan continental collision zones:evidence for slab melt metasomatism Contributions to Mineralogy and Petrology,2007,153:105-120.
    [66]Edmond, J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science,1992,258:1594-1597.
    [67]Prell, W L, Kutzbach, J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature,1992,360:647-652.
    [68]Raymo, M E, Ruddiman, W F. Tectonic forcing of later Cenozoic climate. Nature,1992,359: 117-122.
    [69]Molnar, P, England, P, Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics,1993,31:357-396.
    [70]Derry, L A, France-Lanord, C. Neogene Himalayan weathering history and river 87Sr/86Sr:impact on the marine Sr record. Earth and Planetary Science Letters,1996,142:59-74.
    [71]Garzione, C N, Dettman, D L, Quade, J, et al. High times on the Tibetan Plateau:Paleoelevation of the Thakkhola graben, Nepal. Geology,2000,28:339-342.
    [72]An, Z S, Kutzbach, J E, Prell, W L, et al. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature,2001,411:62-66.
    [73]Dupont-Nivet, G, Krijgsman, W, Langereis, C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature,2007,445:635-638.
    [74]DePaolo, D J, Linn, A M, Schubert, G. The continental crustal age distribution:methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research-Solid Earth,1991,96: 2071-2088.
    [75]Rudnick, R L. Making continental crust. Nature,1995,378:571-577.
    [76]周肃.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究:[博士论文].北京:中国地质大学(北京),2002.
    [77]Finch, R, Hanchar, J. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry,2003,53:1-25.
    [78]Vervoort, J D, Blichert-Toft, J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,1999,63:533-556.
    [79]Griffin, W L, Wang, X, Jackson, S E, et al. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002,61:237-269.
    [80]Griffin, W, Belousova, E, Shee, S, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004,131: 231-282.
    [81]Yin, A, Harrison, T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    [82]肖序常,陈国铭,朱志直.祁连山古蛇绿岩带的地质构造意义.地质学报,1978,54:287-295.
    [83]冯益民.祁连造山带研究概况—历史,现状及展望.地球科学进展,1997,12:307-314.
    [84]冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社,1996.
    [85]夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社,1996.
    [86]潘裕生,张玉泉.昆仑山早古生代地质特征与演化.中国科学(D辑),1996,26:302-307.
    [87]许志琴,侯立炜,王宗秀,中国松潘带的造山过程.北京:地质出版社,1992.
    [88]Mattauer, M, Malavieille, J, Calassou, S, et al. La chaine triasique de Songpan-Garze (Quest Sechuan et Est Tibet):une chaine de plissement-decollement sur marge passive. C. R. Acad. Sci., Paris,1992,314:619-626.
    [89]Sengor, A M C, Natalin, B A, Paleotectonics of Asia:fragment of a synthesis, in:Yin A, Harrison T M, Editors.The Tectonics of Asia, New York:Cambridge University Press,1996, p.486-640.
    [90]Bruguier, O, Lancelot, J R, Malavieille, J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):provenance and tectonic correlations. Earth and Planetary Science Letters,1997,152:217-231.
    [91]Calassou, S, Etude tectonique d'une chaine de decollement:A) tectonique Triasique et Tertiaire de la chaine de Songpan-Garze. B) geometrie et cinematique des deformations dans les prismes d'accretion sedimentaire: modelisation analogique. France:University Montpellier-2,1994, p. 400.
    [92]Roger, F, Calassou, S. Geochronologie U-Pb sur zircons et geochimie (Pb, Sr et Nd) du socle de la chaine de Songpan-Garze (Chine). C R Acad Sci Paris, Ser Ⅱa,1997,324:819-826.
    [93]Huang, M, Maas, R, Buick, I S, et al. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks; geochronological constraints from the Songpan-Garze orogenic belt, western China. Journal of Metamorphic Geology,2003,21: 223-240.
    [94]Harrowfield, M J, Wilson, C J L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. Journal of Structural Geology,2005,27:101-117.
    [95]Reid, A J, Wilson, C J L, Liu, S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. Journal of Structural Geology,2005,27:119-137.
    [96]Roger, F, Malavieille, J, Leloup, P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences,2004,22:465-481.
    [97]胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩锆石SHRIMP定年及其构造意义.岩石学报,2005,21:867-880.
    [98]Zhang, H F, Zhang, L, Harris, N, et al. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze Fold Belt, eastern Tibet Plateau:constraints on petrogenesis, nature of basement and tectonic evolution. Contrib. Mineral. Petrol.,2006,152:75-88.
    [99]Zhang, H F, Parrish, R, Zhang, L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination. Lithos,2007,97:323-335.
    [100]Xiao, L, Zhang, H F, Clemens, J D, et al. Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 2007,96:436-452.
    [101]赵永久.松潘—甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义.广州:中国科学院研究生院(广州地球化学研究所),2007.
    [102]时章亮,张宏飞,蔡宏明.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义.地球科学—中国地质大学学报,2009,34:569-584.
    [103]Allegre, C, Courtillot, V, Tapponnier, P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature,1984,307:17-22.
    [104]Dewey, J, Shackleton, R, Chengfa, C, et al. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988:379-413.
    [105]段志明,李勇,张毅,等.青藏高原唐古拉山中新生代花岗岩锆石U—Pb年龄,地球化学特征及其大陆动力学意义.地质学报,2005,79:88-97.
    [106]Pearce, J, Houjun, M. Volcanic rocks of the 1985 Tibet geotraverse:Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327:169-201.
    [107]Hsu, K, Guitang, P, Seng r, A. Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis. International Geology Review,1995,37: 473-508.
    [108]Wang, Q, Wyman, D, Xu, J, et al. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet):evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology,2008,155:473-490.
    [109]李才,程立人,胡克,等.西藏龙木错-双湖古特提斯缝合带研究.北京:地质出版社,1995.p.1-115.
    [110]Kapp, P, Yin, A, Manning, C, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet Geology,2000,28:19.
    [111]Kapp, P, Yin, A, Manning, C, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics,2003,22:1043.
    [112]Zhang, K, Cai, J, Zhang, Y, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth and Planetary Science Letters,2006,245:722-729.
    [113]Zhang, K, Zhang, Y, Li, B, et al. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone:Evidence from geochemical comparison with the Jinsa suture. Geology,2006,34:493-496.
    [114]张泽明,王金丽,赵国春,等.喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化.岩石学报,2008,24:1477-1487.
    [115]DeCelles, P, Gehrels, G, Quade, J, et al. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science,2000,288:497-499.
    [116]Tapponnier, P, Peltzer, G, Le Dain, A, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology,1982,10:611-616.
    [117]Gansser, A. Geology of the Himalayas,289 pp. Interscience, New York,1964.
    [118]Gaetani, M, Garzanti, E. Multicyclic history of the northern India continental margin (northwestern Himalaya). AAPG Bull,1991,75:1427-1446.
    [119]Brookfield, M. The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology,1993,84:1-35.
    [120]Hodges, K. Tectonics of the Himalaya and southern Tibet from two perspectives. Bulletin of the Geological Society of America,2000,112:324-350.
    [121]Schelling, D. The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics,11.
    [122]Scharer, U, Allegre, C J. The Palung granite (Himalaya); high-resolution UPb systematics in zircon and monazite. Earth and Planetary Science Letters,1983,63:423-432.
    [123]Scharer, U, Xu, R-H, Allegre, C J. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters,1986,77:35-48.
    [124]Deniel, C, Vidal, P, Fernandez, A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology,1987,96:78-92.
    [125]DeCelles, P, Gehrels, G, Quade, J, et al. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics,1998,17.
    [126]Parrish, R, Hodges, V. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya Geological Society of America Bulletin,1996,108: 904-911.
    [127]Richards, A, Argles, T, Harris, N, et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters,2005,236:773-796.
    [128]Richards, A, Parrish, R, Harris, N, et al. Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology,2006,34:341-344.
    [129]Martin, A, DeCelles, P, Gehrels, G, et al. Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geological Society of America Bulletin,2005,117:926-944.
    [130]Ahmad, T, Harris, N, Bickle, M, et al. Isotopic constraints on the structural relationships between the lesser Himalayan series and the high Himalayan crystalline series, Garhwal Himalaya Geological Society of America Bulletin,2000,112:467-477.
    [131]Argles, T, Foster, G, Whittington, A, et al. Isotope studies reveal a complete Himalayan section in the Nanga Parbat syntaxis. Geology,2003,31:1109-1112.
    [132]Guynn, J, Kapp, P, Pullen, A, et al. Tibetan basement rocks near Amdo reveal ?missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology,2006,34:505-508.
    [133]Leier, A L, Kapp, P, Gehrels, G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet Basin Research,2007, 19:361-378.
    [134]Leeder, M, Smith, A, Jixiang, Y. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327:107-143.
    [135]Yin, J X, Xu, J T, Liu, C J, et al. The Tibetan plateau:regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327:5.
    [136]Zhu, D C, Pan, G T, Mo, X X, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese; New insightes from volcanic rocks. Acta Petrologica Sinica,2006, 22:534-546.
    [137]Zhu, D C, Mo, X X, Niu, Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet Chemical Geology, 2009,268:298-312.
    [138]Zhu, D C, Mo, X X, Zhao, Z D, et al. Zircon U-Pb geochronology of Zenong group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance. Acta Petrologica Sinica, 2008,24:401-412.
    [139]Kapp, J, Harrison, T, Kapp, P, et al. Nyainqentanglha Shan:A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research,2005,110:B08413.
    [140]Kapp, P, Yin, A, Harrison, T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin,2005,117:865-878.
    [141]胡道功,吴珍汉,江万,等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究.中国科学:D辑,2005,35:29-37.
    [142]李才,王天武,李惠民,等.冈底斯地区发现印支期巨斑花岗闪长岩—古冈底斯造山的存在 证据.地质通报,2003,22:364-366.
    [143]He, S, Kapp, P, DeCelles, P, et al. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet Tectonophysics,2007,433:15-37.
    [144]Pan, G T, Ding, J. Geological map (1:1500000) of Qinghai-Xizang (Tibetan) Plateau and adjacent areas. Chengdu Cartographic Publising House, Chengdu,2004:1-133.
    [145]Leier, A, DeCelles, P, Kapp, P, et al. The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. Bulletin of the Geological Society of America,2007,119:31-48.
    [146]Mo, X, Hou, Z, Niu, Y, et al. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,2007,96:225-242.
    [147]Zhu, D C, Mo, X X, Niu, Y L, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet:implications for Permian collisional orogeny and paleogeography. Tectonophysics,2009,469:48-60.
    [148]Najman, Y. The detrital record of orogenesis:A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Science Reviews,2006,74:1-72.
    [149]Aitchison, J, Ali, J, Davis, A. When and where did India and Asia collide. Journal of Geophysical Research,2007,112:1-19.
    [150]朱弟成,潘桂棠,莫宣学,等.印度大陆和欧亚大陆的碰撞时代.地球科学进展,2004,19:564-571.
    [151]Patriat, P, Achache, J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature,1984,311:615-621.
    [152]Klootwijk, C. Further palaeomagnetic data from Chitral (Eastern Hindukush):evidence for an early India-Asia contact. Tectonophysics,1994,237:1-25.
    [153]Klootwijk, C, Gee, J, Peirce, J, et al. An early India-Asia contact:Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology,1992,20:395-398.
    [154]Lee, T, Lawver, L. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics,1995,251: 85-138.
    [155]吴福元.青藏高原造山带的垮塌与高原隆升.岩石学报,2008,24:1-31.
    [156]Besse, J, Courtillot, V, Pozzi, J, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature,1984,311:621-626.
    [157]Jaeger, J, Courtillot, V, Tapponnier, P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology,1989,17:316-319.
    [158]Patzelt, A, Li, H, Wang, J, et al. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia Tectonophysics,1996,259:259-284.
    [159]Rowley, D. Age of initiation of collision between India and Asia: A review of stratigraphic data Earth and Planetary Science Letters,1996,145:1-13.
    [160]Willems, H, Zhou, Z, Zhang, B, et al. Stratigraphy of the upper Cretaceous and lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). International Journal of Earth Sciences,1996,85:723-754.
    [161]Zhu, B, Kidd, W, Rowley, D, et al. Age of initiation of the India-Asia collision in the east-central Himalaya. The Journal of Geology,2005,113:265-285.
    [162]Wu, F, Clift, P, Yang, J. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics,2007,26:TC2014.
    [163]Leech, M L, Singh, S, Jain, A K, et al. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters,2005,234:83-97.
    [164]de Sigoyer, J, Chavagnac, V, Blichert-Toft, J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya:Multichronology of the Tso Morari eclogites. Geology,2000,28:487-490.
    [165]Kaneko, Y, Katayama, I, Yamamoto, H, et al. Timing of Himalayan ultrahigh-pressure metamorphism:sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology,2003,21:589-599.
    [166]Parrish, R, Gough, S, Searle, M, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology,2006,34:989.
    [167]Guillot, S, Maheo, G, de Sigoyer, J, et al. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics,2008,451: 225-241.
    [168]Ding, L, Kapp, P, Wan, X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics,2005,24:1-18.
    [169]Garzanti, E. Comment on "When and where did India and Asia collide?" by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. Journal of Geophysical Research-Solid Earth, 2008,113:B04411.
    [170]董昕,张泽明,王金丽,等.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学.岩石学报,2009,25.
    [171]Zhang, H, Xu, W, Zong, K, et al. Tectonic Evolution of Metasediments from the Gangdise Terrane, Asian Plate, Eastern Himalayan Syntaxis, Tibet. International Geology Review,2008, 50:914-930.
    [172]Zhang, H F, Gao, S, Zhong, Z Q, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pres sure metamorphic belt, China. Chemical Geology,2002,186: 281-299.
    [173]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.2002.
    [174]Liu, Y, Hu, Z, Gao, S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257:34-43.
    [175]Liu, Y S, Gao, S, Hu, Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,2010,51:537-571.
    [176]Liu, Y S, Hu, Z C, Zong, K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.. Chinese Science Bulletin,2010, in press.
    [177]Wiedenbeck, M, Alle, P, Corfu, F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter,1995,19:1-1.
    [178]Andersen, T. Correction of common lead in U-Pb analyses that do not report Pb-204. Chemical Geology,2002,192:59-79.
    [179]Ludwig, K. User's Manual for Isoplot 3.0. Berkeley Geochronology Center Special Publication, 2003,4.
    [180]Yuan, H L, Gao, S, Dai, M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247:100-118.
    [181]Blichert-Toft, J. The Hf isotopic composition of zircon reference material 91500. Chemical Geology,2008,253:252-257.
    [182]Morel, M, Nebel, O, Nebel-Jacobsen, Y, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology,2008, 255:231-235.
    [183]Woodhead, J, Hergt, J. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research,2005,29:183.
    [184]Blichert-Toft, J, Albarede, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148:243-258.
    [185]Scherer, E, Munker, C, Mezger, K. Calibration of the lutetium-hafnium clock. Science,2001,293: 683-687.
    [186]Corfu, F, Hanchar, J, Hoskin, P, et al. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry,2003,53:469-500.
    [187]翟庆国,李才,李惠民,等.西藏冈底斯中部淡色花岗岩锆石U—Pb年龄及其地质意义.地质通报,2005,24:349-353.
    [188]Xu, W-C, Zhang, H-F, Guo, L, et al. Miocene high Sr/Y magmatism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos,2009, 114:293-306.
    [189]Middlemost, E. Naming materials in the magma/igneous rock system. Earth Science Reviews, 1994,37:215-224.
    [190]Rickwood, P. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,1989,22:247-263.
    [191]Zhang, H, Harris, N, Parrish, R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters,2004, 228:195-212.
    [192]Pearce, J, Harris, N, Tindle, A. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,1984,25:956.
    [193]Boynton, W. Geochemistry of the rare earth elements:meteorite studies. Rare Earth Element Geochemistry,1984:63-114.
    [194]Sun, S, McDonough, W. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society London Special Publications,1989,42: 313-345.
    [195]White, A, Chappell, B. Ultrametamorphism and granitoid genesis. Tectonophysics,1977,43: 7-22.
    [196]Sylvester, P. Post-collisional strongly peraluminous granites. Lithos,1998,45:29-44.
    [197]Douce, P, Alberto, E, Harris, N. Experimental constraints on Himalayan anatexis. Journal of Petrology,1998,39:689.
    [198]Inger, S, Harrus, N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology,1993,34:345.
    [199]Searle, M, Parrish, R, Hodges, K, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. The Journal of Geology,1997, 105:295-318.
    [200]Visona, D, Lombardo, B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos,2002,62: 125-150.
    [201]张宏飞,张利,赵志丹,等.北喜马拉雅淡色花岗岩地球化学:区域对比,岩石成因及其构造意义.地球科学:中国地质大学学报,2005,30:275-288.
    [202]Harris, N, Inger, S. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology,1992,110:46-56.
    [203]Harris, N, Ayres, M, Massey, J. Geochemistry of granitic melts produced during the incongruent melting of muscovite:implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research-Solid Earth,1995,100:15767-15777.
    [204]Harrison, T M, Lovera, O M, Grove, M. New insights into the origin of two contrasting Himalayan granite belts. Geology,1997,25:899-902.
    [205]Wolf, M, Wyllie, P. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar. Eos,1992,70:506-518.
    [206]Beard, J, Lofgren, G. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1,3, and 6.9 kb. Journal of Petrology,1991,32:365-401.
    [207]Rushmer, T. Partial melting of two amphibolites:contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology,1991,107:41-59.
    [208]Tepper, J, Nelson, B, Bergantz, G, et al. Petrology of the Chilliwack batholith, North Cascades, Washington:generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology,1993,113:333-351.
    [209]Yang, J, Xu, Z, Li, Z, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys? Journal of Asian Earth Sciences,2009,34:76-89.
    [210]Li, Z L, Yang, J S, Xu, Z Q, et al. Geochemistry and Sm-Nd and Rb-Sr isotopic composition of eclogite in the Lhasa terrane, Tibet, and its egological significance. Lithos,2009,109: 240-247.
    [211]Coleman, R, Donato, M. Oceanic plagiogranite revisited. In:Barker, F (Ed.), Trondhjemites, dacites, and related rocks. Amsterdam-Oxford-New York, Elsevier,1979:149-167.
    [212]Taylor, S, McLennan, S. The continental crust: its composition and evolution. Oxford:Blackwell Scientific Publication,1985:1-132.
    [213]Hofmann, A. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters,1988,90:297-314.
    [214]Jiang, Y H, Jiang, S Y, Ling, H F, et al. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters,2006,241:617-633.
    [215]Atherton, M, Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,1993,362:144-146.
    [216]Muir, R, Weaver, S, Bradshaw, J, et al. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, London,1995,152:689-701.
    [217]Petford, N, Atherton, M. Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith, Peru. Journal of Petrology,1996,37:1491-1521.
    [218]耿全如,潘桂棠,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质,2006,26:1-7.
    [219]Coulon, C, Maluski, H, Bollinger, C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters,1986,79:281-302.
    [220]Huw Davies, J, von Blanckenburg, F. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters,1995,129:85-102.
    [221]Maheo, G, Guillot, S, Blichert-Toft, J, et al. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet Earth and Planetary Science Letters,2002, 195:45-58.
    [222]Chung, S-L, Chu, M-F, Ji, J, et al. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 2009,477:36-48.
    [223]Guo, Z, Wilson, M, Liu, J. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust. Lithos,2007,96:205-224.
    [224]DePaolo, D, Weaver, K, Mo, X, et al. Regional isotopic patterns in granitic rocks of southern Tibet and evolution of crustal structure during the Indo-Asian collision. Geochimica Et Cosmochimica Acta,2008,72:12.
    [225]张刚阳,郑有业,龚福志,等.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报,2008,24:473-479.
    [226]王金丽,张泽明,石超.拉萨地体东南缘的多期深熔作用及动力学.岩石学报,2008,24:1539-1551.
    [227]Zhang, Z M, Zhao, G C, Santosh, M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research,2009, in press.
    [228]廖忠礼,莫宣学,潘桂棠,等.西藏南部过铝花岗岩的分布及其意义.沉积与特提斯地质, 2003,23:12-20.
    [229]和钟铧,杨德明,郑常青,et al.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评,2006,52:100-106.
    [230]和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志,2006,25:185-193.
    [231]林武,梁华英,张玉泉,等.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学,2004,33:585-592.
    [232]芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,2003,22:217-225.
    [233]胡道功,吴珍汉,叶培盛,等.西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄.地质通报,2003,22:936-940.
    [234]王立全,朱弟成,耿全如,等.西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义.科学通报,2006,51:1920-1928.
    [235]Booth, A L, Zeitler, P K, Kidd, W S F, et al. U-Pb zircon constraints on the Tectonic evolution of southeastern Tibet, Namche Barwa area American Journal of Science,2004,304:889-929.
    [236]刘琦胜,江万,简平,等.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征.岩石学报,2006,22:643-652.
    [237]Uyeda, S, Miyashiro, A. Plate tectonics and the Japanese Islands:A synthesis. Bulletin of the Geological Society of America,1974,85:1159-1170.
    [238]Iwamori, H. Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth and Planetary Science Letters,2000,181: 131-144.
    [239]Ali, J, Aitchison, J. Greater India Earth Science Reviews,2005,72:169-188.
    [240]Turner, S, Arnaud, N, Liu, J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology,1996,37:45-71.
    [241]Defant, M,许继峰,Kepezhinskas, P,等.埃达克岩:关于其成因的一些不同观点.岩石学报,2002,18:129-142.
    [242]Kay, R. Aleutian magnesian andesites:melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research,1978,4:117-132.
    [243]Defant, M, Drummond, M. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,1990,347:662-665.
    [244]Kay, S M, Ramos, V A, Marquez, M. Evidence in Cerro-Pampa volcanic-rocks for slab-metling prior to ridge-trench collision in southern South-America. Journal of Geology,1993,101: 703-714.
    [245]Stern, C R, Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contributions to Mineralogy and Petrology,1996,123:263-281.
    [246]Beck, R A, Burbank, D W, Sercombe, W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia Nature,1995,373:55-58.
    [247]Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews,2006,76:1-131.
    [248]Kohn, M J, Parkinson, C D. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology,2002,30:591-594.
    [249]DeCelles, P G, Robinson, D M, Zandt, G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics,2002,21:TC001322.
    [250]岳雅慧,丁林.西藏林周基性岩脉的40Ar/39Ar年代学,地球化学及其成因.岩石学报,2006,22:855-866.
    [251]Gao, Y, Wei, R, Hou, Z, et al. Eocene high-MgO volcanism in southern Tibet:New constraints for mantle source characteristics and deep processes. Lithos,2008,105:63-72.
    [252]Baker, M, Hirschmann, M, Ghiorso, M, et al. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature,1995,375:308-311.
    [253]Tatsumi, Y. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences,2006,34:467-499.
    [254]Jin, Y, McNutt, M K, Zhu, Y S. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. Journal of Geophysical Research-Solid Earth,1996, 101:11275-11290.
    [255]Owens, T J, Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature,1997,387:37-43.
    [256]Rodgers, A T J, Schwartz, S Y. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms. Geophysical Research Letters,1997,24:9-12.
    [257]Tilmann, F, Ni, J, Team, I I S. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science,2003,300:1424-1427.
    [258]Schulte-Pelkum, V, Monsalve, G, Sheehan, A, et al. Imaging the Indian subcontinent beneath the Himalaya Nature,2005,435:1222-1225.
    [259]Zhong, D L, Ding, L. Discovery of high-pressure basic granulite in Namjagbarwa area, Tibet, China Chinese Science Bulletin,1996,41:87-88.
    [260]Geng, Q R, Pan, G T, Zheng, L L, et al. The Eastern Himalayan syntaxis:major tectonic domains, ophiolitic melanges and geologic evolution. Journal of Asian Earth Sciences,2006,27: 265-285.
    [261]Rolland, Y, Maheo, G, Guillot, S, et al. Tectono-metamorphic evolution of the Karakorum Metamorphic complex (Dassu-Askole area, NE Pakistan):exhumation of mid-crustal HT-MP gneisses in a convergent context Journal of Metamorphic Geology,2001,19:717-737.
    [262]Coleman, M, Hodges, K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature,1995,374:49-52.
    [263]Spicer, R A, Harris, N B W, Widdowson, M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature,2003,421:622-624.
    [264]朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因:锆石U-Pb 年代学,地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑),2009:833-848.
    [265]Pullen, A, Kapp, P, Gehrels, G E, et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. Journal of Asian Earth Sciences,2008,33:323-336.
    [266]Zhu, J, Du, Y, Liu, Z, et al. Mesozoic radiolarian chert from the middle sector of the Yarlung Zangbo suture zone, Tibet and its tectonic implications. Science in China Series D:Earth Sciences,2006,49:348-357.
    [267]Schaltegger, U, Zeilinger, G, Frank, M, et al. Multiple mantle sources during island arc magmatism:U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova,2002,14:461-468.
    [268]Wu, F Y, Ji, W Q, Liu, C Z, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology,2010,271:13-25.
    [269]丁林,来庆洲.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约.科学通报,2003,48:836-842.
    [270]Volkmer, J, Kapp, P, Guynn, J, et al. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet Tectonics,2007,26:TC6007.
    [271]Zhang, H F, Harris, N, Guo, L, et al. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet Contributions to Mineralogy and Petrology, 2009, in press.
    [272]Zhao, Z D, Mo, X X, Dilek, Y, et al. Geochemical and Sr-Nd-Pb isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet; petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos,2009,113:190-212.
    [273]Heim, A, Gansser, A. Central Himalaya. Geological observations of the Swiss.1939:1-246.
    [274]Zhu, D C, Mo, X X, Wang, L Q, et al. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern gangese, Tibet:Constrains from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Earth sciences),2009,39:833-848.
    [275]夏斌,韦振权,张玉泉,等.西藏西部冈仁波齐花岗闪长岩锆石SHRIMP U-Pb定年及其地质意义.地质通报,2007,26:1014-1017.
    [276]夏斌,徐力峰,张玉泉,等.西藏南部谢通门花岗闪长岩锆石SHRIMP定年及其地质意义.大地构造与成矿学,2008,32:238-242.
    [277]董听.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学:[学位论文].北京:中国地质大学(北京),2008.
    [278]莫济海,梁华英,喻亨祥,等.西藏冲木达铜-金(钼)矿床黑云角闪二长花岗岩锆石U-Pb年龄及其意义.地球化学,2008,37:206-212.
    [279]王亮亮,莫宣学.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,2006,22:1001-1008.
    [280]周长勇,朱弟成,赵志丹,等.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束.岩石学报,2008,24:348-358.
    [281]杨德明,黄映聪,戴琳娜,等.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石SHRIMP U-Pb年龄及其意义.地质通报,2005,24:235-238.
    [282]Petterson, M, Windley, B. Changing source regions of magmas and crustal growth in the Trans-Himalayas:evidence from the Chalt volcanics and Kohistan batholith, Kohistan, northern Pakistan. Earth and Planetary Science Letters,1991,102:326-341.
    [283]Petterson, M, Treloar, P. Volcanostratigraphy of arc volcanic sequences in the Kohistan arc, North Pakistan:volcanism within island arc, back-arc-basin, and intra-continental tectonic settings. Journal of Volcanology and Geothermal Research,2004,130:147-178.
    [284]Khan, M, Jan, M, Weaver, B. Evolution of the lower arc crust in Kohistan, N. Pakistan:temporal arc magmatism through early, mature and intra-arc rift stages. Geological Society London Special Publications,1993,74:123-138.
    [285]Bignold, S, Treloar, P, Petford, N. Changing sources of magma generation beneath intra-oceanic island arcs:An insight from the juvenile Kohistan island arc, Pakistan Himalaya. Chemical Geology,2006,233:46-74.
    [286]Clift, P, Hannigan, R, Blusztajn, J, et al. Geochemical evolution of the Dras-Kohistan Arc during collision with Eurasia:Evidence from the Ladakh Himalaya, India. The Island Arc,2002,11: 255-273.
    [287]Rolland, Y, Picard, C, Pecher, A, et al. The Cretaceous Ladakh arc of NW Himalaya-slab melting and melt-mantle interaction during fast northward drift of Indian Plate. Chemical Geology, 2002,182:139-178.
    [288]Jain, A K, Singh, S. Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone:Constraints from field observations and U-Pb SHRIMP ages. Tectonophysics,2008,451: 186-205.
    [289]Scharer, U, Hamet, J, Allegre, C J. The Transhimalaya (Gangdese) plutonism in the Ladakh region:a UPb and RbSr study. Earth and Planetary Science Letters,1984,67:327-339.
    [290]Gaetani, M. The Karakorum block in central Asia, from Ordovician to Cretaceous. Sedimentary Geology,1997,109:339-359.
    [291]Rolland, Y, Picard, C, Pecher, A, et al. Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan). Geodinamica Acta,2002,15:1-21.
    [292]Fraser, J, Searle, M, Parrish, R, et al. Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains. Geological Society of America Bulletin, 2001,113:1443-1455.
    [293]Schwab, M, Ratschbacher, L, Siebel, W, et al. Assembly of the Pamirs:Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics,2004,23.
    [294]Searle, M, Geology and tectonics of the Karakoram Mountains. John Wiley & Sons Inc,1991.
    [295]Ravikant, V. Zircon U-Pb and Hf isotopic constraints on petrogenesis of the Cretaceous-Tertiary granites in eastern Karakoram and Ladakh, India. Lithos,2009,110:153-166.
    [296]Singh, S, Kumar, R, Barley, M E, et al. SHRIMP U-Pb ages and depth of emplacement of Ladakh Batholith, Eastern Ladakh, India Journal of Asian Earth Sciences,2007,30:490-503.
    [297]Heuberger, S, Schaltegger, U, Burg, J, et al. Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan:evidence for subduction and continued convergence after India-Asia collision. Swiss Journal of Geoscience,2007,100:85-107.
    [298]Upadhyay, R, Frisch, W, Siebel, W. Tectonic implications of new U-Pb zircon ages of the Ladakh batholith, Indus suture zone, northwest Himalaya, India Terra Nova,2008,20:309-317.
    [299]刘敏,朱弟成,赵志丹,等.西藏冈底斯东部然乌地区早白垩世岩浆混合作用:锆石SHRIM PU-Pb年龄和Hf同位素证据.地学前缘,2009,16:152-160.
    [300]Chiu, H Y, Chung, S L, Wu, F Y, et al. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics,2009,477:3-19.
    [301]Liang, Y, Chung, S, Liu, D, et al. Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. American Journal of Science,2008,308:618-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700